
1

11/13/07 1

CMPT 379
Compilers

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

11/13/07 2

TAC: Intermediate Representation

Intermediate
Code

Generator

Code
Generator

Front End

AST TAC

Assembly

Language

Language + Machine
Independent

Machine
Dependent

Language
Specific

Sparc, x86

2

11/13/07 3

TAC: 3-Address Code

• Instructions that operate on named locations and
labels: “generic assembly”

• Locations
– Every location is some place to store 4 bytes

• Pretend we can make infinitely many of them
– Either on stack frame:

• You assign offset (plus other information possibly)
– Or global variable

• Referred to by global name

• Labels (you generate as needed)

11/13/07 4<, ==, >=, etc.

TAC: 3-Address Code

Addresses/Locations
• names/labels: we

allow source-program
names in TAC,
implemented as a
pointer to a symbol
table entry

• constants
• temporaries

Instructions:
• assignments: x = y op

z / x = op y
• copy: x = y
• unconditional jump:

goto L
• conditional jumps: if x

goto L / ifFalse x goto
L / if x relop y goto L

3

11/13/07 5

TAC: 3-Address Code

Instructions:
• Procedure calls:

– param x1
– param x2
– …
– param xn
– call p, n

• Function calls:
– y = call p, n
– return y

Instructions:
• Arrays:

– x = y[i]
– x[i] = y

• Pointers:
– x = &y
– x = *y
– *x = y

11/13/07 6

What TAC doesn’t give you

• Array indexing (bounds check)
• Two or n-dimensional arrays
• Relational <=, >=, >, …
• Conditional branches other than if or ifFalse
• Field names in records/structures

– Use base+offset load/store
• Object data and method access

4

11/13/07 7

Control Flow
• Consider the statement:

while (a[i] < v) { i = i+1; }
L1:
 t1 = i
 t2 = t1 * 8
 t3 = a[t2]
 ifFalse t3 < v goto L2
 t4 = i
 t4 = t4 + 1
 i = t4
 goto L1
L2: ...

100: t1 = i
101: t2 = t1 * 8
102: t3 = a[t2]
103: ifFalse t3 < v goto 108
104: t4 = i
105: t4 = t4 + 1
106: i = t4
107: goto 100
108:

Labels can be
implemented using
position numbers

11/13/07 8

int gcd(int x, int y)
{
 int d;
 d = x - y;
 if (d > 0)
 return gcd(d, y);
 else if (d < 0)
 return gcd(x, -d);
 else
 return x;
}

gcd:
 t0 = x - y
 d = t0
 t1 = d
 t2 = t1 > 0
 ifFalse t2 goto L0
 param y
 param d
 t3 = call gcd, 2
 return t3
L0:
 t4 = d
 t5 = t4 < 0

 ...

Avoiding
redundant gotos
if t2 goto L1
goto L0
L1: ...

5

11/13/07 9

Short-circuiting Booleans

• More complex if
statements:
– if (a or b and not c) {

… }
• Typical sequence:

t1 = not c
t2 = b and t1
t3 = a or t2

• Short-circuit is possible
in this case:
– if (a and b and c) { … }

• Short-circuit sequence:
t1 = a
if t1 goto L0 /* sckt */
goto L4
L0: t2 = b
ifz t2 goto L1

11/13/07 10

void main() {
 int i;
 for (i = 0; i < 10; i = i + 1)
 print(i);
}

main:
 t0 = 0
 i = t0
L0:
 t1 = 10
 t2 = i < t1
 ifFalse t2 goto L1
 param i, 1
 call PrintInt, 1
 t3 = 1
 t4 = i + t3
 i = t4
 goto L0
L1:
 return

More Control Flow:
for loops

6

11/13/07 11

Backpatching in Control-Flow

• Easiest way to implement the translations is to use
two passes

• In one pass we may not know the target label for a
jump statement

• Backpatching allows one pass code generation
• Generate branching statements with the targets of

the jumps temporarily unspecified
• Put each of these statements into a list which is

then filled in when the proper label is determined

11/13/07 12

Backpatching

• S → while M
‘(‘expr’)’ M block

• expr → true
• expr → false
• expr → expr || expr
• M → ε

while (true) { ... }
• 108: t0 = true
• 109: if t0 goto 111
• 110: goto -
• 111: ...
• 122: goto 108
• 123: ...

– backpatch({110}, 123)

falselist

simply returns the current
instruction number

backpatch is done by rule that uses S

7

11/13/07 13

Backpatching

• S → while M
‘(‘expr’)’ M block

• expr → true
• expr → false
• expr → expr || expr
• M → ε

while (true) { break; }
• 108: t0 = true
• 109: if t0 goto 111
• 110: goto -
• 111: goto -
• 122: goto 108
• 123: ...

– backpatch({110}, 123)
– backpatch({111}, 123)

simply returns the current
instruction number

backpatch is done by while rule

continue is
similar,
generates
goto 108

11/13/07 14

while (true||false) { ... }

Backpatching

• S → while M
‘(‘expr’)’ M block

• expr → true
• expr → false
• expr → expr || expr
• M → ε

true || false
• 100: t0 = true
• 101: if t0 goto -
• 102: t1 = false
• 103: if t1 goto 106
• 104: t0 = false
• 105: goto -
• 106: t0 = true
• 107: goto -

– backpatch({101,
105, 107}, 109)

nextlist

backpatch is done by while rule

8

11/13/07 15

Backpatching
• We maintain a list of statements that need

patching by future statements
• Three lists are maintained:

– truelist: for targets when evaluation is true
– falselist: for targets when eval is false
– nextlist: the statement that ends the block

• These lists can be implemented as a synthesized
attribute

• Note the use of marker non-terminals

11/13/07 16

Array Elements

• Array elements are numbered 0, ..., n-1
• Let w be the width of each array element
• Let base be the address of the storage

allocated for the array
• Then the ith element A[i] begins in location

base+i*w
• The element A[i][j] with n elements in the

2nd dimension begins at: base+(i*n+j)*w

9

11/13/07 17

foo:
 t0 = 1

 t1 = 4
 t2 = t1 * t0
 t3 = arr + t2
 t4 = *(t3)
 t5 = 0
 t6 = 4
 t7 = t6 * t5
 t8 = arr + t7
 t9 = *(t8)
 t10 = 2
 t11 = t9 * t10
 t4 = t11

foo:
 t0 = 1
 t1 = 4
 t2 = t1 * t0
 t3 = arr + t2
 t4 = 0
 t5 = 4
 t6 = t5 * t4
 t7 = arr + t6
 t8 = *(t7)
 t9 = 2
 t10 = t8 * t9
 *(t3) = t10

void foo(int[] arr)
{ arr[1] = arr[0] * 2 }

CorrectWrong

Array
References

11/13/07 18

Translation of Expressions

• S → id = E

• E → E + E

• E → - E

• E → (E)
• E → id

• $$.code = concat($3.code, $1.lexeme =
$3.addr)

• $$.addr = new Temp(); $$.code =
concat($1.code, $3.code, $$.addr =
$1.addr + $3.addr)

• $$.addr = new Temp(); $$.code =
concat($2.code, $$.addr = - $2.addr)

• $$.addr = $2.addr; $$.code = $2.code
• $$.addr = symtbl($1.lexeme); $$.code = ‘’

10

11/13/07 19

• Compute offsets for all
incoming arguments, local
variables and temporaries
– Incoming arguments are at offset

x, x+4, x+8, …
– Locals+Temps are at –y,

-y-4, -y-8,…
• Compute 

First Incoming
Param @FP+x

First Local
Variable @FP-y

<Saved Regs>
...

More Incoming

More Locals
Frame Size

Function arguments

11/13/07 20

class A {
 void f (int a /* @x+4 */,

int b /* @x+8 */,
int c /* @ x+12 */) {

int s // @-y-4
if (c > 0) {

int t … // @-y-8
} else {

int u // @-y-12
int t … // @-y-16

}
 }
}

Computing Location Offsets

Location offsets for
temporaries are ignored

on this slide

You could reuse @-y-8 here,
but okay if you don’t

11

11/13/07 21

int factorial(int n)
{
 if (n <=1) return 1;
 return n*factorial(n-1);
}

void main()
{
 print(factorial(6));
}

factorial:
 t0 = 1
 t1 = n lt t0
 t2 = n eq t0
 t3 = t1 or t2
 ifFalse t3 goto L0
 t4 = 1
 return t4
L0:
 t5 = 1
 t6 = n - t5
 param t6
 t7 = call factorial, 1
 t8 = n * t7
 return t8

t3 = n <= 1

11/13/07 22

Implementing TAC

• Quadruples:
t1 = - c
t2 = b * t1
t3 = - c
t4 = b * t3
t5 = t2 + t4
a = t5

• Triples
1. - c
2. b * (1)
3. - c
4. b * (3)
5. (2) + (4)
6. a = (5)

12

11/13/07 23

Implementing TAC

• Indirect Triples
1. - c
2. b * (1)
3. - c
4. b * (3)
5. (2) + (4)
6. a = (5)

• Static Single
Assignment (SSA)

instead of:
a = t1
b = a + t1
a = b + t1

the SSA form has:
a1 = t1
b1 = a1 + t1
a2 = b1 + t1

a variable is never reused

Instruction
List:
(1)
(2)
(3)
(4)
(5)
(6)

can be re-ordered by
the code optimizer

11/13/07 24

Correctness vs. Optimizations

• When writing backend, correctness is
paramount
– Efficiency and optimizations are secondary

concerns at this point
• Don’t try optimizations at this stage

13

11/13/07 25

Basic Blocks

• Functions transfer control from one place (the
caller) to another (the called function)

• Other examples include any place where there are
branch instructions

• A basic block is a sequence of statements that
enters at the start and ends with a branch at the
end

• Remaining task of code generation is to create
code for basic blocks and branch them together

11/13/07 26

Summary

• TAC is one example of an intermediate
representation (IR)

• An IR should be close enough to existing machine
code instructions so that subsequent translation
into assembly is trivial

• In an IR we ignore some complexities and
differences in computer architectures, such as
limited registers, multiple instructions, branch
delays, load delays, etc.

