
2/1/08 1

CMPT 413
Computational Linguistics

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

2/1/08 2

Finite-state transducers

• Many applications in
computational
linguistics

• Popular applications
of FSTs are in:
– Orthography
– Morphology
– Phonology

• Other applications
include:
– Grapheme to phoneme
– Text normalization
– Transliteration
– Edit distance
– Word segmentation
– Tokenization
– Parsing

2/1/08 3

Orthography and Phonology

• Orthography: written form of the language
(affected by morpheme combinations)
move + ed → moved
swim + ing → swimming S W IH1 M IH0 NG

• Phonology: change in pronunciation due to
morpheme combinations (changes may not be
confined to morpheme boundary)
intent IH2 N T EH1 N T + ion
→ intention IH2 N T EH1 N CH AH0 N

2/1/08 4

Orthography and Phonology

• Phonological
alternations are not
reflected in the
spelling
(orthography):
– Newton Newtonian
– maniac maniacal
– electric electricity

• Orthography can
introduce changes that
do not have any
counterpart in
phonology:
– picnic picnicking
– happy happiest
– gooey gooiest

2/1/08 5

Segmentation and Orthography

• To find entries in the lexicon we need to segment
any input into morphemes

• Looks like an easy task in some cases:
looking → look + ing
rethink → re + think

• However, just matching an affix does not work:
*thing → th + ing
*read → re + ad

• We need to store valid stems in our lexicon
what is the stem in assassination (assassin and not

nation)

2/1/08 6

Porter Stemmer

• A simpler task compared to segmentation is
simply stripping out all affixes (a process called
stemming, or finding the stem)

• Stemming is usually done without reference to a
lexicon of valid stems

• The Porter stemming algorithm is a simple
composition of FSTs, each of which strips out
some affix from the input string
– input=..ational, produces output=..ate (relational →

relate)
– input=..V..ing, produces output=ε (motoring → motor)

2/1/08 7

Porter Stemmer

• False positives (stemmer gives incorrect stem):
doing → doe, policy → police

• False negatives (should provide stem but does
not): European → Europe, matrices → matrix

I’m a rageaholic. I can’t live without rageahol.
Homer Simpson, from The Simpsons

• Despite being linguistically unmotivated, the
Porter stemmer is used widely due to its simplicity
(easy to implement) and speed

2/1/08 8

Segmentation and orthography

• More complex cases involve alterations in spelling
foxes → fox + s [e-insertion]
loved → love + ed [e-deletion]
flies → fly + s [y to i, e-insertion]
panicked → panic + ed [k-insertion]
chugging → chug + ing [consonant doubling]
*singging → sing + ing
impossible → in + possible [n to m]

• Called morphographemic changes.
• Similar to but not identical to changes in pronunciation due

to morpheme combinations

2/1/08 9

Morphological Parsing with FSTs
• Think of the process of decomposing a word into

its component morphemes in the reverse direction:
as generation of the word from the component
morphemes

• Start with an abstract notion of each morpheme
being simply combined with the stem using
concatenation
– Each stem is written with its part of speech, e.g. cat+N
– Concatenate each stem with some suffix information,

e.g. cat+N+PL
– e.g. cat+N+PL goes through an FST to become cats (also

works in reverse!)

2/1/08 10

Morphological Parsing with FSTs
• Retain simple morpheme combinations with the

stem by using an intermediate representation:
– e.g. cat+N+PL becomes cat^s#

• Separate rules for the various spelling changes.
Each spelling rule is a different FST

• Write down a separate FST for each spelling rule
foxes :: fox^s# [e-insertion FST]
loved :: love^ed# [e-deletion FST]
flies :: fly^s# [y to i, e-insertion FST]
panicked :: panic^ed# [k-insertion FST] (arced::arc^ed#)??

etc.

2/1/08 11

Lexicon FST (stores stems)

m o v e : reg-noun-stem

m o u s e : irreg-sg-noun-form

f l y : reg-noun-stem

f o x : reg-noun-stem

m i c e : irreg-pl-noun-form

+N:+N
+SG:+SG
+PL:+PL

Compose the above lexicon FST with
some inflection FST

2/1/08 12

2/1/08 13

• The label other means pairs not use anywhere in the
transducer.
• Since # is used in a transition, q0 has a transition on # to
itself
• States q0 and q1 accept default pairs like (cat^s#, cats#)
• State q5 rejects incorrect pairs like (fox^s#, foxs#)

e-insertion FST

2/1/08 14

e-insertion FST

• Run the e-insertion FST on the following
pairs:
(fir#, fir#)
(fir^s#, firs#)
(fir^s#, fires#)

• Find the state the FST reaches after
attempting to accept each of the above pairs

• Is the state a final state, i.e. does the FST
accept the pair or reject it

(fizz^s#, fizzs#)
(fizz^s#, fizzes#)
(fizz^ing#, fizzing#)

2/1/08 15

• We first use an FST to convert the lexicon containing
the stems and affixes into an intermediate representation
• We then apply a spelling rule that converts the
intermediate form into the surface form
• Parsing: takes the surface form and produces the lexical
representation
• Generation: takes the lexical form and produces the
surface form
• But how do we handle multiple spelling rules?

2/1/08 16

Method 1: Composition
.. y+s

.. ies

FST1

FST2

FSTn

.

.

write one
FST for
each spelling
rule: each FST
has to provide
input to next
stage

FST
composition:
creates one
FST for
all rules

Lexicon

2/1/08 17

Method 2: Intersection
.. y+s

.. ies

FST1 FST2 FSTn....

Lexicon

Write each FST
as an equal length
mapping (ε is taken
to be a real symbol)

Creating one FST
implies we have to
do FST intersection
(but there’s a catch:
what is it?)

2/1/08 18

Intersecting/Composing FSTs

• Implement each spelling rule as a separate FST
• We need slightly different FSTs when using

Method 1 (composition) vs. using Method 2
(intersection)
– In Method 1, each FST implements a spelling rule if it

matches, and transfers the remaining affixes to the
output (composition can then be used)

– In Method 2, each FST computes an equal length
mapping from input to output (intersection can then be
used). Finally compose with lexicon FST and input.

• In practice, composition can create large FSTs

2/1/08 19

Length Preserving “two-level” FST for e-deletion

Stems/Lexicon
move

love

fly
fox

e:e
v:v

v:v

v:v

^:ε

e:e e:εv:v

other1

other1

other1

other2

move ^ ed
movε ε ed

other1 = Σ - {e,v}

other2 = Σ - {e,v,^}
e:e

Should also work for leaving :: leave^ing

2/1/08 20

Motivation for using FSTs

• We have provided a formal device of FSTs that
enables “finite-state” translations

• Translations of this kind are useful in many
different contexts in computational linguistics
(and beyond)

• But why use such a theoretically well-defined
model -- why not use common programming
language devices for translation?

2/1/08 21

REGEX v.s. FST
• The common method for string translations is the REGEX

extension of regular expressions: allows match & replace
• For example, to perform e-insertion we would:

> infstem = 'fox+N+PL'
> inter = re.sub('\+N\+PL$', '^s#', infstem)
> inter == 'fox^s#’
> final = re.sub('([sxz])\^s\#', r'\1es', inter)
> final == 'foxes’

• Seems simple enough -- why bother with FSTs?
• REGEX algorithms are exponential-time, FSTs are linear

time -- sometimes theory is useful in practice!
• Can we retain the useful notation of REGEX expressions?

2/1/08 22

Rewrite Rules
• Context dependent rewrite rules: α → β / λ __ ρ

– (λ α ρ → λ β ρ; that is α becomes β in context λ __ ρ)
– α, β, λ, ρ are regular expressions, α = input, β = output
– e.g. α = (a|b) means input is either a or b, and β = (a|b) means the

output is ambiguous: should be either a or b
• How to apply rewrite rules:

– Consider rewrite rule: a → b / ab __ ba
– Apply rule on string abababababa
– Three different outcomes are possible:

• abbbabbbaba (left to right, iterative)
• ababbbabbba (right to left, iterative)
• abbbbbbbbba (simultaneous)

left
context

right
context

2/1/08 23

Rewrite Rules

from (R. Sproat slides)

2/1/08 24

Rewrite Rules

u → i / i C* __ kikukuku
kikukuku
kikikuku
kikikuku
kikikiku
kikikiku
kikikiki

left to right application

output of one
application feeds
next application

2/1/08 25

Rewrite Rules

u → i / i C* __ kikukuku
kikukuku
kikukuku
kikukuku
kikikuku
kikikiku
kikikiki

right to left application

2/1/08 26

Rewrite Rules

u → i / i C* __ kikukuku
kikukuku
kikikuku

simultaneous application
(context rules apply to input
string only)

2/1/08 27

Rewrite Rules

• Example of the e-insertion rule as a rewrite
rule:
ε → e / (x | s | z)^ __ s#

• Rewrite rules can be optional or obligatory
• Rewrite rules can be ordered wrt each other
• This ensures exactly one output for a set of

rules

2/1/08 28

Rewrite Rules
• Rule 1: iN → im / __ (p | b | m)
• Rule 2: iN → in / __
• Consider input iNpractical (N is an abstract nasal

phoneme)
• Each rule has to be obligatory or we get two

outputs: impractical and inpractical
• The rules have to be ordered wrt to each other so

that we get impractical rather than inpractical as
output

• The order also ensures that intractable gets
produced correctly

2/1/08 29

Nominative
• taivas
• puhelin
• lakeus
• syy
• lyhyt
• ystävällinen

Partitive
• taivas+ta
• puhelin+ta
• lakeut+ta
• syy+tä
• lyhyt+tä
• ystävällinen+tä

Gloss
• sky
• telephone
• plain
• reason
• short
• friendly

talossansakaanko ‘not in his house either?’
kynässänsäkäänkö ‘not in his pen either?’

i,e are neutral wrt harmony

Rewrite Rules
a → ä / [ä,ö,y] C* ([i,e] C*)* ___
o → ö / [ä,ö,y] C* ([i,e] C*)* ___

Example: Finnish Harmony

Long distance
effects, but still

possible to model
as “finite-state”

translation

2/1/08 30

Rewrite Rules
• Context dependent rewrite rules: α → β / λ __ ρ
• Can express context sensitive rules or regular

relations
• Computational constraints on rewrite rules:

– Consider rewrite rule: c → acb / a __ b
– Apply left to right iteratively on base-form c
– Produces a sequence of strings:

ca ba ba b
Do we need such

long-distance
effects in morpho-

phonological rules?

2/1/08 31

Rewrite Rules

• In a rewrite rule: α → β / λ __ ρ
• Rewrite rules are interpreted so that the input α

does not match something introduced in the
previous rule application

• However, we are free to match the context either
λ or ρ or both with something introduced in the
previous rule application (see previous examples)

• Impose a simple constraint on how rewrite rules
are applied: output cannot be re-written

e.g. c → acb / a __ b

2/1/08 32

Rewrite Rules
• We cannot apply output of a rule as input to the rule itself

iteratively:
c → acb / a __ b
If we allow this, the above rewrite rule will produce ancbn for n >= 1

which is not regular
Why? Because we rewrite the c in acb which was introduced in the

previous rule application
Matching the a__b as left/right context in acb is ok

• Kaplan and Kay constraints:
– Constraint ensures rewrite rules are equivalent to regular relations
– Naturally expresses the local nature of “finite-state” translation
– Under these conditions, these rewrite rules are equivalent to FSTs

2/1/08 33

Rewrite Rules to FSTs

C:C

0

1

2

3

4C:C

i:i

i:i, C:C

u:u V:u V:u, C:C

V:i, C:C
V:i

u:ui:i

V → i / i C* __

V → u / u C* __

*kikukuku
√kikikikiki

2/1/08 34

Rewrite rules to FSTs

u → i / Σ* i C* __ Σ* (example from R. Sproat’s slides)

• Input: kikukupapu (use left-right iterative matching)
• Mark all possible right contexts

> k > i > k > u > k > u > p > a > p > u >
• Mark all possible left contexts

> k > i <> k <> u > k > u > p > a > p > u >
• Change u to i when delimited by <>

> k > i <> k <> i > k > u > p > a > p > u >
• But the next u is not delimited by <> and so

cannot be changed even though the rule matches

First try: does not
work for iterative
matching

2/1/08 35

Rewrite rules to FSTs

u → i / Σ* i C* __ Σ*
• Input: kikukupapu
• Mark all possible right contexts

> k > i > k > u > k > u > p > a > p > u >
• Mark all u followed by > with <1 and <2

k > i > k > <1 u > k > <1 u > p > a > p > <1 u >
 <2 u <2 u <2 u

• Change all u to i when delimited by <1 >
k > i > k > <1 i > k > <1 i > p > a > p > <1 i >
 <2 u <2 u <2 u

 <1 u
 <2 u
is a short-hand for
multiple paths in
an FST:

<1

<2

u
i

u

>>

2/1/08 36

Rewrite rules to FSTs
k > i > k > <1 i > k > <1 i > p > a > p > <1 i >
 <2 u <2 u <2 u

• Delete >
k i k <1 i k <1 i p a p <1 i
 <2 u <2 u <2 u

• Only allow i where <1 is preceded by iC*, delete <1
k i k i k i p a p
 <2 u <2 u <2 u

• Allow only strings where <2 is not preceded by iC*,
delete <2
k i k i k i p a p u

u → i / Σ* i C* __ Σ*

2/1/08 37

Rewrite Rules to FST
• Mark right contexts: a > b a > b > b
• Mark a and b before > with <1 and <2

<1 a > b <1 a > <1 b > b
<2 a <2 a <2 b

• Match <1 LHS > and convert to <1 RHS >; delete >
<1 b b <1 b <1 a b
<2 a <2 a <2 b

• Allow <1 RHS when left context exists; delete <1
 <1 b b <1 b <1 a b = <2 a b (b | <2 a) (a | <2 b) b
 <2 a <2 a <2 b

• Allow <2 LHS when left context does not exist; delete <2
a b b a b

a → b / b __ b
b → a / b __ b

Input: ababb

Left to right
iterative

2/1/08 38

Rewrite rules to FST
• For every rewrite rule: α → β / λ __ ρ:
• FST r that inserts > before every ρ

r = ε → > / Σ* __ ρ
• FST f that inserts <1 & <2 before every α followed

by >
f = ε → ({<1} ∪ {<2}) / (Σ ∪ {>})* __ α>
where α> freely allows > anywhere in α

• FST replace that replaces α with β between <1
and > and deletes >
for replace we write a special cross product FST

2/1/08 39

Rewrite Rules to FST

Σ: Σ

>:ε

<2:<2
>: ε <1:<1

[α×β]

FST for replace

Create a new FST by taking the cross product
of the languages α and β (every string in α is
mapped to every string in β)
Note that while matching α we need to ignore all the
instances of >, <1, <2 we previously inserted

2/1/08 40

Rewrite rules to FST
• FST λ1 that only allows all <1 β preceded by λ and deletes

<1
λ1 = <1 → ε / #Σ*λ __ ε
where # is a symbol marking start of the string and we ignore the <2

symbols in the string
• FST λ2 that only allows all <2 β not preceded by λ and

deletes <2
λ2 = <2 → ε / #complement(Σ*λ) __ ε

• Final FST = r o f o replace o λ1 o λ2

• This is only for left-right iterative obligatory rewrite rules:
similar construction for other types

2/1/08 41

Ambiguity (in parsing)
• Global ambiguity: (de+light+ed vs. delight+ed)

foxes → fox+N+PL (I saw two foxes)
foxes → foxes+V+3SG (Clouseau foxes them again)

• Local ambiguity:
assess has a prefix string asses that has a valid analysis:

asses → ass+N+PL
• Global ambiguity results in two valid answers, but

local ambiguity returns only one.
• However, local ambiguity can also slow things

down since two analyses are considered partway
through the string.

2/1/08 42

Summary
• FSTs can be applied to creating lexicons that are aware of

morphology
• FSTs can be used for simple stemming
• FSTs can also be used for morphographemic changes in

words (spelling rules), e.g. fox+N+PL becomes foxes
• Multiple FSTs can be composed to give a single FST (that

can cover all spelling rules)
• Multiple FSTs that are length preserving can also be run

in parallel with the intersection of the FSTs
• Rewrite rules are a convenient notation that can be

converted into FSTs automatically
• Ambiguity can exists in the lexicon: both global & local

2/1/08 43

e:ε e:ee ^:ε

^:ε

ε

ε:e

[C]’ ^:[C]’

ed#
ε

ing#
[C]’ = [C]-{n}

n g ^:ε

^:n

ε

!{g,^}

other = Σ-[C]’-{n,e}
other ^:ε

ε

