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Quick guide to probability theory

• P(X) means probability that X is true

– P(baby is a girl) = 0.5
percentage of total number of babies that are girls

– P(baby girl is named Kiki) = 0.001
percentage of total number of babies that are named Kiki

Kiki

Baby girls
Babies
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Probability: What does it really mean?

• P(GC drinks and drives | GC is in Hawaii) = 0.9

– GC drove drunk 90% of the time when in Hawaii – Frequentist

– If GC visited Hawaii infinitely many times . . . – Estimation

– I would bet at 90 to 1 odds that GC drinks and drives when in
Hawaii (degree of belief) – Bayesian
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Joint probability

• P(X,Y) means probability that X and Y are both true

– P(baby girl, blue eyes) percentage of total number of babies that
are girls and have blue eyes

Blue eyesKiki

Baby girls
Babies
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Conditional probability

• P(X | Y) means probability that X is true when we already know that Y
is true

– P(baby is named Kiki | baby is a girl) = 0.002

– P(baby is a girl | baby is named Kiki) = 1

Kiki
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Conditional probability

• Conditional and joint probabilities are related:

P (X | Y ) =
P (X, Y )

P (Y )

– P (baby is named Kiki | baby is a girl) =
P (baby is a girl,baby is named Kiki)

P (baby is a girl) = 0.001
0.5 = 0.002
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Bayes rule

• Conditional probability re-written as likelihood times prior:

P (X | Y ) =
P (Y | X)× P (X)

P (Y )

– P (named Kiki | girl) = P (girl|named Kiki)×P (named Kiki)
P (girl) =

1.0×0.001
0.5 = 0.002
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Bayes Rule

P (X | Y ) =
P (X, Y )

P (Y )
(1)

P (Y | X) =
P (Y, X)

P (X)
(2)

P (X, Y ) = P (Y, X) (3)

P (X | Y )× P (Y ) = P (Y | X)× P (X) (4)

P (X | Y ) =
P (Y | X)× P (X)

P (Y )
(5)

P (X | Y ) = P (Y | X)× P (X) (6)
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Basic Terms

• P (e) – a priori probability or just prior

• P (f | e) – conditional probability. The chance of f given e

• P (e, f) – joint probability. The chance of e and f both happening.

• If e and f are independent then we can write P (e, f) = P (e)×P (f)

• If e and f are not independent then we can write
P (e, f) = P (e)× P (f | e)
P (e, f) = P (f)× ?
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Basic Terms

• Addition of integers:
n∑

i=1

i = 1 + 2 + 3 + . . . + n

• Product of integers:
n∏

i=1

i = 1× 2× 3× . . .× n

• Factoring:
n∑

i=1

i× k = k + 2k + 3k + . . . + nk = k
n∑

i=1

i
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Probability: Axioms

• P measures total probability of a set of events

– P (∅) = 0

– P (all events) = 1

– P (X) ≤ P (Y ) for any X ⊆ Y

– P (X) + P (Y ) = P (X ∪ Y ) provided that X ∩ Y = ∅

• P(GC drives drunk & GC is in Hawaii) + P(GC drives drunk & GC is
not in Hawaii) = P(GC drives drunk)
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Probability Axioms

• All events sum to 1: ∑
e

P (e) = 1

• Conditional probability: ∑
e

P (e | f) = 1

• Computing P (f) from axioms:

P (f) =
∑
e

P (e)× P (f | e)
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Probability: Bias and Variance

• P( GC drives drunk | GC is in Hawaii, GC is alone, GC is low in polls,
. . .)

• As we add more material to the right of | :

– probability could increase or decrease

– probability usually gets more relevant (less bias )

– probability usually gets less reliable (more variance )

– removing items from the right of | makes it easier to get an
estimate (more bias but less variance)
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Probability: The Chain Rule

• P( GC is in Hawaii, GC is alone, GC is low in polls | GC drives drunk )

• We cannot remove items from the left of |
(verify that it violates the definitions we have given based on sets)

• In this case we can use the chain rule of probability to rescue us

• P( GC in Hawaii, GC alone, GC low in polls | GC drives drunk ) =
P(GC in Hawaii | GC alone, GC low in polls, GC drives drunk) ×
P(GC alone | GC low in polls, GC drives drunk) ×
P(GC low in polls | GC drives drunk)
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Probability: The Chain Rule

• P( GC in Hawaii, GC alone, GC low in polls | GC drives drunk ) =
P( GC in Hawaii | GC alone, GC low in polls, GC drives drunk ) ×
P( GC alone | GC low in polls, GC drives drunk ) ×
P( GC low in polls | GC drives drunk )

• Remember: P (X | Y ) = P (X,Y )
P (Y )

• HALD
D = HALD

ALD × ALD
LD × LD

D
(simply cancel out the matching terms)
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Probability: The Chain Rule

• P (e1, e2, . . . , en) = P (e1)× P (e2 | e1)× P (e3 | e1, e2) . . .

P (e1, e2, . . . , en) =
n∏

i=1

P (ei | ei−1, ei−2, . . . , e1)
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Probability: Random Variables and Events

• What is y in P (y) ?

• Shorthand for value assigned to a random variable Y , e.g. Y = y

• y is an element of some implicit event space : E
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Probability: Random Variables and Events

• The marginal probability P (y) can be computed from P (x, y) as
follows:

P (y) =
∑
x∈E

P (x, y)

• Finding the value that maximizes the probability value:

x̂ =
arg max
x ∈ E P (x)
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Log Probability Arithmetic

• Practical problem with tiny P (e) numbers: underflow

• One solution is to use log probabilities:

log(P (e)) = log(p1 × p2 × . . .× pn)

= log(p1) + log(p2) + . . . + log(pn)

• Note that:

x = exp(log(x))

• Also more efficient: addition instead of multiplication
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Log Probability Arithmetic

p log(p)
0.0 −∞
0.1 −3.32
0.2 −2.32
0.3 −1.74
0.4 −1.32
0.5 −1.00
0.6 −0.74
0.7 −0.51
0.8 −0.32
0.9 −0.15
1.0 −0.00
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Log Probability Arithmetic

• So: (0.5× 0.5× . . .0.5) = (0.5)n might get too small but
(−1− 1− 1− 1) = −n is manageable

• Another useful fact when writing code (log2 is log to the base 2):

log2(x) =
log10(x)

log10(2)
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Log Probability Arithmetic

• Yet another useful fact: big is a suitable large constant like 1030 and
x = log(a) and y = log(b) for some a, b:

function log add(x, y) returns log(a + b)
if (y − x) > log(big) return y
elsif (x− y) > log(big) return x
else return

min(x, y) + log(exp(x−min(x, y)) + exp(y −min(x, y)))
endif

• There is a more efficient way of computing
log(exp(x−min(x, y)) + exp(y −min(x, y)))
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Log Probability Arithmetic

function log add

if (y − x) > log(big) return y

elsif (x− y) > log(big) return x

elsif (x ≥ y) return x + log(1 + exp(y − x))

note that max(x, y) = x and y − x ≤ 0

else return y + log(exp(x− y) + 1)

note that max(x, y) = y and x− y ≤ 0

endif
Also, in ANSI C, log1p efficiently computes log(1 + x)

http://www.ling.ohio-state.edu/˜jansche/src/logadd.c
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Information Theory

• Information theory is the use of probability theory to quantify and
measure “information”.

• Consider the task of efficiently sending a message. Sender Alice
wants to send several messages to Receiver Bob. Alice wants to do
this as efficiently as possible.

• Let’s say that Alice is sending a message where the entire message
is just one character a, e.g. aaaa. . .. In this case we can save space
by simply sending the length of the message and the single character.
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Information Theory

• Now let’s say that Alice is sending a completely random signal to Bob.
If it is random then we cannot exploit anything in the message to
compress it any further.

• The lower bound on the number of bits it takes to transmit some
infinite set of messages is what is called entropy. This formulation of
entropy by Claude Shannon was adapted from thermodynamics.

• Information theory is built around this notion of message compression
as a way to evaluate the amount of information. Note that this is a
very abstract notion and applies to many situations other than the
examples given here.
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Entropy

• Consider a random variable X

• Entropy of X is:

H(X) = −
∑
x∈E

p(x)log2p(x)

• Any base can be used for the log, but base 2 means that entropy is
measured in bits.

• Entropy answers the question: How many bits are needed to transmit
messages from event space E , where p(x) defines the probability of
observing X = x.
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Entropy

• Alice wants to bet on a horse race. She has to send a message to her
bookie Bob to tell him which horse to bet on.

• There are 8 horses. One encoding scheme for the messages is to
use a number for each horse. So in bits this would be 001,010, . . .

(lower bound on message length = 3 bits in this encoding scheme)

• Can we do better?
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Entropy

Horse 1 1
2 Horse 5 1

64
Horse 2 1

4 Horse 6 1
64

Horse 3 1
8 Horse 7 1

64
Horse 4 1

16 Horse 8 1
64

• If we know how likely we are to bet on each horse, say based on the
horse’s probability of winning, then we can do better.

• Let X be a random variable over the horse (chances of winning). The
entropy of X is H(X)
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Entropy

H(X) =

= −
8∑
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p(i)log2 p(i)

= −
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• Most likely horse gets code 0, then 10,110,1110, . . .

What happens when the horses are equally likely to win?
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Perplexity

• The value 2H is called perplexity

• Perplexity is the weighted average number of choices a random
variable has to make.

• Choosing between 8 equally likely horses (H=3) is 23 = 8.

• Choosing between the biased horses from before (H=2) is 22 = 4.
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Cross Entropy

• In real life, we cannot know for sure the exact winning probability for
each horse. Let’s say pt is the true probability and pe is our estimate
of the true probability (say we got pe by observing a limited number of
previous races with these horses)

• Cross entropy is a distance measure between pt and pe.

H(pt, pe) = −
∑
x∈E

pt(x)log2pe(x)

• Cross entropy is an upper bound on the entropy:

H(p) ≤ H(p, m)
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Relative Entropy or Kullback-Leibler distance

• Another distance measure between two probability functions p and q

is:

KL(p‖q) =
∑
x∈E

p(x)log2
p(x)

q(x)

• KL distance is asymmetric (not a true distance), that is:
KL(p, q) 6= KL(q, p)
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Conditional Entropy and Mutual Information

• Entropy of a random variable X:

H(X) = −
∑
x∈E

p(x)log2p(x)

• Conditional Entropy between two random variables X and Y :

H(X | Y ) = −
∑

x,y∈E
p(x, y)log2p(x | y)

• Mutual Information between two random variables X and Y :

I(X;Y ) = KL(p(x, y)‖p(x)p(y)) =
∑
x

∑
y

p(x, y)log2
p(x, y)

p(x)p(y)
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