
3/5/08 1

CMPT 413
Computational Linguistics

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

3/5/08 2

• British Left Waffles on Falkland Islands
– (N, N, V, P, N, N)
– (N, V, N, P, N, N)

• Segmentation
– (b, i, b, i, b, b, i, b, i, b, i, b, i, b, i, b, i, b, i)

Sequence Learning

3/5/08 3

Sequence Learning

N

British Left

N V

Waffles

P

on

N

Falkland

N

Islands

3 states: N, V, P
Observation sequence: (o1, … o6)
State sequence (6+1): (Start, N, N, V, P, N, N)

3/5/08 4

Finite State Machines

Mealy Machine

A N

killer

crazy

crazy

clown

3/5/08 5

Finite State Machines

Moore Machine

A N

killercrazy
clown

3/5/08 6

Probabilistic FSMs

• Start at a state i with a start state probability: πi

• Transition from state i to state j is associated with
a transition probability: aij

• Emission of symbol o from state i is associated
with an emission probability: bi(o)

• Two conditions:
– All outgoing transition arcs from a state must sum to 1
– All symbol emissions from a state must sum to 1

3/5/08 7

Probabilistic FSMs

A N

0 killer

1.0 crazy

0 clown

0 problem

1/3 killer

0 crazy

1/3 clown

1/3 problem

1/3
2/3 9/10

1/10

3/5/08 8

Probabilistic FSMs

A N

killer

crazy

clown

problem

killer

crazy

clown

problem

Start state
πA = 1/2
πN = 1/2

Transition
aA,A = 1/3
aA,N = 2/3
aN,N = 9/10
aN,A = 1/10

Emission
bA(killer) = 0
bA(crazy) = 1
bA(clown) = 0
bA(problem) = 0

Emission
bN(killer) = 1/3
bN(crazy) = 0
bN(clown) = 1/3
bN(problem) = 1/3

3/5/08 9

Hidden Markov Models

• There are n states s1, …, si, …, sn

• The emissions are observed (input data)
• Observation sequence O=(o1, …, ot, …, oT)
• The states are not directly observed (hidden)
• Data does not directly tell us which state Xt

is linked with observation ot

3/5/08 10

Markov Chains vs. HMMs

• For observation sequence babaa
 i.e: o1=b, o2=a, …, o5=a
• Compute P(babaa) using a bigram model
 P(b)*P(a|b)*P(b|a)*P(a|b)*P(a|a)
• Equivalent Markov chain:

ab
P(a|b)

P(b|a)
P(a|a)P(b|b)

3/5/08 11

Markov Chains vs. HMMs

• For observation sequence babaa
 i.e: o1=b, o2=a, …, o5=a
• Compute P(babaa) using a trigram model
 P(ba)*P(b|ba)*P(a|ab)*P(a|ba)
• Equivalent Markov chain:

ba

ab

aa

P(b|ba)
P(a|ab)

P(a|ba)

bb P(b|ab)P(b|bb)

P(a|bb)
P(a|aa)

P(b|aa)

3/5/08 12

Markov Chains vs. HMMs

• For observation sequence babaa
 i.e: o1=b, o2=a, …, o5=a
• Compute P(babaa) using a trigram model
 P(ba)*P(b|ba)*P(a|ab)*P(a|ba)
• Equivalent Markov chain:

ba

ab

aa

P(b|ba)
P(a|ab)

P(a|ba)

bb P(b|ab)P(b|bb)

P(a|bb)
P(a|aa)

P(b|aa)

3/5/08 13

Markov Chains vs. HMMs

• Given an observation sequence
 O=(o1, …, ot, …, oT)
• An nth order Markov Chain or n-gram

model computes the probability
 P(o1, …, ot, …, oT)
• An HMM computes the probability
 P(X1, …, XT+1, o1, …, oT) where the state

sequence is hidden

3/5/08 14

Properties of HMMs

• Markov assumption

• Stationary distribution

3/5/08 15

HMM Algorithms

• HMM as language model: compute
probability of given observation sequence

• HMM as parser: compute the best sequence
of states for a given observation sequence

• HMM as learner: given a set of observation
sequences, learn its distribution, i.e. learn
the transition and emission probabilities

3/5/08 16

HMM Algorithms

• HMM as language model: compute
probability of given observation sequence

• Compute P(o1, …, oT) from the probability
P(X1, …, XT+1, o1, …, oT)

 P(o1, …, oT)

3/5/08 17

HMM Algorithms

• HMM as parser: compute the best sequence
of states for a given observation sequence

• Compute best path X1, …, XT+1 from the
probability P(X1, …, XT+1, o1, …, oT)

 Best state sequence X*
1, …, X*

T+1

3/5/08 18

Best Path (Viterbi) Algorithm

a

t=5

q

r

b

t=4

q

r

b

t=3

q

r

b

t=2

q

r

t=1

r
s

qTrellis q q

r r r
s

• Key Idea 1: storing just the best path doesn’t work
• Key Idea 2: store the best path upto each state

3/5/08 19

Viterbi Algorithm
function viterbi (edges, input, obs): returns best path
edges = transition probability
input = emission probability
T = length of obs, the observation sequence
num-states = number of states in the HMM
Create a path-matrix: viterbi[num-states+1, T+1] # init to all 0s
for each state s: viterbi[s, 0] = π[s]
for each time step t from 0 to T:
 for each state s from 0 to num-states:
 for each s’ where edges[s,s’] is a transition probability:
 new-score = viterbi[s,t] * edges[s,s’] * input[s’,obs[t]]
 if (viterbi[s’,t+1] == 0) or (new-score > viterbi[s’, t+1]):
 viterbi[s’, t+1] = new-score
 back-pointer[s’,t+1] = s

3/5/08 20

Viterbi Algorithm
finding the best path
best-final-score = best-final-state = 0
for each state s from 0 to num-states:
 if (viterbi[s,T+1] > best-final-score):
 best-final-state = s
 best-final-score = viterbi[s,T+1]
start with the last state in the sequence
x = best-final-state
state-sequence.push(x)
for t from T+1 downto 0:
 state-sequence.push(back-pointer[x,t])
 x = back-pointer[x,t]
return state-sequence

