
4/2/07 1

CMPT 413

Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

4/2/07 2

Semantics

From Syntax to Meaning!

Adapted from slides by Jason Eisner

used in: 600.465 - Intro to NLP - JHU

4/2/07 3

What Counts as Understanding?
some notions

• We understand if we can respond appropriately

– ok for commands, questions (these demand response)

– “Computer, warp speed 5”

– “throw axe at dwarf”

– “put all of my blocks in the red box”

– imperative programming languages

– database queries and other questions

• We understand statement if we can determine its truth

– Truth can be determined by checking a model

– A model stores facts about the world, beliefs, etc.

– There are well-known equivalences between a formula in a
logic and model for that formula, so we map NL into logic

4/2/07 4

What Counts as Understanding?
some notions

• We understand a statement if we know how to determine
its truth

– A logic is an abstract language of statements such
that:

• Every statement has a model, and

• A statement can be converted into another statement iff
both statements are equivalent according to the same model

– A statement is true iff it is satisfiable in a model

– What are exact conditions under which it would be
true? necessary + sufficient

– Equivalently, derive all its consequences

4/2/07 5

Logic: Some Preliminaries
Three major kinds of objects

Booleans

• Roughly, the semantic values of sentences

Entities

• Values of NPs, e.g., objects like this slide

• Maybe also other types of entities, like times

Functions of various types

• A function returning a boolean is called a “predicate”
– e.g., frog(x), green(x)

• Functions might return other functions!

• Function might take other functions as arguments!

4/2/07 6

Logic: Lambda Terms
• Lambda terms:

– A way of writing “anonymous functions”

• No function header or function name

• But defines the key thing: behavior of the function

• Just as we can talk about 3 without naming it “x”

– Let square = !p p*p

– Equivalent to int square(p) { return p*p; }

– But we can talk about !p p*p without naming it

– Format of a lambda term: ! variable expression

4/2/07 7

Logic: Lambda Terms
• Lambda terms:

– Let square = !p p*p

– Then square(3) = (!p p*p)(3) = 3*3

– Note: square(x) isn’t a function! It’s just the value x*x.

– But !x square(x) = !x x*x = !p p*p = square

(proving that these functions are equal – and indeed they are,

as they act the same on all arguments: what is (!x square(x))(y)?)

– Let even = !p (p mod 2 == 0) a predicate: returns true/false

– even(x) is true if x is even

– How about even(square(x))?

– !x even(square(x)) is true of numbers with even squares

• Just apply rules to get !x (even(x*x)) = !x (x*x mod 2 == 0)

• This happens to denote the same predicate as even does

4/2/07 8

Logic: Multiple Arguments
• All lambda terms have one argument

• But we can fake multiple arguments ...

• Suppose we want to write times(5,6)

• Remember: square can be written as !x square(x)

• Similarly, times is equivalent to !x !y times(x,y)

• Claim that times(5)(6) means same as times(5,6)
– times(5) = (!x !y times(x,y)) (5) = !y times(5,y)

– times(5)(6) = (!y times(5,y))(6) = times(5,6)

4/2/07 9

Logic: Multiple Arguments
• All lambda terms have one argument

• But we can fake multiple arguments ...

• Claim that times(5)(6) means same as times(5,6)

– times(5) = (!x !y times(x,y)) (5) = !y times(5,y)

• If this function weren’t anonymous, what would we call it?

– times(5)(6) = (!y times(5,y))(6) = times(5,6)

! So we can always get away with 1-arg functions ...

! ... which might return a function to take the next argument.

! We’ll still allow times(x,y) as syntactic sugar, though

4/2/07 10

Grounding out
• So what does times actually mean???

• How do we get from times(5,6) to 30 ?

– Whether times(5,6) = 30 depends on whether symbol times actually
denotes the multiplication function!

• Well, maybe times was defined as another lambda term, so
substitute to get times(5,6) = (blah blah blah)(5)(6)

• But we can’t keep doing substitutions forever!

– Eventually we have to ground out in a primitive term

– Primitive terms are bound to object code

• Maybe times(5,6) just executes a multiplication function

• What is executed by loves(john, mary) ?

4/2/07 11

Logic: Interesting Constants

• Thus, have “constants” that name some of the
entities and functions (e.g., times):

– Gilly - an entity

– red – a predicate on entities

• holds of just the red entities: red(x) is true if x is red!

– loves – a predicate on 2 entities

• loves(Gilly, Lilly)

• Question: What does loves(Lilly) denote?

• Constants used to define meanings of words

• Meanings of phrases will be built from the
constants

4/2/07 12

Logic: Interesting Constants

• most – a predicate on 2 predicates on entities

– most(pig, big) = “most pigs are big”

• Equivalently, most(!x pig(x), !x big(x))

– returns true if most of the things satisfying the first

predicate also satisfy the second predicate

• similarly for other quantifiers

– all(pig,big) (equivalent to "x pig(x) # big(x))

– exists(pig,big) (equivalent to $x pig(x) AND big(x))

– can even build complex quantifiers from English phrases:

• “between 12 and 75”; “a majority of”; “all but the smallest 2”

4/2/07 13

A reasonable representation?

• Gilly swallowed a goldfish

• First attempt: swallowed(Gilly, goldfish)

• Returns true or false. Analogous to

– prime(17)

– equal(4,2+2)

– loves(Gilly, Lilly)

– swallowed(Gilly, Jilly)

• … or is it analogous?

4/2/07 14

A reasonable representation?

• Gilly swallowed a goldfish

– First attempt: swallowed(Gilly, goldfish)

• But we’re not paying attention to a!

• goldfish isn’t the name of a unique object the way
Gilly is

• In particular, don’t want
Gilly swallowed a goldfish and Milly

swallowed a goldfish

to translate as
swallowed(Gilly, goldfish) AND swallowed(Milly, goldfish)

since probably not the same goldfish …

4/2/07 15

Use a Quantifier

• Gilly swallowed a goldfish

– First attempt: swallowed(Gilly, goldfish)

• Better: $g goldfish(g) AND swallowed(Gilly, g)

• Or using one of our quantifier predicates:

– exists(!g goldfish(g), !g swallowed(Gilly,g))

– Equivalently: exists(goldfish, swallowed(Gilly))

• “In the set of goldfish there exists one swallowed by Gilly”

• Here goldfish is a predicate on entities

– This is the same semantic type as red

– But goldfish is noun and red is adjective .. #@!?

4/2/07 16

Tense

• Gilly swallowed a goldfish

– Previous attempt: exists(goldfish, !g swallowed(Gilly,g))

• Improve to use tense:

– Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g) where t is a time

– Now we can write:

$t past(t) AND exists(goldfish, !g swallow(t,Gilly,g))

– “There was some time in the past such that a goldfish was

among the objects swallowed by Gilly at that time”

4/2/07 17

(Simplify Notation)

• Gilly swallowed a goldfish

– Previous attempt: exists(goldfish, swallowed(Gilly))

• Improve to use tense:

– Instead of the 2-arg predicate swallowed(Gilly,g)

try a 3-arg version swallow(t,Gilly,g)

– Now we can write:

$t past(t) AND exists(goldfish, swallow(t,Gilly))

– “There was some time in the past such that a goldfish was

among the objects swallowed by Gilly at that time”

4/2/07 18

Event Properties
• Gilly swallowed a goldfish

– Previous: $t past(t) AND exists(goldfish, swallow(t,Gilly))

• Why stop at time? An event has other properties:

– [Gilly] swallowed [a goldfish] [on a dare]

[in a telephone booth] [with 30 other

freshmen] [after many bottles of vodka had

been consumed].

– Specifies who what why when …

• Replace time variable t with an event variable e
– $e past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish,

swallowee(e)), exists(booth, location(e)), …

• As with probability notation, a comma represents AND

• Could define past as !e $t before(t,now), ended-at(e,t)

4/2/07 19

Quantifier Order
• Gilly swallowed a goldfish in a booth

– $e past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish,

swallowee(e)), exists(booth, location(e)), …

• Gilly swallowed a goldfish in every booth

– $e past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish,

swallowee(e)), all(booth, location(e)), …

• Does this mean what we’d expect??

$g goldfish(g), swallowee(e,g) "b booth(b)#location(e,b)

says that there’s only one event

with a single goldfish getting swallowed

that took place in a lot of booths ...

4/2/07 20

Quantifier Order

• Groucho Marx celebrates quantifier order
ambiguity:

– In this country a woman gives birth every 15 min. Our
job is to find that woman and stop her.

$woman ("15min gives-birth-during(woman, 15min))

"15min ($woman gives-birth-during(15min, woman))

– Surprisingly, both are possible in natural language!

– Which is the joke meaning (where it’s always the same
woman) and why?

• What about:

– Every prof admires, and every student detests, some
course.

4/2/07 21

Quantifier Order
• Gilly swallowed a goldfish in a booth

– $e past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish,

swallowee(e)), exists(booth, location(e)), …

• Gilly swallowed a goldfish in every booth

– $e past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish,

swallowee(e)), all(booth, location(e)), …

$g goldfish(g), swallowee(e,g) "b booth(b)#location(e,b)

! Does this mean what we’d expect??

! It’s $e "b which means same event for every booth

! Probably false unless Gilly can be in every booth during her
swallowing of a single goldfish

4/2/07 22

• Gilly swallowed a goldfish in a booth

– $e past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish,

swallowee(e)), exists(booth, location(e)), …

• Gilly swallowed a goldfish in every booth

– $e past(e), act(e,swallowing), swallower(e,Gilly), exists(goldfish,

swallowee(e)), all(booth, !b location(e,b))

Quantifier Order

! Other reading ("b $e) involves quantifier raising:

! all(booth, !b [$e past(e), act(e,swallowing), swallower

(e,Gilly), exists(goldfish, swallowee(e)), location(e,b)])

! “for all booths b, there was such an event in b”

4/2/07 23

Nouns and Their Modifiers

• expert

– !g expert(g)

• big fat expert

– !g big(g), fat(g), expert(g)

– But: bogus expert
• Wrong: !g bogus(g), expert(g)

• Right: !g (bogus(expert))(g) … bogus maps to new concept

• Baltimore expert (white-collar expert, TV expert …)

– !g Related(Baltimore, g), expert(g) – expert from Baltimore

– Or !g (Modified-by(Baltimore, expert))(g) – expert on Baltimore

– Can’t use Related for that case: law expert and dog catcher
= !g Related(law,g), expert(g), Related(dog, g), catcher(g)
= dog expert and law catcher

4/2/07 24

! three swallowed-by-Gilly goldfish

like an adjective!

Nouns and Their Modifiers

• the goldfish that Gilly swallowed

• every goldfish that Gilly swallowed

• three goldfish that Gilly swallowed

Or for real: !g [goldfish(g), $e [past(e), act(e,swallowing),

swallower(e,Gilly), swallowee(e,g)]]

!g [goldfish(g), swallowed(Gilly, g)]

4/2/07 25

Adverbs

• Lilly passionately wants Billy

– Wrong?: passionately(want(Lilly,Billy)) = passionately(true)

– Better: (passionately(want))(Lilly,Billy)

– Best: $e present(e), act(e,wanting), wanter(e,Lilly),

wantee(e, Billy), manner(e, passionate)

• Lilly often stalks Billy

– (often(stalk))(Lilly,Billy)

– many(day, !d $e present(e), act(e,stalking), stalker(e,Lilly),

stalkee(e, Billy), during(e,d))

• Lilly obviously likes Billy

– (obviously(like))(Lilly,Billy) – one reading

– obvious(likes(Lilly, Billy)) – another reading

4/2/07 26

Speech Acts

• What is the meaning of a full sentence?

– Depends on the punctuation mark!?

– Billy likes Lilly. " assert(like(B,L))

– Billy likes Lilly? " ask(like(B,L))
• or more formally, “Does Billy like Lilly?”

– Billy, like Lilly! " command(like(B,L))

• Let’s try to do this a little more precisely, using event
variables etc.

4/2/07 27

Speech Acts

• What did Gilly swallow?

– ask(!x $e past(e), act(e,swallowing),

 swallower(e,Gilly), swallowee(e,x))

– Argument is identical to the modifier “that Gilly swallowed”

– Is there any common syntax?

• Eat your fish!

– command(!f act(f,eating), eater(f,Hearer), eatee(…))

• I ate my fish.

– assert($e past(e), act(e,eating), eater(f,Speaker),

eatee(…))

4/2/07 28

• We’ve discussed what semantic representations should
look like.

• But how do we get them from sentences???

• First - parse to get a syntax tree.

• Second - look up the semantics for each word.

• Third - build the semantics for each constituent

– Work from the bottom up

– The syntax tree is a “recipe” for how to do it

Compositional Semantics

4/2/07 29

• Instead of S % NP loves NP

– S[sem=loves(x,y)] % NP[sem=x] loves NP[sem=y]

• might want general rules like S % NP VP:

– V[sem=loves] % loves

– VP[sem=v(obj)] % V[sem=v] NP[sem=obj]

– S[sem=vp(subj)] % NP[sem=subj] VP[sem=vp]

• Now Gilly loves Lilly has sem=loves(Lilly)(Gilly)

• In this manner we’ll sketch a version where

– Still compute semantics bottom-up

– Grammar is in Chomsky Normal Form

– So each node has 2 children: 1 function & 1 argument

– To get its semantics, apply function to argument!

Compositional Semantics

4/2/07 30

Compositional Semantics

AdjP

Lilly

VPfin

Sfin

START

Punc

.

NP

Gilly

Vpres

loves

!s assert(s)

loves =

!x !y loves(x,y)

L

G

!y loves(L,y)

loves(L,G)

assert(loves(L,G))
Intended to mean G loves L

Let’s make this explicit …

4/2/07 31

Compositional Semantics

AdjP

Lilly

VPfin

Sfin

START

Punc

.

NP

Gilly

Vpres

loves

loves =

!x !y loves(x,y)

L

G

!y loves(L,y)

loves(L,G)

$e present(e), act(e,loving),

lover(e,G), lovee(e,L)

!x !y $e present(e),

act(e,loving),

lover(e,y), lovee(e,x)

 !y $e present(e),

act(e,loving),

lover(e,y), lovee(e,L)

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

NP

Gilly

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

Now let’s try a more

complex example, and

really handle tense.

Treat –s like

yet another

auxiliary

verb

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

NP

Gilly

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

!e act(e,loving), lover(e,G), lovee(e,L)

the meaning that we

want here: how can

we arrange to get it?

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

NP

Gilly

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

!e act(e,loving), lover(e,G), lovee(e,L)

G

what function at VPinf

should apply to G to

yield the result at Sinf?

 (this is like division!)

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

NP

Gilly

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

!e act(e,loving), lover(e,G), lovee(e,L)

!x !e act(e,loving),

lover(e,x), lovee(e,L)G

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

NP

Gilly

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

!e act(e,loving), lover(e,G), lovee(e,L)

!x !e act(e,loving),

lover(e,x), lovee(e,L)G

!a a
!x !e act(e,loving),

lover(e,x), lovee(e,L)

 We’ll say that

“to” is just a bit of syntax that

changes a VPstem to a VPinf

with the same meaning.

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

NP

Gilly

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

!e act(e,loving), lover(e,G), lovee(e,L)

!x !e act(e,loving),

lover(e,x), lovee(e,L)G

!a a
!x !e act(e,loving),

lover(e,x), lovee(e,L)

!y !x !e act(e,loving),

lover(e,x), lovee(e,y)

L

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

NP

Gilly

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

!e act(e,loving), lover(e,G), lovee(e,L)

!x !e act(e,loving),

lover(e,x), lovee(e,L)G

!a a

!y !x !e act(e,loving),

lover(e,x), lovee(e,y)

L

!x !e act(e,loving),

lover(e,x), lovee(e,L)

!x !e act(e,wanting), wanter(e,x),

wantee(e, !e’ act(e’,loving),

lover(e’,G), lovee(e’,L))
by analogy

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

NP

Gilly

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

!e act(e,loving), lover(e,G), lovee(e,L)

!x !e act(e,loving),

lover(e,x), lovee(e,L)G

!a a

!y !x !e act(e,loving),

lover(e,x), lovee(e,y)

L

!x !e act(e,loving),

lover(e,x), lovee(e,L)

!x !e act(e,wanting), wanter(e,x),

wantee(e, (!e’ act(e’,loving),

lover(e’,G), lovee(e’,L)))

!y !x !e act(e,wanting),

wanter(e,x), wantee(e,y)

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

!x !e act(e,wanting), wanter(e,x),

wantee(e, !e’ act(e’,loving),

lover(e’,G), lovee(e’,L))

!x $e present(e), act(e,wanting),

wanter(e,x), wantee(e, !e’

act(e’,loving),

lover(e’,G), lovee(e’,L))

NP

Gilly

!v !x $e

present(e),

v(x)(e)

e.g. we want function p such that

(p)(!x !e f(e,x)) = !x $t g(t), f(t,x)

Let p = !v !x $t g(t), v(x)(t)

Then (p)(!x !e f(e,x))

= (!v !x $t g(t), v(x)(t)) (!x !e f(e,x))

= (!x $t g(t), (!x !e f(e,x))(x)(t))

= !x $t g(t), f(t,x)

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

!x $e present(e), act(e,wanting),

wanter(e,x), wantee(e, !e’

act(e’,loving),

lover(e’,G), lovee(e’,L))

NP

Gilly

every(nation, (!x $e present(e),

act(e,wanting), wanter(e,x),

wantee(e, !e’ act(e’,loving),

lover(e’,G), lovee(e’,L))))

!p every(nation, p)

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

!x $e present(e), act(e,wanting),

wanter(e,x), wantee(e, !e’

act(e’,loving),

lover(e’,G), lovee(e’,L))

NP

Gilly

every(nation, (!x $e present(e),

act(e,wanting), wanter(e,x),

 wantee(e, !e’ act(e’,loving),

lover(e’,G), lovee(e’,L))))

!p every(nation, p)

!n !p

every(n, p)

nation

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

NP

Gilly

every(nation, (!x $e present(e),

act(e,wanting), wanter(e,x),

wantee(e, !e’ act(e’,loving),

lover(e’,G), lovee(e’,L))))

!s assert(s)

4/2/07 44

In Summary: From the Words

NP

Lilly

Vstem

love

VPstem

VPinf

T

to

Sinf

NP

Gilly

VPstem

Vstem

want

VPfin

T

-s

Sfin

NP

N

nation

Det

Every

START

Punc

.

G

!a a

!y !x !e act(e,loving),

lover(e,x), lovee(e,y)
L

!y !x !e act(e,wanting),

wanter(e,x), wantee(e,y)

!v !x $e present(e),v(x)(e)

every nation

!s assert(s)

assert(every(nation, (!x $e present(e),

act(e,wanting), wanter(e,x),

wantee(e, !e’ act(e’,loving),

lover(e’,G), lovee(e’,L)))))

4/2/07 45

Intensional Arguments

• Willy wants a unicorn

– $e act(e,wanting), wanter(e,Willy), exists(unicorn, !u wantee(e,u))

• “there is a unicorn u that Willy wants”

• here the wantee is an individual entity

– $e act(e,wanting), wanter(e,Willy), wantee(e, !u unicorn(u))

• “Willy wants any entity u that satisfies the unicorn predicate”

• here the wantee is a type of entity

• Willy wants Lilly to get married

– $e present(e), act(e,wanting), wanter(e,Willy),
wantee(e, !e’ [act(e’,marriage), marrier(e’,Lilly)])

– “Willy wants any event e’ in which Lilly gets married”

– Here the wantee is a type of event

– Sentence doesn’t claim that such an event exists

• Intensional verbs besides want: hope, doubt, believe,…

4/2/07 46

Intensional Arguments

• Willy wants a unicorn

– $e act(e,wanting), wanter(e,Willy), wantee(e, !g unicorn(g))

• “Willy wants anything that satisfies the unicorn predicate”

• here the wantee is a type of entity

• Problem (a fine point I’ll gloss over):

– !g unicorn(g) is defined by the actual set of unicorns (“extension”)

– But this set is empty: !g unicorn(g) = !g FALSE = !g dodo(g)

– Then wants a unicorn = wants a dodo. Oops!

– So really the wantee should be criteria for unicornness (“intension”)

• Traditional solution involves “possible-world semantics”

– Can imagine other worlds where set of unicorn & set of dodos

– Other worlds also useful for: You must pay the rent

You can pay the rent

If you hadn’t, you’d be homeless

4/2/07 47

Control

• Willy wants Lilly to get married

– $e present(e), act(e,wanting), wanter(e,Willy),

wantee(e, !f [act(f,marriage), marrier(f,Lilly)])

• Willy wants to get married

– Same as Willy wants Willy to get married

– Just as easy to represent as Willy wants Lilly …

– The only trick is to construct the representation from the syntax. The

empty subject position of “to get married” is said to be controlled by the

subject of “wants.”

4/2/07 48

Other Fun Semantic Stuff

• Temporal logic

– Gilly had swallowed eight goldfish

 before Milly reached the bowl

– Billy said Jilly was pregnant (sequence of tense)

– Billy said, “Jilly is pregnant.”

• Generics (not quite the same as plurals)

– Typhoons arise in the Pacific

– Children must be carried

• Presuppositions

– The king of France is bald. (if there is no such king is this true?)

– Have you stopped beating your wife? (what is presupposed?)

• Pronoun-Quantifier Interaction (“bound anaphora”)

– Every farmer who owns a donkey beats it.

– If you have a dime, put it in the meter.

– The woman who every Englishman loves is his mother.

– I love my mother and so does Billy.

