CMPT 413
Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Finite-state transducers

e Many applications in ¢ Other applications

computational include:

linguistics — Grapheme to phoneme
e Popular applications — Text normalization

of FSTs are in: — Transliteration

— Orthography — Edit distance

— Morphology — Word segmentation

— Phonology — Tokenization

— Parsing

Orthography and Phonology

e Orthography: written form of the language
(affected by morpheme combinations)

move + ed — moved
swim + ing — swimming S W IH1 M IHO NG

* Phonology: change in pronunciation due to

morpheme combinations (changes may not be
confined to morpheme boundary)

intent IH2 NTEHI N T + 10n
— ntention IH2 N T EH1 N CH AHO N

Orthography and Phonology

* Phonological * Orthography can
alternations are not introduce changes
reflected in the that do not have any
spelling counterpart in
(orthography): phonology:

— Newton Newtonian — picnic picnicking
— maniac maniacal — happy happiest

— electric electricity — gooey gooiest

Segmentation and Orthography

To find entries in the lexicon we need to segment
any input into morphemes

Looks like an easy task in some cases:
looking — look + ing
rethink — re + think

However, just matching an affix does not work:
*thing — th + ing
*read — re + ad

We need to store valid stems 1n our lexicon

what 1s the stem 1n assassination (assassin and not
nation)

Porter Stemmer

e A simpler task compared to segmentation 1s

simply stripping out all affixes (a process called
stemming, or finding the stem)

e Stemming 1s usually done without reference to a
lexicon of valid stems

e The Porter stemming algorithm is a simple
composition of FSTs, each of which strips out
some affix from the input string

— 1nput=..ational, produces output=..ate (relational —
relate)

— 1nput=..V..ing, produces output=¢ (motoring — motor)

Porter Stemmer

e False positives (stemmer gives incorrect stem):
doing — doe, policy — police

* False negatives (should provide stem but does
not): European — Europe, matrices —> matrix

I’'m a rageaholic. I can’t live without rageahol.
Homer Simpson, from The Simpsons
* Despite being linguistically unmotivated, the

Porter stemmer 1s used widely due to its
simplicity (easy to implement) and speed

Segmentation and orthography

 More complex cases involve alterations in spelling
foxes — fox +s [e-insertion |
loved — love + ed [e-deletion |
flies — fly + s | 1 to y, e-deletion]
panicked — panic + ed | k-insertion |
chugging — chug + ing [consonant doubling |

*singging —> sing + Ing
impossible — 1n + possible [n to m |
o Called morphographemic changes.

e Similar to but not 1identical to changes in
pronunciation due to morpheme combinations

Morphological Parsing with FST's

e Think of the process of decomposing a word into
1ts component morphemes in the reverse
direction: as generation of the word from the
component morphemes

e Start with an abstract notion of each morpheme
being simply combined with the stem using
concatenation

— Each stem 1s written with 1ts part of speech, e.g. cat+N

— Concatenate each stem with some suffix information,
e.g. cat+N+PL

— e.g. cat+N+PL goes through an FST to become cats

(also works in reverse!)

Morphological Parsing with FST's

Retain simple morpheme combinations with the
stem by using an intermediate representation:

— e.g. cat+N+PL becomes car\s#

Separate rules for the various spelling changes.
Each spelling rule is a different FST

Write down a separate FST for each spelling rule
foxes — foxs# [e-insertion FST |

loved — love’ed# [e-deletion FST |

flies — fly/\s# [i to y, e-deletion FST |

panicked — paniced# | k-insertion FST]

etc.

Lexicon FST (stores stems)

m o Vv € : reg-noun-stem +N:+N

@: reg-nouw+SG:+SG
f o X : reg-noun-stem __——~ +PL:+PL

mous e : irreg-sg-noun-form

m1c e : irreg-pl-noun-form

Compose the above lexicon FST with
some inflection FST

—noun—stem N:
- 0 B @ %-FPL: y
9 irreg—sg—noun—form
Oals
irreg—pl-noun—form #N: +PL:#

This machine relates intermediate forms like fox“s# to

underlying lexical forms like fox+N+PL

Lexical %

f

0O

X

+N

+PL

Intermediate é

O

X

A

S

other

uther e-insertion FST
- @ (9,
Dther
other

« The label other means pairs not use anywhere in the
transducer.

* Since # 1S used in a transition, g, has a transition on # to
itself

* States g, and g, accept default pairs like (cat’\s#, cats#)
* State g, rejects incorrect pairs like (foxA\s#, foxs#)

e-mnsertion FST

e Run the e-insertion FST on the following
pairs:

(fir#, fir#) (fizzhs#, fizzs#)
(fir\s#, firs#) (fizz"\s#, fizzes#)
(fir\s#, fires#) (fizzing#, fizzing#)

* Find the state the FST reaches after
attempting to accept each of the above pairs

e [s the state a final state, 1.e. does the FST
accept the pair or reject it

e We first use an FST to convert the lexicon containing
the stems and affixes into an intermediate representation
* We then apply a spelling rule that converts the
intermediate form into the surface form

e Parsing: takes the surface form and produces the
lexical representation

e Generation: takes the lexical form and produces the
surface form

* But how do we handle multiple spelling rules?
Lexical 5 | f | O] X [+N [+PL 5
Intermediate "%’ f lo| x| A |s | # ?l'

Surface% f O X| e |s f

Method 1: Composition

Lexicon
FST i
- write one
coOmposl : EST for
creates one each spelling
EFST for rule: each FST
all rules

has to provide
input to next
stage

48 BES

Method 2: Intersection

Creating one FST
implies we have to
do FST intersection
(but there’s a catch:
what is it?)

Lexicon

Write each FST

as an equal length
mapping (€ 1s taken

to be a real symbol)

Intersecting/Composing FSTs

 Implement each spelling rule as a separate FST

* We need slightly different FSTs when using
Method 1 (composition) vs. using Method 2
(Intersection)

— In Method 1, each FST implements a spelling rule if 1t

matches, and transfers the remaining affixes to the
output (composition can then be used)

— In Method 2, each FST computes an equal length
mapping from input to output (intersection can then be
used). Finally compose with lexicon FST and input.

* In practice, composition can create large FSTs

Length Preserving “two-level” FST for e-deletion

move
Stems/Lexicon fly
fox
love
move + ed e:e
move € ed other,

other, =X - {e,v}

other, =2 - {e,v,+}

\%

left right
Rewrite Rules context context

/

e Context dependent rewrite rules: oo = /A __p
— (Ma.p —= AP p; that is o becomes 3 in context A __ p)
— a, B, A, p are regular expressions, o = input, 3 = output
 How to apply rewrite rules:
— Consider rewrite rule:a—b/ab ___ ba

— Apply rule on string abababababa

— Three different outcomes are possible:
e abbbabbbaba (left to right, iterative)
e ababbbabbba (right to left, iterative)
e abbbbbbbbba (simultaneous)

Rewrite Rules

u—i/iC*
(u—i/X*iC*__ ¥¥%)

Input: kikukuku

from (R. Sproat slides)

Rewrite Rules

u—1/1C* __ kikukuku

kikllkllku outp}lt o.f one
Kikikuku | v aoptieacion
kikikuku

kikikiku

kikikiku

kikikiki

> left to right application

u—1/1C*

Rewrite Rules

kikukuku
kikukuku

kikukuku
kikukuku

kikikuku
kikikiku
kikikiki

right to left application

Rewrite Rules

u—1/1C* __ kikukuku
kikukuku
kikikuku

simultaneous application
(context rules apply to input
string only)

Rewrite Rules

Example of the e-insertion rule as a rewrite
rule:

e—=e/(x|lslpN __ s#
Rewrite rules can be optional or obligatory
Rewrite rules can be ordered wrt each other

This ensures exactly one output for a set of
rules

Rewrite Rules

Rule 1: IN—=1mm/__ (plblm)
Rule 2: IN —in/

Consider input iNpractical (N 1s an abstract nasal
phoneme)

Each rule has to be obligatory or we get two
outputs: impractical and inpractical

The rules have to be ordered wrt to each other so
that we get impractical rather than inpractical as
output

The order also ensures that intractable gets
produced correctly

Rewrite Rules

e Under some conditions, these rewrite rules are
equivalent to FSTs

 We cannot apply output of a rule as input to the
rule itself iteratively:
ce—ab/a__ b
If we allow this, the above rewrite rule will produce a” b"
for n >= [which 1s not regular

Why? Because we rewrite the € in aeb which was
introduced 1n the previous rule application

Matching the a__b as left/right context in aeb 1s ok

Rewrite Rules

Inarewriterule:a —=p/A__p

Rewrite rules are interpreted so that the input o
does not match something introduced in the
previous rule appliction

However, we are free to match the context either
A or p or both with something introduced in the

previous rule application (see previous examples)
In this case, we can convert them into FSTSs

Rewrite rules to FST's

u—1/2*1C* L ¥ (example from R. Sproat’s slides)

e Input: kikukupapu (use left-right iterative matching)

* Mark all possible right contexts
>k>1>k>u>k>u>p>a>p>u>

 Mark all possible left contexts
>k>1<>k<>u>k>u>p>a>p>u>

e Change u to 1 when delimited by <>
>k>1<>k<>1>k>u>p>a>p>u>

e But the next u 1s not delimited by <> and so
cannot be changed even though the rule matches

Rewrite rules to FST's

u—1/2*1C*__ X*
e Input: kikukupapu
* Mark all possible right contexts
>k>1>k>u>k>u>p>a>p>u>
e Mark all u followed by > with <, and <,
k>1>k<;>u>k<;,>u>p>a>p<;>u>
< U < ou < u
e Change all u to i when delimited by <; >
k>1>k<,>1>k<;>1>p>a>p<;>1>
<, u < u < u

u—1/2*1C*__ X%

Rewrite rules to FST's

k>1>k<,>1>k<;>1>p>a>p<;>1>

<, U < U <, u
e Delete >
kik<;ik<yipap<;1
U < U <, u

* Only allow i where < 1s preceded by 1C*, delete <,
kik ik ipap

LU U < U
* Allow only strings where <, 1s not preceded by 1C*
delete <,

kikikipapu

Rewrite rules to FST

e For every rewrite rule: o =/ __p:
— FST r that inserts > before every p
— FST fthat inserts <; & <, before every a followed by >

— FST replace that replaces o with § between <; and >
and deletes >

— FST A, that only allows all <, B preceded by A and
deletes <,

— FST A, that only allows all <, B not preceded by A and
deletes <,

e Final FST =roforeplace o h; o A,

e This 1s only for left-right iterative obligatory
rewrite rules: similar construction for other types

Rewrite Rules to FST

EST for replace
202
<2<y [oxP]
> € <1<y <[:€, <€, >IE

>.€

Create a new FST by taking the cross
product of the languages o and and each
state of this new FST: [ax[3] has loops for
the transitions <;:€, <,:€, >:¢€

Ambiguity (in parsing)

Global ambiguity: (de+light+ed vs. delight+ed)
foxes — 10x+N+PL (I saw two foxes)
foxes — toxes+V+3SG (Clouseau foxes them again)

Local ambiguity:
assess has a prefix string asses that has a valid analysis:
asses — ass+N+PL
Global ambiguity results in two valid answers,
but local ambiguity returns only one.

However, local ambiguity can also slow things
down since two analyses are considered partway
through the string.

Summary

FSTs can be applied to creating lexicons that are aware of
morphology

FSTs can be used for simple stemming

FSTs can also be used for morphographemic changes in
words (spelling rules), e.g. fox+N+PL becomes foxes

Multiple FSTs can be composed to give a single FST
(that can cover all spelling rules)

Multiple FSTs that are length preserving can also be run
in parallel with the intersection of the FSTs

Rewrite rules are a convenient notation that can be
converted into FSTs automatically

Ambiguity can exists in the lexicon: both global & local

(O N ()

ed# [CT = [C]-n}

other

W other = =-[C-{n,e)

€

