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Sequence Learning

e British Left Waffles on Falkland Islands
—(N,N,V,P,N,N)
— (N, V,N,P,N,N)

e Segmentation FE+EAHEFHETEFERARTE
—(b,1,b,1,b,b,1,b,1,b,1,b,1,b,1, b, 1, b, 1)
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China 's 14 open border cities marked economic achievements
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Sequence Learning

British Left Waffles on Falkland Islands

3 states: N, V, P
Observation sequence: (0, ... o)
State sequence (6+1): (Start, N, N, V, P, N, N)
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Finite State Machines
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Finite State Machines
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Probabilistic FSMs

 Start at a state i with a start state probability: m;

e Transition from state i to state j is associated with
a transition probability: a;;

e Emission of symbol o from state i is associated
with an emission probability: b,(o)

e Two conditions:
— All outgoing transition arcs from a state must sum to 1

— All symbol emissions from a state must sum to 1
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Probabilistic FSMs
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0 killer 1/3 killer
1.0 crazy 0 crazy
0 clown 1/3 clown
0 problem 1/3 problem
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Probabilistic FSMs

Emission Emission
b, (killer) = 0 %D by(killer) = 1/3
__

b,(crazy) =1 by(crazy) =0

b,(clown) =0 Killer Killer by(clown) = 1/3
b, (problem) =0 crazy crazy by(problem) = 1/3
clown clown
bi(0) =1
problem problem (;/
Start state Transition
n =12 a,, =173
i =172 ayN=23 2.
ayn=910

3/5/08 aya = 1/10 8



Hidden Markov Models

e There are n states s, ..., §;, ..., S,

e The emissions are observed (input data)

e Observation sequence O=(o,, ..., 0, ..., 07)
e The states are not directly observed (hidden)

* Data does not directly tell us which state X,
1s linked with observation o,

Xt € {Sla tee }Sn}
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Markov Chains vs. HMMs

» For observation sequence babaa
i.e:0,;=b, 0,=a, ..., 05=a

e Compute P(babaa) using a bigram model
P(b)*P(alb)*P(bla)*P(alb)*P(ala)

e Equivalent Markov chain:

P(blb) .. P(ala)

P(bla
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Markov Chains vs. HMMs

» For observation sequence babaa
i.e:0,;=b, 0,=a, ..., 05=a

e Compute P(babaa) using a trigram model
P(ba)*P(blba)*P(alab)*P(alba)

e Equivalent Markov chain:

P(alaa)
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Markov Chains vs. HMMs

» For observation sequence babaa
i.e:0,;=b, 0,=a, ..., 05=a

e Compute P(babaa) using a trigram model
P(ba)*P(blba)*P(alab)*P(alba)

e Equivalent Markov chain:

P(blaa)
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Markov Chains vs. HMMs

e Given an observation sequence
O=(o,, ..., 0, ..., 07)

e An nth order Markov Chain or n-gram
model computes the probability

P(o,;, ..., 0, ..., 07)
e An HMM computes the probability

P(X,, ..., Xz, 0}, ..., 07) where the state
sequence is hidden
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Properties of HMMs

e Markov assumption
P(X, =S; | cos aXt—l = S'/)
 Stationary distribution

P(X,=si| Xi-1 = Sj) =PXy1=5i| Xosi1 = Sj)
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HMM Algorithms

e HMM as language model: compute
probability of given observation sequence

e HMM as parser: compute the best sequence
of states for a given observation sequence

e HMM as learner: given a set of observation
sequences, learn its distribution, i.e. learn
the transition and emission probabilities
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HMM Algorithms

e HMM as language model: compute
probability of given observation sequence

e Compute P(0,, ..., o) from the probability
P(X,, ... Xz, 04 ..., 07)
= [ P(Xis1=15; | Xo = 8;) x Ploy =k | Xp41 = s)
t=1

P(ij"v OT) = Z P(Xla"'aXT-f—laola"'aOT)
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HMM Algorithms

e HMM as parser: compute the best sequence
of states for a given observation sequence

e Compute best path X, ..., X, , from the
probability P(X,, ..., Xy, 04, .., OF)

Best state sequence X, ..., X 7,

= argmax P(Xi,...,Xr+1,01,...,07)
Xl,...,X'[,.,l
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Best Path (Viterbi) Algorithm

t=1 =2 =3 t=4 t=5

Trellis

b b b a
* Key Idea 1: storing just the best path doesn’t work

* Key Idea 2: store the best path upto each state
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Viterbi Algorithm

function viterbi (edges, input, obs): returns best path
edges = transition probability
input = emission probability
T = length of obs, the observation sequence
num-states = number of states in the HMM
Create a path-matrix: viterbi[num-states+1, T+1] # init to all Os
for each state s: viterbi[s, 0] = mt[s]
for each time step t from O to T:
for each state s from 0 to num-states:
for each s’ where edges|[s,s’] is a transition probability:
new-score = viterbi[s,t] * edges[s,s’] * input[s’,obs[t]]
if (viterbi[s’,t+1] == 0) or (new-score > viterbi[s’, t+1]):
viterbi[s’, t+1] = new-score
back-pointer[s’,t+1] = s
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Viterbi Algorithm

# finding the best path
best-final-score = best-final-state = 0
for each state s from 0 to num-states:
if (viterbi[s,T+1] > best-final-score):
best-final-state = s
best-final-score = viterbi[s,T+1]
# start with the last state in the sequence
X = best-final-state
state-sequence.push(x)
for t from T+1 downto O:
state-sequence.push(back-pointer[x,t])
x = back-pointer[x,t]
return state-sequence
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