CMPT-413 Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Lexical Semantics

- So far, we have listed words in our lexicon or vocabulary assuming a single meaning per word:
 Consider *n*-grams P(w_i | w_{i-2}, w_{i-1}) = P(Bank | on, Commerce) or prepositional phrase attachment *if p=on and n2=bank then change N to V*
- Consider ... withdraw twenty dollars on the bank (correct = V) vs.
 ... withdraw the troops on the bank (correct = N)
- The same word *bank* means two different things but we cannot distinguish between them using the traditional definition of word.

Lexical Semantics

- To deal with this issue, we combine the *spelling* or *pronunciation* of a word and the *meaning*.
 In the *lexicon* we now store **lexemes** instead of words. A lexeme pairs a particular spelling or pronunciation with a particular meaning.
- The meaning part of a lexeme is called a sense. For CL, our interest is in relations between lexemes or disambiguating different senses of a word. word: bank → lexeme: bank¹ OR word: bank → lexeme: bank²
- Note that meanings are often not definitions, but often are simple listings of compatible lexemes.
 cf. dictionary defns: *red, n.* the color of blood or ruby; *blood, n.* red liquid circulating in animals

Homonyms

- Homonyms: words that have the same form but different meanings
 - 1. Instead, the chemical plant was found in violation of several environmental laws
 - 2. Stanley formed an expedition to find a rare plant found along the Amazon river
- Same *orthographic* form: *plant* but two senses: **plant**¹ and **plant**²

Homonyms

- Text vs. speech: fly-casting for bass vs. rhythmic bass chords These cases are homonyms in text, but not in speech. Referred to as homographs
- Speech vs. text: *would* vs. *wood* These cases are not homonyms in text, but easily confused in speech.
 Referred to as homophones
- Note that this problem in some cases can be solved using *part of speech tagging*

Can you think of a case which cannot be solved using POS tagging?

Applications

- Spelling correction: homophones: weather vs. whether
- Speech recognition: homophones: *to*, *two*, *too*. Also homonyms (see *n*-gram e.g.)
- Text to speech: homographs: bass vs. bass
- Information retrieval: homonyms: *latex*

Polysemy

- Consider the homonym: $bank \rightarrow commercial bank^1$ vs. river $bank^2$
- Now consider
 - 1. A PCFG can be trained using derivation trees from a tree bank annotated by human experts
- Is this a new sense of *bank*?

Polysemy

- Senses can be derived from a particular lexeme. This process is known as **polysemy** In previous case we would say that the use of *bank* is a sense derived from commercial **bank**¹
- In some cases, splitting into different lexemes has other supporting evidence: bank¹ has Italian origin vs. bank² has Scandinavian origin
 - 1. A PCFG can be trained using a bank of derivation trees called a tree-bank annotated by human experts
- How can we tell between homonyms and polysemous uses of a word?

Zeugma

- Consider the case for a verb like serve
 - 1. Does United serve breakfast?
 - 2. Does United serve Philadelphia?
 - 3. Does United serve breakfast and dinner?
 - 4. *#Does United serve breakfast and Philadelphia?*

Word Sense Disambiguation

- Consider a noun like *bank*
 - 1. How many senses does it have?
 - 2. How are these senses related?
 - 3. How can they be reliably distinguished?
- For NLP software, among these three questions, typically at runtime we need to automatically find the answer to the last question: given a word in context, map it to the correct lexeme: **word-sense disambiguation**

Word Sense Disambiguation: training data

training_VBG new_JJ Ukrainian_JJ
who_WP are_VBP leaving_VBG the_DT
CC safety_NN procedures_NNS at_IN
t_IN the_DT Orange_NNP County_NNP
Z closing_VBG three_CD missile_NN
_IN the_DT whole_JJ Chernobyl_NNP
IN a_DT hill_NN ,_, gardeners_NNS
\$_\$ 200_CD million_CD printing_NN
of_IN incompletely_JJ oxidated_JJ
whenever_WRB you_PRP eat_VBP a_DT
n_IN return_NN for_IN a_DT new_JJ
T carmaker_NN could_MD finance_VB
n_IN return_NN for_IN a_DT new_JJ

plant(1) _NN operators_NNS to_TO replace_V plant(1) s_NNS in_IN Ukraine_NNP and_CC im plant(1) s_NNS in_IN both_DT countries_NNS plant(1) NN . . plant(1) s_NNS in_IN southern_JJ Californi plant(1) _NN in_IN 1991_CD ,_, five_CD yea _NN begonias_NNS ,_, making_VBG f plant(2) plant(1) _NN in_IN Brooklyn_NNP ,_, Ohio_N _NN and_CC animal_NN sediment_NN plant(2) _NN ._. ''_'' plant(2) plant(1) _NN near_IN Tuscaloosa_NNP ._. plant(1) _NN construction_NN with_IN the_D plant(1) _NN near_IN Tuscaloosa_NNP ._.

Word Sense Disambiguation: learning

- Many different learning methods: let's consider one, Transformation Based Learning
- Let rule condition

```
r \leftarrow W_{-1} = gardeners, W_{+1} = begonias, W_{+window} = floral
```

• If r then change from **plant**¹ (manufacturing plant) to **plant**² (living plant)

Synonyms

- Synonyms: Different lexemes with the same meaning
 - 1. How big/large is that plane?
 - 2. Would I be flying on a big/large or small plane?
- Synonyms clash with polysemous meanings
 - 1. Seema is my big sister
 - 2. #Seema is my large sister

WordNet

- WordNet is an electronic database of word relationships, handcrafted from scratch by researchers at Princeton University (George Miller, Christine Fellbaum, et al.)
- WordNet contains 3 databases: for verbs, nouns and one for adjectives and adverbs

Category	Unique Forms	Number of Senses
Noun	94474	116317
Verb	10319	22066
Adjective	20170	29881
Adverb	4546	5677

WordNet

- Ask the question: how many senses per noun or verb? The distribution of senses follows Zipf's (2nd) Law.
- WordNet provides multiple lexeme entries for each word and for each part of speech,
 - e.g. *plant* as noun has 3 senses; *plant* as verb has 2 senses
- WordNet also provides *domain-independent* lexical relations such as IS-A, HasMember, MemberOf, ...

WordNet: noun relations

Relation	Definition	Example
Hypernym	this is a kind of	breakfast \rightarrow meal
Hyponym	this has a specific instance	meal \rightarrow lunch
Has-Member	this has a member	faculty \rightarrow professor
Member-Of	this is member of a group	$copilot \rightarrow crew$
Has-Part	this has a part	table \rightarrow leg
Part-Of	this is part of	course ightarrow meal
Antonym	this is an opposite of	leader \rightarrow follower

WordNet: verb relations

Relation	Definition	Example
Hypernym	this event is a kind of	fly \rightarrow travel
Tropynym	this event has a subtype	walk \rightarrow stroll
Entails	this event entails	snore $ ightarrow$ sleep
Antonym	this event is opposite of	increase \rightarrow decrease

WordNet: example from ver1.7.1

Sense1: Canada

 \Rightarrow North American country,North American nation

 \Rightarrow country, state, land

⇒administrative district,administrative division,territorial division

 \Rightarrow district, territory

 \Rightarrow region

 \Rightarrow location

 \Rightarrow entity, physical thing

WordNet: example from ver1.7.1

Sense 3: Vancouver \Rightarrow city, metropolis, urban center ⇒municipality ⇒urban area \Rightarrow geographical area ⇒region ⇒location \Rightarrow entity, physical thing ⇒administrative district, territorial division \Rightarrow district, territory ⇒region \Rightarrow location \Rightarrow entity, physical thing ⇒port \Rightarrow geographic point ⇒point \Rightarrow location \Rightarrow entity, physical thing

WordNet

- A **synset** in WordNet is a list of synonyms (interchangeable words)
- { chump, fish, fool, gull, mark, patsy, fall guy, sucker, schlemiel, shlemiel, soft touch, mug }
- How can we use this information like synsets, hypernyms, etc. from WordNet to benefit NLP applications?
- Consider one example: PP attachment, words plus word classes extracted from the hypernym hierarchy increase accuracy from 84% to 88% (Stetina and Nagao, 1998)

WordNet

- Another example of WordNet used in NLP applications: **selectional restrictions**
- We have considered subcategorization:
 VP-with-NP-complement → V(eat) NP "eat six bowls of rice "
 But not selectional restrictions of the verb itself: "eat tomorrow "
 Consider what do you want to eat tomorrow
- We can use the synset { food, nutrient } to describe the NP argument of *eat* then the 60K lexemes under these nodes in the WordNet hierarchy will be acceptable.

(however, what about "eat my shorts")

 \rightarrow several other applications have been explored