
Homework #4: CMPT-413
Reading: NLTK Tutorial Chp 7 and 8;

http://nltk.org/doc/en/{chunk,parse}.html;
Distributed on Mar 3; due on Mar 17

Anoop Sarkar – anoop@cs.sfu.ca

Only submit answers for questions marked with †.

(1) Once we have some text that has been tagged with part of speech labels, we can chunk words together into
non-overlapping spans of text. Each chunk corresponds to some meaningful unit, e.g. we can find all
chunks that are noun phrases. Here is an example sentence from the Wall Street Journal where the noun
phrases are marked up with brackets:

[The/DT market/NN] for/IN [system-management/NN software/NN] for/IN [Digital/NNP
’s/POS hardware/NN] is/VBZ fragmented/JJ enough/RB that/IN [a/DT giant/NN] such/JJ
as/IN [Computer/NNP Associates/NNPS] should/MD do/VB well/RB there/RB ./.

In this question, we will use regular expressions on the part of speech tags to identify chunks. First, we
need to put the input sentence into the right format for NLTK:

from nltk import chunk

tagged_text = """

The/DT market/NN for/IN system-management/NN software/NN for/IN

Digital/NNP ’s/POS hardware/NN is/VBZ fragmented/JJ enough/RB

that/IN a/DT giant/NN such/JJ as/IN Computer/NNP Associates/NNPS

should/MD do/VB well/RB there/RB ./.

"""

input = chunk.tagstr2tree(tagged_text)

print input

cp = chunk.RegexpParser("NP: {<DT><NN>}")

print cp.parse(input)

Examine the output after executing the above. You will notice that the function tagstr2tree
automatically puts a S chunk around the entire sentence (it assumes that the input is a full sentence). We
are interested only in noun phrase (NP) chunks here, so we can ignore the S chunk.
We can now use the NLTK regular expression chunker to identify some NP chunks in the sentence:

cp = chunk.RegexpParser("NP: {<DT><NN>}")

print cp.parse(input)

The above code finds the following two NP chunks in the sentence:

(NP: (’The’, ’DT’) (’market’, ’NN’))

(NP: (’a’, ’DT’) (’giant’, ’NN’))

You can provide multiple regexp patterns for identifying NPs (and also provide comment strings) using
this syntax:

grammar = r"""

NP:

{<DT>?<JJ>*<NN>} # chunk determiners, adjectives and nouns

{<NNP>+} # chunk sequences of proper nouns

"""

cp = chunk.RegexpParser(grammar)

1

Note that the order of the patterns is important. You can debug your regexp patterns by using
cp.parse(input, trace=1) which provides detailed information on the order of the pattern matching.
Provide a program that chunks the example sentence provided and identifies all five of the noun phrase
chunks as shown in the marked up example above. Print out the chunked output for the sentence.

(2) † Provide a regular expression based chunker (using the NLTK chunker) to identify noun phrase chunks
for the CONLL-2000 chunk dataset which contains Wall Street Journal text that has been chunked by
human experts. Your chunker should at least have 91% accuracy.
Since you will have to deal with a large variety of noun phrase chunks you will need to generalize your
regexp patterns. A tag pattern is a sequence of part-of-speech tags delimited using angle brackets, e.g.
<DT><JJ><NN>. Tag patterns are the same as the regular expression patterns we have already seen, except
for two differences which make them easier to use for chunking. First, angle brackets group their contents
into atomic units, so <NN>+ matches one or more repetitions of the tag NN; and <NN|JJ> matches the NN
or JJ. Second, the period wildcard operator is constrained not to cross tag delimiters, so that <N.*>
matches any single tag starting with N.
To test the accuracy of your chunker use the built-in NLTK function:

from nltk import chunk

from nltk.corpus import conll2000

cp = chunk.RegexpParser("NP: {<DT><NN>}")

print chunk.accuracy(cp, conll2000.chunked_sents(’test’, chunk_types=(’NP’,)))

You can compare the output of your chunker with the gold standard to find out which chunks you are
missing. For instance, the following code prints the gold standard and then prints the chunker output:

gold_tree = conll2000.chunked_sents(’train’, chunk_types=(’NP’,))[1]

print gold_tree

print cp.parse(gold_tree.flatten())

Use the following steps in your development process:

a. Write down a regexp chunker using tag patterns that can identify the following examples of noun
phrases:

another/DT sharp/JJ dive/NN

trade/NN figures/NNS

any/DT new/JJ policy/NN measures/NNS

earlier/JJR stages/NNS

Panamanian/JJ dictator/NN Manuel/NNP Noriega/NNP

his/PRP$ Mansion/NNP House/NNP speech/NN

3/CD %/NN to/TO 4/CD %/NN

more/JJR than/IN 10/CD %/NN

the/DT fastest/JJS developing/VBG trends/NNS

b. Write a tag pattern to match noun phrases containing plural head nouns, e.g. many/JJ types/NNS,
two/CD weeks/NNS, both/DT new/JJ positions/NNS. Try to do this by generalizing the tag
pattern that handled singular noun phrases.

c. Write tag pattern to cover noun phrases that contain gerunds, e.g. the/DT receiving/VBG end/NN,
assistant/NN managing/VBG editor/NN.

d. Write one or more tag patterns to handle coordinated noun phrases, e.g. July/NNP and/CC
August/NNP, all/DT your/PRP$ managers/NNS and/CC supervisors/NNS, company/NN
courts/NNS and/CC adjudicators/NNS.

2

e. Compare your output with the gold standard output on some randomly chosen examples from the
training data of CoNLL-2000 dataset. See if there are any NP chunks missing in your output and find
tag patterns that will include them. Generalize your tag patterns to avoid having one pattern per
example.

(3) †Warning: only attempt this question after you have finished Question 2.
The file genia3.02-small-pos.txt contains a small amount of text extracted out of bio-medical
journals. In this question, we will test how well the chunker you have developed on the Wall Street
Journal can deal with text in a completely different domain.
Note that you will now have to deal with the raw text and convert it into a format suitable for use with
your chunker. In particular, you should convert [to LSB ,] to RSB , (to LRB and) to RRB whenever
these characters occur as the word or tag in the genia corpus. This ensures that the NLTK tree format does
not get confused by these parentheses which occur as actual words and tags.
As you can imagine, the text in this corpus can be very different. Here is a typical example sentence from
our bio-medical corpus:

These/DT findings/NNS should/MD be/VB useful/JJ for/IN therapeutic/JJ strategies/NNS
and/CC the/DT development/NN of/IN immunosuppressants/NNS targeting/VBG the/DT
CD28/NN costimulatory/NN pathway/NN ./.

But does dealing with a different domain affect your chunker? Run your chunker on this dataset.
Depending on the regexp patterns you created for the WSJ text, you may have to tweak your regexp
chunker with some additional rules.
Note that we cannot test accuracy on this domain since we do not have human labeled data. We will
compare your output with our own chunker on this domain.

(4) † In NLTK you can easily represent trees. For instance:

from nltk.tree import bracket_parse

sent = ’(S (S (NP Kim) (V arrived)) (conj or) (S (NP Dana) (V left)))’

tree = bracket_parse(sent)

print tree[0]

left_tree = tree[0]

print left_tree[0]

The above code will print out two constituents of the tree:

(S: (NP: ’Kim’) (V: ’arrived’))

(NP: ’Kim’)

Write a program that prints out all the constituents of a tree, one per line, using the NLTK tree handling
functions shown above. For the above input it should produce:

(S:

(S: (NP: ’Kim’) (V: ’arrived’))

(conj: ’or’)

(S: (NP: ’Dana’) (V: ’left’)))

(S: (NP: ’Kim’) (V: ’arrived’))

(NP: ’Kim’)

(V: ’arrived’)

(conj: ’or’)

(S: (NP: ’Dana’) (V: ’left’))

(NP: ’Dana’)

(V: ’left’)

3

(5) Write down five trees, one for each reading of the phrase natural language processing course.

(6) Run the recursive descent parser demo:

from nltk.draw import rdparser

rdparser.demo()

(7) Chapter 8 of the NLTK tutorial provides a good overview of the grammar development process that can
be used to describe the syntax of natural language sentences. The notion of a context-free grammar allows
us to describe nested constituents unlike a chunking grammar. Based on the ideas provided in Chapter 8
of the NLTK tutorial and the lecture notes, write a context-free grammar that can recognize the following
sentences (taken from the NLTK tutorial, Chapter 8):

(26a) Jodie won the 100m freestyle

(26b) ’The Age’ reported that Jodie won the 100m freestyle

(26c) Sandy said ’The Age’ reported that Jodie won the 100m freestyle

(26d) I think Sandy said ’The Age’ reported that Jodie won the 100m freestyle

Write down your context-free grammar using the following format:

productions = """

S -> NP VP

NP -> ’John’ | ’Mary’ | ’Bob’ | Det N | Det N PP

VP -> V NP | V NP PP

V -> ’saw’ | ’ate’

Det -> ’a’ | ’an’ | ’the’ | ’my’

N -> ’dog’ | ’cat’ | ’cookie’ | ’park’

PP -> P NP

P -> ’in’ | ’on’ | ’by’ | ’with’

"""

You can then use your grammar to parse an input sentence. For example, the following code prints out a
parse for the sentence Mary saw Bob when analyzed using the above grammar.

from nltk import parse, cfg

grammar = cfg.parse_cfg(productions)

rd_parser = parse.RecursiveDescentParser(grammar)

sent = ’Mary saw Bob’.split()

for p in rd_parser.nbest_parse(sent):

print p

Print out the parses for the example sentences above using the context-free grammar you developed to
analyze them.

(8) † A Treebank is a corpus of sentences such that each sentence is provided with it’s most plausible syntax
tree as determined by a human expert. You are provided with a Treebank for sentences from the Air
Travel Information Service (ATIS) domain in the file atis3.treebank.
From this Treebank, extract a context-free grammar. Provide the context-free grammar as a text file.

(9) † After finishing Q. (8), trim down the number of rules in your context-free grammar, either based on the
frequency of the rule or manual inspection or both (this step is necessary to reduce the time taken by the
parser). Use your reduced context-free grammar with the NLTK recursive descent parser to parse all the
sentences in the file atis.test. You may need to add lexical rules (e.g. NNP→ Miami) in order to
parse some of these sentences. Submit your Python code and a text file containing a list of parse trees, one
for each sentence in atis.test. When running from exec.py only print the total number of parses
reported by the parser. Your program should finish parsing atis.test in less than ≈10 minutes on the
CSIL Linux machines (a smaller grammar will give you a faster parser).

4

