
CMPT-413

Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/˜anoop

1

Natural Language and Complexity

• Formal language theory in computer science is a way to quantify
computation

• From regular expressions to Turing machines, we obtain a hierarchy of
recursion

• We can similarly use formal languages to describe the set of human
languages
Usually we abstract away from in the individual words in the language
and concentrate on general aspects of the language

2

Natural Language and Complexity

• We ask the question: Does a particular formal language describe some
aspect of human language

• Then we find out if that language isn’t in a particular language class

• For example, if we abstract some aspect of human language to the
formal language: {wwR | where w ∈ {a, b}∗,wR is the reverse of w} we can
then ask if it is possible to write a regular expression for this language

• If we can, then we can say that this particular example from human
language does not go beyond regular languages. If not, then we have to
go higher in the hierarchy (say, up to context-free languages)

3

The Chomsky Hierarchy

• unrestricted or type-0 grammars, generate the recursively enumerable
languages, automata equals Turing machines

• context-sensitive grammars, generate the context-sensitive languages,
automata equals Linear Bounded Automata

• context-free grammars, generate the context-free languages, automata
equals Pushdown Automata

• regular grammars, generate the regular languages, automata equals
Finite-State Automata

4

The Chomsky Hierarchy: G = (V,T, P, S) where,
α, β, γ ∈ (N ∪ T)∗

• unrestricted or type-0 grammars: α→ β, such that α , ε

• context-sensitive grammars: αAβ→ αγβ, such that γ , ε

• context-free grammars: A→ γ

• regular grammars: A→ a B or A→ a

5

Regular grammars: right-linear CFG:
L(G) = {a∗b∗ | n ≥ 0}

A → a A

A → ε

A → b B

B → b B

B → ε

6

Context-free grammars: L(G) = {anbn | n ≥ 0}
S → a S b

S → ε

7

Dependency Grammar

imagined in schoolCalvin monsters

SBJ OBJMODOBJ

imagined in schoolCalvin monsters

SBJ OBJMODOBJ

8

Dependency Grammar: (Tesnière, 1959), (Panini)

1 Calvin 2 SBJ
2 imagined – TOP
3 monsters 2 OBJ
4 in {2,3} MOD
5 school 4 OBJ

• If the dependencies are nested then DGs are equivalent (formally) to
CFGs

1. TOP(imagined)→ SBJ(Calvin) imagined OBJ(monsters) MOD(in)

2. MOD(in)→ in OBJ(school)

• However, each rule is lexicalized (has a terminal symbol)
9

Categorial Grammar: (Adjukiewicz, 1935)

Calvin hates mangoes
NP (S\NP)/NP NP

S\NP
S

• Also equivalent to CFGs

• Similar to DGs, each rule in CG is lexicalized

10

Context-sensitive grammars: L(G) = {anbn | n ≥ 1}
S → S B C

S → a C

a B → a a

C B → B C

C → b

11

Context-sensitive grammars: L(G) = {anbn | n ≥ 1}
S 1

S 2 B1 C1
S 3 B2 C2 B1 C1

a3 C3 B2 C2 B1 C1
a3 B2 C3 C2 B1 C1
a3 a2 C3 C2 B1 C1
a3 a2 C3 B1 C2 C1
a3 a2 B1 C3 C2 C1
a3 a2 a1 C3 C2 C1

a3 a2 a1 b3 b2 b1

12

Context-sensitive grammars: L(G) = {a2i
| i ≥ 1}

S → A C a B

C a → a a C

C B → D B

C B → E
a D → D a

A D → A C

a E → E a

A E → ε

13

Context-sensitive grammars: L(G) = {a2i
| n ≥ 1}

S
A C a B

A a a C B
A a a E
A a E a
A E a a

a a

14

Context-sensitive grammars: L(G) = {a2i
| i ≥ 1}

• A and B serve as left and right end-markers for sentential forms (derivation of each
string)

• C is a marker that moves through the string of a’s between A and B, doubling their
number using C a→ a a C

• When C hits right end-marker B, it becomes a D or E by C B→ D B or C B→ E

• If a D is chosen, that D migrates left using a D→ D a until left end-marker A is reached

• At that point D becomes C using A D→ A C and the process starts over

• Finally, E migrates left until it hits left end-marker A using a E → E a

15

Strong vs. Weak Generative Capacity

• Weak generative capacity of a grammar is the set of strings or the
language, e.g. 0n1n for n ≥ 0

• Strong generative capacity is the set of structures (usually the set of
trees) provided by the grammar

• Let’s ask the question: is the set of human languages contained in the
set of regular languages?

16

Strong vs. Weak Generative Capacity

• If we consider strong generative capacity then the answer is somewhat
easier to obtain

• For example, do we need to combine two non-terminals to provide the
semantics?

• Or do we need nested dependencies?

17

Strong vs. Weak Generative Capacity

NP

NP

a program

VP

to VP

promote NP

NP

safety

PP

in NP

trucks and minivans

NP

NP

a program

VP

to VP

promote NP

NP

safety PP

in trucks

and NP

minivans

18

Strong vs. Weak Generative Capacity

• However, strong generative capacity requires a particular grammar and a
particular linguistics theory of semantics or how meaning is assigned (in
steps or compositionally)

• So, the stronger claim will be that some aspect of human language when
you consider weak generative capacity is not regular

• This is quite tricky: consider L1 = {anbn} is context-free but L2 = {a∗b∗} is
regular and L1 ⊂ L2: so you could cheat and pick some subset of the
language which won’t prove anything

• Furthermore, the language should be infinite

19

Strong vs. Weak Generative Capacity

• Also, if we consider the size of a grammar then also the answer is easier
to obtain (∗joyable, ∗richment). The CFG is more elegant and smaller
than the equivalent regular grammar:

V → X
A → X -able | X -ment
X → en- NA

NA → joy | rich

• This is an engineering argument. However, it is related to the problem of
describing the human learning process. Certain aspects of language are
learned all at once not individually for each case.
e.g., learning enjoyment automatically if enrichment was learnt

20

Is Human Language a Regular Language

• Consider the following set of English sentences (strings)

– S = If S 1 then S 2

– S = Either S 3, or S 4

– S = The man who said S 5 is arriving today

• Map If, then→ a and either, or→ b. This results in strings like abba or
abaaba or abbaabba

• L = {wwR | where w ∈ {a, b}∗,wR is the reverse of w}

21

Human Language is not a Regular Language

• Is L = wwR a regular language? To show something is not a regular
language, we use the pumping lemma: for any infinite set of strings
generated by a FSA if you consider a long enough string from this set,
there has to be a loop which visits the same state at least twice

• Thus, in a regular language L, there are strings x, y, z such that xynz for
n ≥ 0 where y , ε

• Let L′ be the intersection of L with aa∗bbaa∗. Recall that RLs are closed
under intersection, so L′ must also be a RL. L′ = anbban

For any choice of y (consider ai or bi or aib or bai) the pumping lemma
leads to the conclusion that L′ is not regular.

22

Human Language is not a Regular Language

• Another example, also from English, is the set of center embedded
structures
Think of S → a S b and the nested dependencies a1a2a3b3b2b1

• Center embedding in English:
the shares that the broker recommended were bought⇒ N1N2V2V1
the moment when the shares that the broker recommended were bought
has passed⇒ N1N2N3V3V2V1

• Can you come up with an example that has four verbs and corresponding
number of nouns?
cf. The Embedding by Ian Watson

23

Human Competence vs. Human Performance

• What if no more than 3 or 4 center embedding structures are possible?
Then the language is finite, so the language is no longer strictly
context-free

• The common assumption made is that human competence is
represented by the context-free grammar, but human performance suffers
from memory limitations which can be simulated by a simpler mechanism

• The arguments about elegance, size and the learning process in humans
also apply in this case

24

Human Language is not a Context-Free Language

• Two approaches as before: consider strong and weak generative
capacity

• For strong generative capacity, if we can show crossing dependencies in
a language then no CFG can be written for such a language. Why?

• Quite a few major languages spoken by humans have crossed
dependencies:
Dutch (Bresnan et al., 1982), Swiss German, Tagalog, among others.

25

Human Language is not a Context-Free Language

• Swiss German:

. . . mer em Hans es huus hälfed aastriiche

. . . we Hans- the house- helped paint
N1 N2 V1 V2
. . . we helped Hans paint the house

• Analogous structures in English (PRO is a empty pronoun subject):
Eng: S 1 = we [V1 helped] [N1 Hans] (to do) [S 2 . . .]

SwGer: S 1 = we [N1 Hans] [S 2 . . . [V1 helped] . . .]
Eng: S 2 = PRO(ε) [V2 paint] [N2 the house]

SwGer: S 2 = PRO(ε) [N2 the house] [V2 paint]
Eng: S 1 + S 2 = we helped1 Hans1 PRO(ε) paint2 the house2

SwGer: S 1 + S 2 = we Hans1 PRO(ε) the house2 helped1 paint1
26

Human Language is not a Context-Free Language

• Weak generative capacity of human language being greater than
context-free was much harder to show. (Pullum, 1982) was a
compendium of all the failed efforts so far.

• (Shieber, 1985) and (Huybregts, 1984) showed this using examples from
Swiss-German:
mer d’chind em Hans es huus lönd hälfed aastriiche
we the children- Hans- the house- let helped paint
w a b x c d y

N1 N2 N3 V1 V2 V3
. . . we let the children help Hans paint the house

27

• Let this set of sentences be represented by a language L (mapped to
symbols w, a, b, x, c, d, y)

• Do the usual intersection with a regular language: wa∗b∗xc∗d∗y to obtain
L′ = wambnxcmdny

• The pumping lemma for CFLs [Bar-Hillel] states that if a string from the
CFL can be written as wuxvy for u, v , ε and wuxvy is long enough then
wunxvny for n ≥ 0 is also in that CFL.

• The pumping lemma for CFLs shows that L′ is not context-free and
hence human language is not even weakly context-free

Transformational (Movement) Grammars

• Note: not related to Transformation-Based Learning

• As we saw showing strong generative capacity beyond context-free was
quite easy: all we needed was crossed dependencies to link verbs with
their arguments.

• Linguists care about strong generative capacity since it provides the
means to compute meanings using grammars.

• Linguists also want to express generalizations (cf. the morphology
example: ∗joyment, ∗richment)

28

Transformational (Movement) Grammars

Calvin admires Hobbes .
Hobbes is admired by Calvin .

Who does Calvin admire ?
Who admires Hobbes ?

Who does Calvin believe admires Hobbes ?
The stuffed animal who admires Hobbes is a genius .

The stuffed animal who Calvin admires is imaginative .
Who is admired by Calvin ?

The stuffed animal who is admired by Calvin is a genius .
Who is Hobbes admired by ?

The stuffed animal who Hobbes is admired by is imaginative .
Calvin seems to admire Hobbes .

Calvin is likely to seem to admire Hobbes .
Who does Calvin think I believe Hobbes admires ?

29

S

NP

Calvin

VP

V

admires

NP

who

S’

NP

who

S

NP

Calvin

VP

V

admires

NP

ε

30

S’

NP

who

S

NP

ε

VP

V

is

VP

VP

V

admired

NP

ε

PP

P

by

NP

Calvin

31

• context-sensitive grammars: 0i, i is not a prime number and i > 0

• indexed grammars: 0n1n2n . . .mn, for any fixed m and n ≥ 0

• tree-adjoining grammars (TAG), linear-indexed grammars (LIG),
combinatory categorial grammars (CCG): 0n1n2n3n, for n ≥ 0

• context-free grammars: 0n1n for n ≥ 0

• deterministic context-free grammars: S ′ → S c, S → S A | A,
A→ a S b | ab: the language of ”balanced parentheses”

• regular grammars: (0|1)∗00(0|1)∗

32

33

Recognition Complexity
• Given grammar G and input x, provide algorithm for: Is x ∈ L(G)?

• unrestricted: undecidable (movement grammars, feature structure unification)

• context-sensitive: NSPACE[n] – linear non-deterministic space

• indexed grammars: NP-Complete (restricted feature structure unification)

• tree-adjoining grammars (TAG), linear-indexed grammars (LIG), combinatory
categorial grammars (CCG), head grammars: O(n6)

• context-free: O(n3)

• deterministic context-free: O(n)

• regular grammars: O(n)

Which class corresponds to human language?
34

