CMPT-413
Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/"anoop

How good is a model

e So far we've seen the probability of a sentence: P(wq,...,wn)

e What is the probability of a collection of sentences, that is what is the
probability of a corpus

o LetT = sq,...,sm be atext corpus with sentences sg through s,

e Whatis P(T)?
Let us assume that we trained P(-) on some training data, and 7" is
the test data

How good is a model

e T'=sg,...,sm Is the text corpus with sentences sq through s,
o P(T) =TI P(s;)

o P(s;) = P(wg, . ,w%)
Let W be the length of the text T' measured in words

e Cross entropy for T: H(T) = —WLTIOQQP(T)
the average number of bits needed to encode each of the W, words
in the test data
Perplexity: PP(T) = 2H(T)

How good is a model

e Lower cross entropy values and perplexity values are better
Lower values mean that the model is better
Correlation with performance of the language model in various
applications

e Performance of a language model is its cross-entropy or perplexity on
test data (unseen data)
corresponds to the number bits required to encode that data

e On various real life datasets, typical perplexity values yielded by
n-gram models on English text range from about 50 to almost 1000
(corresponding to cross entropies from about 6 to 10 bits/word)

Bigram Models

e In practice:
P(Mork read a book) = P(Mork | < start >) x P(read | Mork) x
P(a | read) x P(book | a) x P(< stop > | book)

c(w;_1,w;)
c(w;_1)
On unseen data, c(w;_1, w;) or worse c(w,;_1) could be zero

o P(w; | wj—1) =

Z C(wi—17 wz) __-

wy C(wi—l)

Smoothing

e Smoothing deals with events that have been observed zero times

e Smoothing algorithms also tend to improve the accuracy of the model

c(w;—1,w;)

c(w;_1)

P(w; | wi_1) =

e Not just unobserved events: what about events observed once?

Add-one Smoothing

C(w'—law')
P(w; | w;—1) = C(fw. 1)7’
Z_

e Add-one Smoothing:

1 4 c(wi—1, w;)

P(w; | wi—1) = VE c(w1)

e Let V be the number of words in our vocabulary
Remember that we observe only V. many bigrams
Assigns count of 1 to unseen bigrams

Add-one Smoothing
P(Mindy read a book) = P(Mindy | < start >) x P(read | Mindy) x
P(a | read) x P(book | a) x P(< stop > | book)

e Without smoothing:

c(Mindy, read) .

P(read | Mindy) = “(Mindy)

e With add-one smoothing (assuming c(Mindy) = 1 but c(Mindy, read) =
0):
1

P(read | Mindy) = V1

Additive Smoothing: (Lidstone 1920, Jeffreys 1948)

Plw; | w_1) = C(Zgl_’;;i)

e Add-one smoothing works horribly in practice. Seems like 1 is too
large a count for unobserved events.

e Additive Smoothing:

6 + c(w;—1,w;)
(6 x V) ~+ c(w;—1)

P(w; | wi—1) =

e 0«61
Still works horribly in practice, but better than add-one smoothing.

9

Good-Turing Smoothing: (Good, 1953)

c(wi—1, w;)

c(w;—1)

P(w; | wi—1) =

e Imagine you're sitting at a sushi bar with a conveyor belt.

e YOu see going past you 10 plates of tuna, 3 plates of unagi, 2 plates
of salmon, 1 plate of shrimp, 1 plate of octopus, and 1 plate of
yellowtall

e How likely are you to see a new kind of seafood appear: 1—38

e How likely are you to see another plate of salmon: should be < 1%

10

Good-Turing Smoothing

e How many types of seafood (words) were seen once? Use this to
predict probabilities for unseen events
Let n1 be the number of events that occurred once: pg = %

e The Good-Turing estimate states that for any n-gram that occurs r
times, we should pretend that it occurs r* times

Pt = (r 1) 2t

nr

11

Good-Turing Smoothing

e 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtall

e How likely is new data? Let nq be the number of items occurring
once, which is 3 in this case. N is the total, which is 18.
ny 3

PO="N T 18

12

Good-Turing Smoothing

e 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtall

e How likely is octopus? Since c(octopus) = 1 The GT estimate is 1*.
T* = (7“ —I— 1)nr+1

Ny

e To compute 1*, weneedny =3 andn, =1

. 1 2
1" =2 X —=—
3 3

e What happens when n, = 0?

13

Simple Backoff Smoothing: incorrect version

c(w;—1,w;)

c(w;—1)

P(w; | wi—1) =

e In add-one or Good-Turing: P(the | string) = P(Fonz | string)
o If c(w;_q1,w;) = 0, then use P(w,) (back off)

e Works for trigrams: back off to bigrams and then unigrams

e Works better in practice, but probabilities get mixed up (unseen

bigrams, for example will get higher probabilities than seen bigrams)

14

Backoff Smoothing: Jelinek-Mercer Smoothing

c(w;—1,w;)
c(w;—1)

Pyrp(w; | wi—1) =

o Pryr(w; | wi—1) = APy (w; | wi—1) + (1 — A)Payr(w;)
where, 0 < A <1

e Notice that Py, (the | string) > Pjps(Fonz | string) as we wanted

e Jelinek-Mercer (1980) describe an elegant form of this interpolation

Pjypr(ngram) = APy, (ngram) + (1 — X)) Py (n — 1gram)

e What about Pjyp;(w;)?

15

Backoff Smoothing: Many alternatives

Pjypr(ngram) = APy (ngram) + (1 — X)) Py (n — 1gram)

e Different methods for finding the values for A\ correspond to variety of
different smoothing methods

— Katz Backoff (include Good-Turing with Backoff Smoothing)

c*(zy) if c(zy) >0

B = c(z)
katz(v |) { a(r)Pat,(y) otherwise

— Deleted Interpolation (Jelinek, Mercer)
compute X\ values from held-out data

16

Backoff Smoothing: Many alternatives

Pjypr(ngram) = APy (ngram) + (1 — X)) Py (n — 1gram)

e Witten-Bell smoothing
use the n — 1gram model when the ngram model has too few unique
words in the ngram context

e Absolute discounting (Ney, Essen, Kneser)
c(xy)—D

if c(zy) >0
P = c(z) !
abs(¥ |) { a(z)Pyps(y) otherwise

17

Backoff Smoothing: Many alternatives

Pjypr(ngram) = APy (ngram) + (1 — A\) Py (n — 1gram)

e Kneser-Ney smoothing
P(Francisco | eggplant) > P(stew | eggplant)

— Francisco is common, so interpolation gives
P(Francisco | eggplant) a high value

— But Francisco occurs in few contexts (only after San)
— stew iIs common, and occurs in many contexts

— Hence weight the interpolation based on number of contexts for
the word using discounting

18

Backoff Smoothing: Many alternatives

Pjypr(ngram) = APy, (ngram) + (1 — X)) Py (n — 1gram)

e Modified Kneser-Ney smoothing (Chen and Goodman)
multiple discounts for one count, two counts and three or more counts

e Generalized search (Powell search) or the Expectation-Maximization
algorithm

19

Trigram Models

e Revisiting the trigram model:

P(wi,wo,...,wp) =
P(w1) x P(wy | wy) X P(w3z | wy,wp) X P(wg | wo,w3) X
o Pw | wi—o,wi—1) oo X P(wn | wp—o,. .., wp—1)

e Notice that the length of the sentence n is variable

e What is the event space”?

20

The stop symbol

e Let > = {a, b} and the language be >*
so L = {e,a,b,aa,bb,ab,bb...}

e Consider a unigram model: P(a) = P(b) = 0.5

e P(a) = 0.5, P(b) = 0.5, P(aa) = 0.52 = 0.25, P(bb) = 0.25
and so on.

e But P(a) + P(b) 4+ P(aa) + P(bb) = 1.5l
> P(w)=1

21

The stop symbol

e \What went wrong?
No probability for P(¢)

e Add a special stop symbol:

P(a) = P(b) = 0.25

P(stop) = 0.5

e P(stop) =0.5, P(astop) = P(bstop) = 0.25 x 0.5 = 0.125,
P(aa stop) = 0.252 x 0.5 = 0.03125 (now the sum is no longer
greater than one)

22

The stop symbol

e With this new stop symbol we can show that }°,, P(w) = 1
Notice that the probability of any sequence of length n is 0.25™ x 0.5
Also there are 2™ sequences of length n

ZP(w) =

2" % 0.25™ x 0.5

n=0
o o
Yy 05"x05= Y 05"!

oo
> 05"=1
n=1

23

