CMPT 413 Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

2/20/08

Automatic Speech Recognition

- Acoustic observations: signal processing to extract energy levels at each frequency level
- Observation sequence o is composed of acoustic features extracted from the waveform at regular (10msec) intervals
- ASR is the task of converting the observation sequence o into a transcription

2/20/08

Noisy Channel Model

• Finding the best transcription **w*** given an observation sequence **o**

$$\mathbf{w}^* = \frac{\arg\max}{\mathbf{w}} P(\mathbf{w} \mid \mathbf{o}) = \frac{\arg\max}{\mathbf{w}} \frac{P(\mathbf{o} \mid \mathbf{w})P(\mathbf{w})}{P(\mathbf{o})}$$

$$= \frac{\arg\max}{\mathbf{w}} \underbrace{P(\mathbf{o} \mid \mathbf{w})P(\mathbf{w})}_{\text{generative language model model}}$$

2/20/08

Generative Models of Speech

- Speech recognition: find word sequence w that maximizes P(w | o), where o is a sequence of time dependent acoustic features (output of signal processing on speech signal)
- Typical decomposition of $P(\mathbf{w} \mid \mathbf{o})$ into a cascade of generative models:
 - Acoustic Model:

 $P(\mathbf{o} \mid \mathbf{p})$ predict observation sequence \mathbf{o} given phone sequence \mathbf{p}

- Pronunciation Model:

 $P(\mathbf{p} \mid \mathbf{w})$ predict phone sequence \mathbf{p} given a word sequence \mathbf{w}

- Language Model:

P(w) predict word sequence w

2/20/08 4

Generative Models of Speech

- $P(\mathbf{w} \mid \mathbf{o}) = P(\mathbf{o} \mid \mathbf{w}) * P(\mathbf{w})$ using Bayes Rule
- Decomposition of P(o | w) into a cascade of models:

Acoustic Model P(o | p) (model trained on the TIMIT corpus):

Pronunciation Model P(**p** | **w**) (model trained using TIMIT and the CMU pronunciation dictionary):

Language Model: P(w) (model trained using large amounts of text in the same domain)

cf. Fundamentals of Speech Recognition, Rabiner and Juang

2/20/08

5

Generative Models of Speech

- Further decomposition of the acoustic model: P(o | p)
 - P(o | d) observation vectors given distribution sequences (quantitative given symbolic)
 - P(d | m) distribution sequences given model sequences (model dependent phone sequences)
 - P(m | p) model sequences given phone sequences

2/20/08 6

Brief History of ASR

- 1909: Universal service AT&T
- 1920s: Radio Rex
 - 500 Hz of energy in the word "Rex" caused the toy dog to move
- 1950s: Digit Recognition
 - 1952: Davis, Biddulph and Balashek (Bell Labs)
- Theory: 1967, Hidden Markov Models (HMMs) and Viterbi algorithm

2/20/08

Brief History of ASR

- 1960s: Advances in Signal Processing and Neural Nets (not much progress in ASR)
- 1969: Advances in discrete word recognition
 - Vicens system (500 words)
 - Medress system (100 words)
- 1969: John Pierce letter
- 1970s: Despite large ARPA funding, not much success. Theory: dynamic programming methods

2/20/08

Brief History of ASR

- End of 1970s: Small vocabulary speech recognition
 - Heuristics' \$259 H-2000 Speech link
 - Verbex, Nippon, Threshold, Scott, Centigram and Interstate systems for between \$2000 -\$100,000
- Theory: 1977, the EM algorithm

2/20/08

Brief History of ASR

- 1980: IDA Symposium at Princeton
- 1980s: Discrete ASR, Language Models, corpus collection efforts
 - TIMIT corpus (phonetics)
 - ATIS corpus (Air Travel Information System)
 - Focus on language understanding dialog systems

2/20/08 10

Brief History of ASR

- 1990s: Large Vocabulary Continuous ASR
 - Dynamic Time Warping (edit distance)
 - Better phonetic models using classifiers (decision trees and neural nets)
 - Better language models using smoothing
 - Larger corpora: 10⁷ and 10⁹ in size

2/20/08

Brief History of ASR

- Current Work
 - Other languages and dialects
 - Multiple speakers, Speaker adaptation
 - Speaker identification
 - Noise resistant (telephone speech)
 - Open source software: HTK, Sphinx, CMU LM toolkit, SRI LM toolkit

2/20/08