
CMPT-413

Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/˜anoop

1

How good is a model

• So far we’ve seen the probability of a sentence: P (w0, . . . , wn)

• What is the probability of a collection of sentences, that is what is the
probability of a corpus

• Let T = s0, . . . , sm be a text corpus with sentences s0 through sm

• What is P (T)?
Let us assume that we trained P (·) on some training data, and T is
the test data

2

How good is a model

• T = s0, . . . , sm is the text corpus with sentences s0 through sm

• P (T) =
∏m

i=0 P (si)

• P (si) = P (wi
0, . . . , wi

n)
Let WT be the length of the text T measured in words

• Cross entropy for T : H(T) = − 1
WT

log2P (T)
the average number of bits needed to encode each of the WT words
in the test data
Perplexity: PP (T) = 2H(T)

3

How good is a model

• Lower cross entropy values and perplexity values are better
Lower values mean that the model is better
Correlation with performance of the language model in various
applications

• Performance of a language model is its cross-entropy or perplexity on
test data (unseen data)
corresponds to the number bits required to encode that data

• On various real life datasets, typical perplexity values yielded by
n-gram models on English text range from about 50 to almost 1000
(corresponding to cross entropies from about 6 to 10 bits/word)

4

Bigram Models

• In practice:
P (Mork read a book) = P (Mork | < start >)×P (read | Mork)×
P (a | read)× P (book | a)× P (< stop > | book)

• P (wi | wi−1) =
c(wi−1,wi)

c(wi−1)
On unseen data, c(wi−1, wi) or worse c(wi−1) could be zero

∑
wi

c(wi−1, wi)

c(wi−1)
=?

5

Smoothing

• Smoothing deals with events that have been observed zero times

• Smoothing algorithms also tend to improve the accuracy of the model

P (wi | wi−1) =
c(wi−1, wi)

c(wi−1)

• Not just unobserved events: what about events observed once?

6

Add-one Smoothing

P (wi | wi−1) =
c(wi−1, wi)

c(wi−1)

• Add-one Smoothing:

P (wi | wi−1) =
1 + c(wi−1, wi)

V + c(wi−1)

• Let V be the number of words in our vocabulary
Remember that we observe only V many bigrams
Assigns count of 1 to unseen bigrams

7

Add-one Smoothing
P (Mindy read a book) = P (Mindy | < start >)× P (read | Mindy)×
P (a | read)× P (book | a)× P (< stop > | book)

• Without smoothing:

P (read | Mindy) =
c(Mindy, read)

c(Mindy)
= 0

• With add-one smoothing (assuming c(Mindy) = 1 but c(Mindy, read) =
0):

P (read | Mindy) =
1

V + 1

8

Additive Smoothing: (Lidstone 1920, Jeffreys 1948)

P (wi | wi−1) =
c(wi−1, wi)

c(wi−1)

• Add-one smoothing works horribly in practice. Seems like 1 is too
large a count for unobserved events.

• Additive Smoothing:

P (wi | wi−1) =
δ + c(wi−1, wi)

(δ × V) + c(wi−1)

• 0 < δ ≤ 1
Still works horribly in practice, but better than add-one smoothing.

9

Good-Turing Smoothing: (Good, 1953)

P (wi | wi−1) =
c(wi−1, wi)

c(wi−1)

• Imagine you’re sitting at a sushi bar with a conveyor belt.

• You see going past you 10 plates of tuna, 3 plates of unagi, 2 plates
of salmon, 1 plate of shrimp, 1 plate of octopus, and 1 plate of
yellowtail

• How likely are you to see a new kind of seafood appear: 3
18

• How likely are you to see another plate of salmon: should be < 2
18

10

Good-Turing Smoothing

• How many types of seafood (words) were seen once? Use this to
predict probabilities for unseen events
Let n1 be the number of events that occurred once: p0 = n1

N

• The Good-Turing estimate states that for any n-gram that occurs r

times, we should pretend that it occurs r∗ times

r∗ = (r + 1)
nr+1

nr

11

Good-Turing Smoothing

• 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail

• How likely is new data? Let n1 be the number of items occurring
once, which is 3 in this case. N is the total, which is 18.

p0 =
n1

N
=

3

18

12

Good-Turing Smoothing

• 10 tuna, 3 unagi, 2 salmon, 1 shrimp, 1 octopus, 1 yellowtail

• How likely is octopus? Since c(octopus) = 1 The GT estimate is 1∗.

r∗ = (r + 1)
nr+1

nr

• To compute 1∗, we need n1 = 3 and n2 = 1

1∗ = 2×
1

3
=

2

3

• What happens when nr = 0?

13

Simple Backoff Smoothing: incorrect version

P (wi | wi−1) =
c(wi−1, wi)

c(wi−1)

• In add-one or Good-Turing: P (the | string) = P (Fonz | string)

• If c(wi−1, wi) = 0, then use P (wi) (back off)

• Works for trigrams: back off to bigrams and then unigrams

• Works better in practice, but probabilities get mixed up (unseen
bigrams, for example will get higher probabilities than seen bigrams)

14

Backoff Smoothing: Jelinek-Mercer Smoothing

PML(wi | wi−1) =
c(wi−1, wi)

c(wi−1)

• PJM(wi | wi−1) = λPML(wi | wi−1) + (1− λ)PML(wi)
where, 0 ≤ λ ≤ 1

• Notice that PJM(the | string) > PJM(Fonz | string) as we wanted

• Jelinek-Mercer (1980) describe an elegant form of this interpolation :

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n− 1gram)

• What about PJM(wi)?

15

Backoff Smoothing: Many alternatives

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n− 1gram)

• Different methods for finding the values for λ correspond to variety of
different smoothing methods

– Katz Backoff (include Good-Turing with Backoff Smoothing)

Pkatz(y | x) =

c∗(xy)
c(x) if c(xy) > 0

α(x)Pkatz(y) otherwise

– Deleted Interpolation (Jelinek, Mercer)
compute λ values from held-out data

16

Backoff Smoothing: Many alternatives

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n− 1gram)

• Witten-Bell smoothing
use the n− 1gram model when the ngram model has too few unique
words in the ngram context

• Absolute discounting (Ney, Essen, Kneser)

Pabs(y | x) =

c(xy)−D

c(x) if c(xy) > 0

α(x)Pabs(y) otherwise

17

Backoff Smoothing: Many alternatives

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n− 1gram)

• Kneser-Ney smoothing
P (Francisco | eggplant) > P (stew | eggplant)

– Francisco is common, so interpolation gives
P (Francisco | eggplant) a high value

– But Francisco occurs in few contexts (only after San)

– stew is common, and occurs in many contexts

– Hence weight the interpolation based on number of contexts for
the word using discounting

18

Backoff Smoothing: Many alternatives

PJM(ngram) = λPML(ngram) + (1− λ)PJM(n− 1gram)

• Modified Kneser-Ney smoothing (Chen and Goodman)
multiple discounts for one count, two counts and three or more counts

• Generalized search (Powell search) or the Expectation-Maximization
algorithm

19

Trigram Models

• Revisiting the trigram model:
P (w1, w2, . . . , wn) =

P (w1)× P (w2 | w1)× P (w3 | w1, w2)× P (w4 | w2, w3)×
. . . P (wi | wi−2, wi−1) . . .× P (wn | wn−2, . . . , wn−1)

• Notice that the length of the sentence n is variable

• What is the event space?

20

The stop symbol

• Let Σ = {a, b} and the language be Σ∗

so L = {ε, a, b, aa, bb, ab, bb . . .}

• Consider a unigram model: P (a) = P (b) = 0.5

• P (a) = 0.5, P (b) = 0.5, P (aa) = 0.52 = 0.25, P (bb) = 0.25
and so on.

• But P (a) + P (b) + P (aa) + P (bb) = 1.5 !!∑
w

P (w) = 1

21

The stop symbol

• What went wrong?
No probability for P (ε)

• Add a special stop symbol:

P (a) = P (b) = 0.25

P (stop) = 0.5

• P (stop) = 0.5, P (a stop) = P (b stop) = 0.25× 0.5 = 0.125,
P (aa stop) = 0.252 × 0.5 = 0.03125 (now the sum is no longer
greater than one)

22

The stop symbol

• With this new stop symbol we can show that
∑

w P (w) = 1
Notice that the probability of any sequence of length n is 0.25n × 0.5
Also there are 2n sequences of length n

∑
w

P (w) =

∞∑
n=0

2n × 0.25n × 0.5

∞∑
n=0

0.5n × 0.5 =
∞∑

n=0

0.5n+1

∞∑
n=1

0.5n = 1

23

