
CMPT-413
Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/˜anoop

1



Formal Language Theory

• Σ is the alphabet, e.g. Σ = {a, b}

• Σ∗ is the set of all strings with alphabet Σ
The Library of Babel by Jorge Luis Borges (published in collections,
e.g. Ficciones)

• A (formal) Language is a set of strings

2



Formal Language Theory

• For example, a regular language is a set of strings constructed as
follows:

– φ is a RL

– ∀x ∈ Σ ∪ ε, {x} is a RL

– If L1 and L2 are RLs then the following are RLs,

∗ L1 · L2 = {xy | x ∈ L1, y ∈ L2}

∗ L1 ∪ L2

∗ L∗1

3



Formal Language Theory

• A (formal) Grammar is a finite description of a language using a
specialized syntax
e.g. REs are a grammar

• Each RE has an equivalent RL

4



Formal Language Theory

• Closure properties: intersection, difference, complementation,
reversal

• Equivalence of other grammars and languages: context-free
languages and context-free grammars.

• Decidability or recognition for languages: given a string, decide
whether it is in a language or not.

• A hierarchy of grammars and languages: The Chomsky Hierarchy
regular ⊂ deterministic CF ⊂ context-free ⊂ tree-adjoining ⊂ indexed
⊂ context-sensitive ⊂ recursively enumerable

5



Formal languages and Computational Linguistics

Formal Language theory CL
Language Data/corpus (finite)
Grammar Grammar (inferred from data,

produces infinite set of strings)
Automata Recognition/Generation Algorithms

6



Grammar Development: Inflectional morphology

• Write an NFA for the following data such that each suffix type gets a
single transition (e.g. adding an -s is the plural suffix):

cat cats dog dogs

fox foxes mouse mice

• Note that foxes is not an isolated case (irregular), e.g. suffix,
suffixes

7



Grammar Development: Inflectional morphology

• Many regular cases (captured by a simple rule).

• Some exceptional cases like mice that are irregular, and have no
simple generative rule

• But also some irregular cases that can be captured by rules like
adding the -es suffix for plurals in the right context.

• A pervasive property of grammar development for NLs.

8



Grammar Development: Derivational morphology

• Write an NFA for the following data (ignore the parts of speech, also
you can use substrings on the transitions, e.g. a transition can have
demon on it):

demon/N demon+ize/V

demon+ize+ation/N demon+ize+able/A

demon+ize+er/N

formal/A formal+ity/N

formal+ness/N

9



Grammar Development: Derivational morphology

• Does your NFA accept the following additional strings (ignore the
parts of speech). If not, what do you need to add to your previous
NFA?

formal+ize/V formal+ize+ation/N

formal+ize+able/A formal+ize+er/N

demon+ize+able+ity/N

10



Finite-state transducers

• a:0 is notation for a map between two alphabets: Σ1 and Σ2

• FSTs accept pairs of strings. Language accepted by an FST:
L ⊆ (Σ∗

1,Σ∗
2)

• FSAs equate to regular languages, and FSTs equate to regular
relations

• Formal definition: analogous to the formal definition of FSAs

11



Finite-state transducers

• Formal definition

– Q: finite set of states, q0, q1, . . . , qn

– Σ: a finite alphabet composed of input-output pairs i : o, where
i ∈ Σ1 and o ∈ Σ2 and so Σ ⊆ Σ1 ×Σ2

– q0: Start state

– F : set of final states

– δ(q, i : o): the transition function

• Closure properties: union, inversion, composition
12



Dealing with foxes: Finite-state transducers

• FST for (ab,00), (aa,0)

1

2a:0

3

a:0 4

b:0

a:e

• FST for (ε, ε), (ab,01), (abab,0101), . . .

1

2a:0 3

4

a:0
b:1

b:1

13



Dealing with foxes: Finite-state transducers

• Draw FST for (ε, ε), (ab,00), (ab,01), (ab,10), (ab,11), (abab,0000), . . .

1

2
a:0

3

a:1

4
b:1

5

b:0

b:0
b:1

a:1

a:0

a:1

a:0

14



Finite-state Transducers

• The mystery transducer: what does it do?

15



Morphological Parsing with Transducers

• Simpler to start by thinking of it as generation

• Start with cat +N +PL and then use a FST to produce cats

• Advantage: since we can add/delete material, we can handle
fox +N +PL to get the correct form foxes

• As a first step, let us convert the +N+PL annotation into a suffix form
ˆs but ignore the problematic foxes case.

16



Morphological Parsing with Transducers

• Draw a transducer for the following examples:

Input Output Input Output
cat+N+PL catˆs# cat+N+SG cat#
dog+N+PL dogˆs# dog+N+SG dog#
fox+N+PL foxˆs# fox+N+SG fox#

mouse+N+PL mice# mouse+N+SG mouse#

17



Morphological Parsing with Transducers

• A transducer for the e-insertion rule
if word ends in xˆs# then output xes; similarly for zˆ# and sˆ#

note the use of the intermediate output from the previous transducer
define other = [a-r,t-w,y]

Input Inter. Output Input Inter. Output
cat+N+PL catˆs# cats cat+N+SG cat# cat
fox+N+PL foxˆs# foxes fox+N+SG fox# fox

18



Ambiguity when Parsing with FSTs

• Global ambiguity:
foxes → fox+N+PL OR foxes+V+3SG
I saw two foxes yesterday
That trickster foxes me every time

• Local ambiguity:
assess has a prefix string which can be analyzed:
ass+N+PL→ asses

• An FST will return the two answers in the first case, but only return
one answer in the second case (even though it will consider a false
analysis partway through the string)

19



Deterministic vs. Non-deterministic

• Deterministic transducers are called subsequential transducers (no
backtracking when translating one string to another)

• Subsequential transducers with p outputs on reaching the final state
are called p-subsequential transducers

• Deterministic transducers where all the states are final states are
called sequential transducers.

20



Porter Stemmer

• Unlike our previous FSTs, the Porter Stemmer has no stems
This makes the FST much smaller as a result – leading to a simple
implementation (available widely on the web in many programming
languages)

• ational → ate
ing → ε if stem contains vowel (e.g. motoring, motor)

21



Porter Stemmer

• Performs well enough most of the time, but suffers from problems that
the FSTs we saw earlier do not have: organization → organ

I’m a rageaholic. I can’t live without rageahol.

-Homer Simpson

• Still, it is used often for quick and dirty stemming in many NLP
applications due to its simplicity and speed

22



FST Software in Research and Industry

• FSTs are used for many applications in NLP: morphology, stemming,
segmentation

• FST software:

Van Noord fsa
URL:http://odur.let.rug.nl/˜Evannoord/Fsa/

AT&T fsm toolkit
URL:http://www.research.att.com/sw/tools/fsm/

Xerox LinguistX
URL:http://www.inxight.com/products/oem/linguistx/

Teragram
URL:http://www.teragram.com/

• FSTs are also widely used in aligning sequences in genomics

23


