
CMPT-413
Computational Linguistics

Anoop Sarkar
http://www.cs.sfu.ca/∼anoop

March 17, 2008

1 / 34

Writing a grammar for natural language: Grammar
Development

I Grammar development is the process of writing a grammar
for a particular language

I This can be either for a particular application or concentrating
on a particular phenomena in the language under
consideration

I Check against text corpora to check the coverage of your
grammar – to do this you need a parser

I Also consider generalizations provided by a linguistic analysis

2 / 34

Real Grammars get Messy

I Consider the grammar development using CFGs for the ATIS
Corpus

I To capture all the morphological details which affect the
syntax, the CFG ends up with rules like:

S → 3sgAux 3sgNP VP

S → Non3sgAux Non3sgNP VP

3sgAux → does | has | can | . . .

Non3sgAux → do | have | can | . . .

3 / 34

Real Grammars get Messy

I This is to deal with sentences like:
1. Do I get dinner on this flight ? (1sg = 1st person singular)
2. Do you have a flight from Boston to Fort Worth ? (2sg = 2nd

person singular)
3. Does he visit Toronto ? (3sg = 3rd person singular)
4. Does Delta fly from Atlanta to San Diego ? (3sg = 3rd person

singular)
5. Do they visit Toronto ? (3pl = 3rd person plural)

4 / 34

Real Grammars get Messy

I Not just grammatical features but also subcategorization
(what kind of arguments does a verb expect?):

VP → Verb-with-NP-complement NP “prefer a morning flight”

VP → Verb-with-S-complement S “said there were two flights”

VP → Verb-with-Inf-VP-complement VPinf “try to book a flight”

VP → Verb-with-no-complement “disappear”

5 / 34

Solution to non-terminal and rule blowup: Feature
Structures

I Feature structures provide a natural way to provide complex
information with each non-terminal. In some formalisms, the
non-terminal is replaced with feature structures, resulting in a
potentially infinite set of non-terminals.

I Feature structures are also known as f-structures, feature
bundles, feature matrices, functional structures, terms (as in
Prolog), or dags (directed acyclic graphs)

6 / 34

Feature Structures

I A feature structure is defined as a partial function from
features to their values.

I For instance, we can define a function mapping the feature
number onto the value singular and mapping person to third.
The common notation for this function is:number: singular

person: 3

7 / 34

Feature Structures

I Feature values can themselves be feature structures:
cat: NP

agreement:

number: singular
person: 3

8 / 34

Feature Structures

I Consider features f and g with two distinct feature structure
values of the same type:

f:
[
h: a

]
g:

[
h: a

]

9 / 34

Feature Structures

I Feature structures can also share values. For instance, g
shares the same value as f in:f: 1

[
h: a

]
g: 1

I The shared value is written using a co-indexation – indicating

that the value is stored only once, with the index acting as a
pointer.

10 / 34

Feature Path Notation

I The feature structure:
agreement: 1

number: sg
person: 3

subject:

[
agreement: 1

]

is represented as:
<agreement number>=sg

<agreement person>=3

<subject agreement>=<agreement>

or:
[agreement = (1) [number = ’sg’, person = 3],

subject = [agreement->(1)]]

or:
[agreement = ?n [number = ’sg’, person = 3],

subject = [agreement = ?n]]

11 / 34

Subsumption

I Feature structures have different amounts of information. Can
we find an ordering on feature structures that corresponds to
the compatibility and relative specificity of the information
contained in them.

I Subsumption is a precise method of defining such an
ordering over feature structures.

12 / 34

Subsumption

I Consider the feature structure:

Dnp =
[
cat: NP

]
I Compare with the feature structure:

Dnp3sg =

cat: NP

agreement:

number: singular
person: 3

13 / 34

Subsumption

I Dnp makes the claim that a phrase is a noun phrase, but
leaves open the question of what the agreement properties of
this noun phrase are.

I Dnp3sg also contains information about a noun phrase, but
makes the agreement properties specific.

I The feature structure Dnp is said to carry less information
than, or to be more general than, or to subsume the feature
structure Dnp3sg

14 / 34

Subsumption

I Dvar = []

I Dnp =
[
cat: NP

]
I Dnpsg =cat: NP

agreement:
[
number: singular

]
I Dnp3sg =

cat: NP

agreement:

number: singular
person: 3

I Dnp3sgSbj =

cat: NP

agreement:

number: singular
person: 3

subject:

number: singular
person: 3

I D’np3sgSbj =

cat: NP

agreement: 1

number: singular
person: 3

subject: 1

I The following subsumption relations hold:

Dvar v Dnp v Dnpsg v Dnp3sg v Dnp3sgSbj v D’np3sgSbj

15 / 34

Unification

I Two feature structures might have different and incompatible
information: cat: NP

agreement:
[
number: singular

]cat: NP

agreement:
[
number: plural

]
I In this case, there is no feature structure that is subsumed by

both feature structures

16 / 34

Unification

I Subsumption is only a partial order – that is, not every two
feature structures are in a subsumption relation with each
other.

I Two feature structures might have different but compatible
information: cat: NP

agreement:
[
number: singular

]cat: NP

agreement:
[
person: 3

]

17 / 34

Unification

I If two feature structures have different but compatible
information then there always exists a more specific feature
structure that is subsumed by both feature structures:

cat: NP

agreement:

number: singular
person: 3

18 / 34

Unification

I But there are many feature structures subsumed by both of
the original feature structures:

cat: NP

agreement:

number: singular
person: 3
gender: masculine

I So instead of considering all such feature structures we only

consider the most general FS that is subsumed by the two
original FSs

I This definition provides a feature structure that contains
information from both input FSs but no additional information.

19 / 34

Unification

I Now we can define unification
I The unification of two feature structures D’ and D” is defined

as the most general feature structure D such that D’ v D and
D” v D.

I This operation of unification is denoted as D = D’ t D”

20 / 34

Unification

[]⊔[
cat: NP

]
=

[
cat: NP

]

21 / 34

Unification

[
person: sg

]⊔[
number: 3

]
=

person: sg
number: 3

22 / 34

Unification

agreement:

[
number: sg

]
subject:

[
agreement:

[
number: sg

]]

⊔

subject:
[
agreement:

[
person: 3

]]=
agreement:

[
number: sg

]
subject:

agreement:

number: sg
person: 3

23 / 34

Unification

agreement: 1

[
number: sg

]
subject:

[
agreement: 1

]

⊔subject:

[
agreement:

[
person: 3

]]=

agreement: 1

number: sg
person: 3

subject:

[
agreement: 1

]

24 / 34

Algorithms for Unification
I Represent input feature structure as a directed acyclic graph

(dag). Unification is equivalent to the union-find algorithm.
I Unification is more efficient if it can be destructive: it destroys

the input feature structures to create the result of unification.
I The (destructive) unification algorithm in J&M (page 423)

does it in two steps: represent feature structures as dags, and
then perform graph matching (and merging)

I Note that this algorithm can produce as output a dag (i.e. a
feature structure) containing cycles.
A feature structure can have part of itself as a subpart:f: 1

[
g:

[
h: 1

]]
I This can be avoided with an explicit check for each call to the
unify algorithm called the occur check.

I Computationally expensive since we have to traverse the
whole dag at each step

25 / 34

Feature Structures in CFGs
I Feature Structures impose constraints on CFG derivations:

S → NP[
case: nominative

]VP

VP → V NP[
case: accusative

]
V → saw
NP[

case: 1

] → he[
case: 1 nominative

]
NP[

case: 1

] → him[
case: 1 accusative

]
NP[

case: 1

] → John[
case: 1 nominative | accusative

]
I This CFG derives: he saw him but not: ∗him saw he
I Also derives: John saw him, he saw John.
I Co-indexing in each FS is local to each CFG rule.

26 / 34

Feature Structures in CFGs

I A more complex example for encoding subcategorization as
feature structures:

S → NP VPsubcat: 1

first: []
rest: end

VP[
subcat: 1

] → Verb[
subcat: 1

]
VP[

subcat: 1

] → VPsubcat:

first: 2

rest: 1

X[

cat: 2 NP
]

27 / 34

Feature Structures in CFGs

I In the above example, the CFG can generate an arbitrary
number of NPs in the subcat feature structure for the verb.

I In effect, the above steps of unification in a CFG derivation
creates a list containing the subcat elements. The subcat
feature structure uses first and rest to construct the list in the
recursive rule VP → VP X .

I The lexical terminal Verb can impose a constraint on which
subcat frame is required.

I Other categories can be added simply by adding a new cat
attribute for X : e.g.

[
cat: S

]
for verbs that can have a subcat of

NP S.

28 / 34

Unification Algorithm

function unify(f1, f2):

returns f-structure or failure

if f1.content == null: f1.pointer = f2

if f2.content == null: f2.pointer = f1

if f1.content == f2.content: f1.pointer = f2

if f1.content and f2.content are complex f-structures:

f2.pointer = f1

for each f in f2.content:

other-feature = find or create feature

corresponding to f in f1.content

if unify(f, other-feature) == failure:

return failure

return f1

29 / 34

Unification in Earley Parsing

I predictor: if (A → α • B β, [i, j], dagA1
) then ∀(B → γ, dagB1

)
enqueue((B → •γ, [j, j], dagB1

), chart[j])
I scanner: if (A → α • a β, [i, j], dagA1

) and a = tokens[j] then
enqueue((A → αa • β, [i, j + 1], dagA1

), chart[j + 1])
I completer: if (B → γ•, [j, k], dagB1

), for each
(A → α • B β, [i, j], dagA1

)
enqueue((A → α B • γ, [i, k], copy-and-unify(dagA1

, dagB1
)),

chart[k])
unless copy-and-unify(dagA1

, dagB1
) fails

I copy-and-unify means that we make copies of the dags before
unification because we are using a destructive unification
algorithm

I copy-and-unify ensures that dag A1 in state
(A → α • B β, [i, j], dagA1

) is not destroyed since it can be
used in the completer with other states and unify with them.

30 / 34

Unification in Earley Parsing

I Consider two different enqueue requests:
enqueue((A → α B • γ, [i, k], dagA1

), chart[k])
enqueue((A → α B • γ, [i, k], dagA2

), chart[k])
I Consider the case where:

dagA1
=

[
tense: past | plural

]
and

dagA2
=

[
tense: past

]
Clearly, dagA1

v dagA2

31 / 34

Unification in Earley Parsing

I Which feature structure should be selected after the two
enqueue commands above?
Three options: dagA1

, dagA2
, dagA1

t dagA2

I In general, the feature inserted should subsume both dagA1

and dagA2

I In practice exactly one of the following conditions is always
true:

I If dagA1
v dagA2

then enqueue picks dagA1
,

I If dagA2
v dagA1

then enqueue picks dagA2
.

I If dagA1
@ dagA2

and dagA2
@ dagA1

then enqueue picks
dagA1

t dagA2

32 / 34

Unification in Earley Parsing

I During the enqueue of a state, we always pick the most
general feature structure possible.

I To see why consider an example:
I Consider a chart which contains the state:

S1 = (NP → • DT NP, [i, i], dagS1 =[])
I The parser then tries to enqueue a new state:

S2 = (NP → • DT NP, [i, i], dagS2 =
[
DT.num = sing

]
)

I Consider two possible situations:
1. a singular DT is scanned, then either dagS1 or dagS2 would unify

and parsing would continue.
2. a plural DT is scanned, then if we picked dagS2 we have a

unification failure; on the other hand picking the more general
feature structure dagS1 allows parsing to continue.

I So, if there are two possible ways to derive a span, then the
most general feature structure is the one we must choose.

33 / 34

Summary

I Feature structures generalize the notion of non-terminals in a
grammar.

I Complex morphological details can be encoded into a feature
structure.

I Feature structures can have shared or co-referential parts.
I Feature structures can implement arbitrary lists (the notation

is very computationally powerful).
I Unification provides a means to combine the information in

two feature structures.
I Feature structures can be used in a context-free grammar,

and
I Unification is done while parsing to ensure that the constraints

specified in the features are not violated.

34 / 34

