CMPT 379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

11/12/07

Syntax directed Translation

* Models for translation from parse trees into
assembly/machine code
* Representation of translations

— Attribute Grammars (semantic actions for
CFGs)

— Tree Matching Code Generators

— Tree Parsing Code Generators

11/12/07

Attribute Grammars

* Syntax-directed translation uses a grammar
to produce code (or any other “semantics”)

* Consider this technique to be a
generalization of a CFG definition

e Each grammar symbol is associated with an
attribute

* An attribute can be anything: a string, a
number, a tree, any kind of record or object

11/12/07 3

Attribute Grammars

* A CFG can be viewed as a (finite) representation
of a function that relates strings to parse trees

e Similarly, an attribute grammar is a way of
relating strings with “meanings”

* Since this relation is syntax-directed, we associate
each CFG rule with a semantics (rules to build an
abstract syntax tree)

* In other words, attribute grammars are a method to
decorate or annotate the parse tree

11/12/07 4

Example

Expr
Expr B-op Expr

| N

+ Expr B-op Expr

bleal=3 | clewal=s ¢
11/12/07 5

Example

Expr

%\

Expr B-op Expr
_____ N N
Var + Expr B-op Expr
R | Byrvas3 I
Exprval=s
| | Varval=s
b

Example

Expr

%_

Expr Expr
— b
Var Expr B-op Expr
I | - | |
! L —
sleri=t] | l-
b

Syntax directed definition

Var — IntConstant
{ $0.val = $1.lexval; }
Expr — Var
{ $0.val = $1.val; }
Expr — Expr B-op Expr
{ $0.val = $2.val ($1.val, $3.val); }
B-op — +
{ $0.val = PLUS; }
B-op — *
{ $0.val = TIMES; }

11/12/07 8

Flow of Attributes in Expr

¢ Consider the flow of the attributes in the
Expr syntax-directed defn

* The lhs attribute is computed using the rhs
attributes

e Purely bottom-up: compute attribute values
of all children (rhs) in the parse tree

* And then use them to compute the attribute
value of the parent (lhs)

11/12/07 9

Synthesized Attributes

* Synthesized attributes are attributes that
are computed purely bottom-up

* A grammar with semantic actions (or
syntax-directed definition) can choose to
use only synthesized attributes

* Such a grammar plus semantic actions is
called an S-attributed definition

11/12/07 10

Inherited Attributes

* Synthesized attributes may not be sufficient
for all cases that might arise for semantic
checking and code generation

* Consider the (sub)grammar:

Var-decl — Type Id-comma-list ;
Type — int | bool

Id-comma-list — ID

Id-comma-list — ID , Id-comma-list

11/12/07 11

Example: int x, y, z ;

Var-decl
Type Id-Comma-List d
int ID , Id-Comma-List
B /\
ID , Id-Comma-List
y |

ID

11/12/07 Z 12

Example: int x, y, z ;

Var-decl

Type [IYPENAISINE 1d-Comma-List I-C-L.in=int d

int Id-Comma-List 1-C-L.in=int

-%

, Id-Comma-List [.C.L.in=int
ID.val=int v |
ID.val=int
11/12/07 "

Z

Syntax-directed definition

Var-decl — Type Id-comma-list ;
{$2.in = $1.val; }
Type — int | bool
{ $0.val = int; } & { $0.val = bool; }
Id-comma-list — ID
{ $1.val = $0.in; }
Id-comma-list —= ID , Id-comma-list
{ $1.val = $0.in; $3.in = $0.in; }

11/12/07 14

Flow of Attributes in Var-decl

¢ How do the attributes flow in the Var-dec!
grammar

* ID takes its attribute value from its parent node

e Jd-Comma-List takes its attribute value from its
left sibling Type

e Computing attributes purely bottom-up is not
sufficient in this case

* Do we need synthesized attributes in this
grammar?

11/12/07 15

Inherited Attributes

 Inherited attributes are attributes that are
computed at a node based on attributes from
siblings or the parent

* Typically we combine synthesized attributes
and inherited attributes

* It is possible to convert the grammar into a
form that only uses synthesized attributes

11/12/07 16

Removing Inherited Attributes

Var-decl
T
Type-list ID H
Type-list ID ,
Type-list ID ,
|
Type .
y\p intx,y, 7,
int
11/12/07 17

Removing Inherited Attributes
_ Var-decl

T
Type-list ID H
N
_ Type-list ID ,
Typerlistyal=ing
Typcla-list ID ,
Ty\pe intx,y, z;
int

11/12/07 18

Removing inherited attributes

Var-decl — Type-List ID ;
{$0.val = $1.val; }
Type-list = Type-list ID ,
{ $0.val = $1.val; }
Type-list = Type
{$0.val = $1.val; }
Type — int | bool
{ $0.val = int; } & { $0.val = bool; }

11/12/07 19

Direction of inherited attributes

* Consider the syntax directed defns:
A—LM
{ $1.in = $0.in; $2.in = $1.val; $0.val = $2.val; }
A—QR
{ $2.in = $0.in; $1.in = $2.val; $0.val = $1.val; }
e Problematic definition: $1.in = $2.val

* Difference between incremental processing
vs. using the completed parse tree

11/12/07 20

10

Incremental Processing

* Incremental processing: constructing output
as we are parsing

* Bottom-up or top-down parsing
* Both can be viewed as left-to-right and
depth-first construction of the parse tree

* Some inherited attributes cannot be used in
conjunction with incremental processing

11/12/07 21

L-attributed Definitions

* A syntax-directed definition is L-attributed
if for a CFG rule

A — X,. X X;..X, two conditions hold:
— Each inherited attribute of X; depends on X,..X;,
— Each inherited attribute of X; depends on A

* These two conditions ensure left to right
and depth first parse tree construction

* Every S-attributed definition is L-attributed

11/12/07 22

11

Syntax-directed defns

Two important classes of SDTs:

LR parser, syntax directed definition is S-
attributed

LL parser, syntax directed definition is L-
attributed

11/12/07 23

Syntax-directed defns

LR parser, S-attributed definition

Implementing S-attributed definitions in LR
parsing is easy: execute action on reduce, all
necessary attributes have to be on the stack

* LL parser, L-attributed definition

11/12/07

Implementing L-attributed definitions in LL
parsing is similarly easy: we use an additional
action record for storing synthesized and
inherited attributes on the parse stack

24

12

Syntax-directed defns

* LR parser, S-attributed definition
* more details later ...
* LL parser, L-attributed definition

Stack Input Output
$T*)T’F id)*id$ T—FT {$2in=
$1.val }
$T)Tid id)*id$ F — id { $0.val =
$1.val }
$T)HT *1d$ The action record stays
action record: on the stack when T’ is
T T’.in = F.val replaced with rhs of rule 2

Top-down translation

Assume that we have a top-down predictive
parser

Typical strategy: take the CFG and
eliminate left-recursion

Suppose that we start with an attribute
grammar

Can we still eliminate left-recursion?

11/12/07 26

13

Top-down translation

E—E+T

{ $0.val = $1.val + $3.val; }
E—E-T

{ $0.val = $1.val - $3.val; }
T — IntConstant

{ $0.val = $1.lexval; }
E—T

{ $0.val = $1.val; }
T—(E)

{ $0.val = $1.val; }

11/12/07

Top-down translation

E—TR

{$2.in = $1.val; $0.val = $2.val; }
R—+TR

{ $3.in = $0.in + $2.val; $0.val = $3.val; }
R—-TR

{ $3.in = $0.in - $2.val; $0.val = $3.val; }
R — ¢ {$0.val = $0.in; }
T— (E) {$0.val = $1.val; }
T — IntConstant { $0.val = $1.lexval; }

11/12/07

27

28

14

Example: 9-5 + 2

E
9 /\
(T.val — R.in
IntConst = T.val | R.in
\
9 (’ /\2 , 6
IntConst + T.val R.in
s (1
IntConst €
11/12/07 2 29

Example: 9-5 + 2

T.val

|

IntConst T.val

IntConst + T.val

IntConst €

11/12/07 30

15

Dependencies and SDTs

e There can be circular definitions:

A — B {$0.val = $1.in; $1.in =$0.val + 1; }

e It is impossible to evaluate either $0.val or
$1.in first (each value depends on the other)

* We want to avoid circular dependencies

* Detecting such cases in all parse trees takes
exponential time!

e S-attributed or L-attributed definitions
L.Sannot have cycles

31

Dependency Graphs
9 /\
o Toval o i 6 4
S
9 '.\ e > 6 -
* IntConst + -~ T.val - Riin
5 | |
“- IntConst €
11/12/07 2 32

16

Dependency Graphs

* A dependency graph is drawn based on the syntax
directed definition

* Each dependency shows the flow of information in
the parse tree

* There are many ways to order these dependencies

* Each ordering is called a topological sort of the
dependency edges

* A graph with a cycle has no possible topological
sorting

11/12/07 33

Dependency Graphs

12] 6
E \‘6 f—}-l--w
9 /\a 9 T |10
-~ T.val = R.in |E| 6 <.
/] .

|

*- IntConst

* IntConst + > T.Val R.in
4 o B
5 \
- IntConst €
7
11/12/07 2 34

B) \\\

e . . !

1| 9 ’ /\ My
2Ny

17

Dependency Graphs

* A topological sort is defined on a set of
nodes Ny, ..., N, such that if there is an
edge in the graph from N; to N; then i <

* One possible topological sort for previous
dependency graph is:

-1,2,3,4,5,6,7,8,9,10, 11, 12
* Another possible sorting is:
-4,5,7,8,1,2,3,6,9,10, 11, 12

11/12/07 35

Syntax-directed definition with actions

e Some definitions can have side-effects:
E — T R { printf("%s", $2); }

e Can we predict when these side-effects
will occur?

* In general, we cannot and so the
translation will depend on the parser

11/12/07 36

18

Syntax-directed definition with actions

e A definition with side-effects:
E — T R { printf("%s", $2); }

* We can impose a condition: allow side-
effects if the definition obeys a condition:

e The same translation is produced for any
topological sort of the dependency graph

* In the above example, this is true because
the print statement is executed at the end

11/12/07 37

SDTs with Actions

* A syntax directed definition that maps infix
expressions to postfix:

E—TR

R — + T {print(‘+’); } R
R — —T{print(‘="); } R

R —¢

T — id { print(id.lookup); }

11/12/07 38

19

SDTs with Actions

* An impossible syntax directed definition
that maps infix expressions to prefix:

E—TR

R — {print(‘+); } + TR
R — {print(‘~"); } - TR

R —c¢

T — id { print(id.lookup); }

11/12/07

Only impossible
for left to right
processing.
Translation on
the parse tree is
possible

39

LR parsing and inherited attributes

* As we just saw, inherited attributes are
possible when doing top-down parsing

* How can we compute inherited attributes in
a bottom-up shift-reduce parser

* Problem: doing it incrementally (while

parsing)

* Note that LR parsing implies depth-first
visit which matches L-attributed definitions

11/12/07

40

20

LR parsing and inherited attributes

e Attributes can be stored on the stack used
by the shift-reduce parsing

* For synthesized attributes: when a reduce
action 1s invoked, store the value on the
stack based on value popped from stack

¢ For inherited attributes: transmit the
attribute value when executing the goto
function

11/12/07 41

Example: Synthesized Attributes

T—F {$0.val =$1.val; }
T—T*F
{ $0.val = $1.val * $3.val; }
F —id
{ val :=id.lookup();
if (val) { $0.val = $1.val; }
else { error; } }
F— (T) {$0.val =$1.val; }

11/12/07 42

21

Productions Red
ol i F L I:T>Fe F
2lT>TF | — L
3|F—id / $ Accept Reduce 2
4F—>(T)/ 2:5—=Te 4 T—->T*Fe
[" T—>Te*F
0:S"— T Reduce 3
T—eF 8:F—ide
T—eT*F
F— eid f id
F—e(T) 5:F—(*T)
T—eF
T.F—(T)e T—>eT*F
Reduce 4 6G:F—(T*) llz::sz)
T—Te*F
— 4 U
11/12/07 43 (
e/ * b 29
Trace “(1d,,_3)*1d, 1,
Stack |Input Action Attributes
0 (id) *id $ | Shift 5
05 id) *id $ | Shift 8 a.Push id.val=3;
058) *id $ | Reduce 3 F—id, {$0.val = $1.val }
pop 8, goto [5,F]=1 . .
051) *id $ | Reduce 1 T— F, a.Pop; a.Push 3;
pop 1, goto [5,T]=6 { $0.val = $1.val }
056) *id $ | Shift 7 a.Pop; a.Push 3;
0567 *jid $ | Reduce 4 F— (T), { $0.val = $2.val }

pop 7 6 5, goto [0,F]=1

3 pops; a.Push 3

11/12/07

44

22

Ce/ k4 29
Trace “(1d,_3)™1d, 1,

Stack |Input |Action Attributes

01 *id $ | Reduce 1 T—F, { $0.val = $1.val }
pop 1, goto [0,T]=2 a.Pop; a.Push 3

02 * id $ Shift 3 a.Push mul

023 id $ | Shift 8)

0238 $ | Reduce 3 F—id, a.Push id.val=2
pop 8, goto [3,F]=4 a.Pop a.Push 2

0234 $ | Reduce 2 T—T *F { $0.val = $1.val *
pop 4 3 2, goto [0,T]=2 |$2.val; }

02 $ | Accept 3 pops;

a.Push 3%*2=6

Example: Inherited Attributes

E—=TR
{ $2.in = $1.val; $0.val = $2.val; }
R—=+TR
{ $3.in = $0.in + $2.val; $0.val = $3.val; }
R — ¢ {$0.val = $0.in; }
T— (E) {$0.val = $1.val; }
T — id { $0.val = id.lookup; }

11/12/07

46

23

Productions

Reduce 3
1 E—-TR
2|R—>+TR FE—~TeR
3 R—¢
4 | T— (E)
5(T—id T
3:T—(*E)
0:S E (BoodR
E->*TR (T_”?E)
T—>.(E) T —-id -
Te.'d id
\'E 7. T—id e
Reduce 5
8:S’—=E-e
1/Rgduce 0 GR=+TR
Reduce 2
Productions Reduce 3
1 E—-TR
2|[R>+TR LE=TeR
; R—*4+TR
R—¢ RQEO
4 | T— (E)
5(T—id T
3:T—(*E)
0:S E (BooiR
E—->eTR (Ty
Te.(E) Te.]d .
Te.'d id
\'E 7: T—id®
Reduce 5
8:S”—=E-e
1/Rgduce 0 GR=+TR
Reduce 2

Reduce 1

2.E—=TRe

5:R—=+Te*R
R—*4+TR
R—c¢ce

/

Reduce 3

R

Reduce 1

47

2.E—=TRe

4:R—+°*TR
T—¢*(E)
T—eid

5:R—=+Te*R
R—*4+TR
R—c¢ce

/

R

/ Reduce 3

48

24

Productions

11/12/0

goto [5,R]=6

1 [E—TR{$2.in=$1.val; $0.val = $2.val; }
2 |R—+TR{$3.in = $0.in + $2.val; $0.val = $3.val; }
13 | R — € {$0.val = $0.in; } -
14 | T — (E) { $0.val = $1.val; } ttributes
VS' T—~id{ $O'Va1, :“i_diOOkup;E“ — —50.val = id.lookup }
pop 7, goto [0,T]=1 { pop; attr.Push(3)
01 + id $ | Shift 4 $2.in = $1.val
014 id $ | Shift 7 $2.in := (1).attr }
0147 $ | Reduce 5 T—id { $0.val = id.lookup }
pop 7, goto [4,T]=5 { pop; attr.Push(2); }
0145 $ | Reduce 3R— ¢ : -
{ $3.in = $0.in+$1.val
goto [5,R]=6 (5).attr := (1).attr+2
$0.val = $0.in
11/12/0 $0.val = (5).attex= 5}
(19 b 29
Trace “id,,_;+1d,,_,
Stack |Input Action Attributes
0 id + id $ | Shift 7
07 +id $ | Reduce 5 T—id {$0.val = id.lookup }
pop 7, goto [0,T]=1 { pop; attr.Push(3)
01 + id $ | Shift 4 $2.in = $1.val
014 id $ | Shift 7 $2.in := (1).attr }
0147 $ | Reduce 5 T—id { $0.val = id.lookup }
pop 7, goto [4,T]=5 { pop; attr.Push(2); }
0145 $ | Reduce 3R— ¢

{ $3.in = $0.in+$1.val
(5).attr := (1).attr+2
$0.val = $0.in
$0.val = (5).atte 5 }

25

(X : 29
Trace “id,,_;+1d,,_,

Stack | Input

Action

Attributes

01456

012

08

Reduce2 R— +TR

{ $0.val = $3.val

Pop 4 5 6, goto [1,R]=2 | POP3 attr.Push(5); }

Reduce 1 E—= TR
Pop 1 2, goto [0,E]=8

Accept

{ $0.val = $3.val
pop; attr.Push(5); }

{$0.val =5
attr.top=5; }

11/12/07

51

LR parsing with inherited attributes

Bottom-Up/rightmost

ccbca

line 3

< Acbca
< AcbB
<= AB

=S

A—c
B—ca
B—cbB
S—AB

Parse stack at line 3:
[‘x:] A [‘x’l cbB

]

$l.in="‘x’

’_$\2.in =$1.val

11/12/07

Consider:

S—AB

{$1.in = ‘x’;
$2.in = $1.val }

B—cbB
{ $0.val = $0.in + ‘y’; }

Parse stack at line 4:
[‘X,] A/’B

[‘Xy’] 52

26

Marker non-terminals

e Convert L-attributed into S-attributed definition

* Prerequisite: use embedded actions to compute
inherited attributes, e.g.

R — + T { $3.in = $0.in + $2.val; } R
* For each embedded action introduce a new marker
non-terminal and replace action with the marker
R—=+TMR

M — ¢ { $0.val = $—1.val - $-3.in; }

note the use of —1, —2,
11/12/07 etc. to access attributes 3

Marker Non-terminals

E—TR
R—=+T{print(‘+’); } R
R—-T{print(‘-’); } R
R—¢

T — id { print(id.lookup); }

Actions that should be done after

recognizing T but before predicting
R

11/12/07 54

27

Marker Non-terminals

E—=TR

R—+TMR Equivalent SDT using
R—-TNR marker non-terminals

R—¢

T — id { print(id.lookup); }
M — ¢ { print(‘+’); }

N — & { print(*-"); }

11/12/07 55

Impossible Syntax-directed Definition

E—{print(‘+’); }E+T
E—-T
T— {print(‘*”); } T*R
T—F
T — id { print $1.lexval; }

Tries to convert
infix to prefix

Impossible either top-down or
bottom-up. Problematic only

for left-to-right processing, ok
for generation from parse tree.

11/12/07 56

28

Tree Matching Code Generators

* Write tree patterns that match portions of
the parse tree

» Each tree pattern can be associated with an
action (just like attribute grammars)

e There can be multiple combinations of tree
patterns that match the input parse tree

11/12/07 57

Tree Matching Code Generators

e To provide a unique output, we assign costs
to the use of each tree pattern

e E.g. assigning uniform costs leads to
smaller code or instruction costs can be
used for optimizing code generation

* Three algorithms: Maximal Munch,
Dynamic Programming, Tree Grammars

e Section 8.9 (Purple Dragon book)

11/12/07 58

29

Maximal Munch: Example 1

Expr

|
Var
alexval=4
blexval=3 clexval=s
11/12/07 59

Maximal Munch: Example 1

Top-down
Fit the largest tile
Recursively descend

Expr B-op

|
Var
alexval=4
blexval=3 clexval=s ©
11/12/07 60

30

Maximal Munch: Example 2

method_decl method_list

Checking for
semantic errors return_type { body }

with Tree-matching
11/12/07

Tree Parsing Code Generators

* Take the prefix representation of the syntax tree
— E.g. (+ (* cl rl) (+ ma c2)) in prefix
representation uses an inorder traversal to get +
*clrl + mac2

* Write CFG rules that match substrings of the
above representation and non-terminals are
registers or memory locations

* Each matching rule produces some predefined
output

e Section 8.9.3 (Purple Dragon book)

11/12/07 62

@thod_decl method_liNZ =1

31

Code-generation Generators

* A CGG is like a compiler-compiler: write down a
description and generate code for it

e Code generation by:

— Adding semantic actions to the original CFG and each
action is executed while parsing, e.g. yacc

— Tree Rewriting: match a tree and commit an action, e.g.
lcc

— Tree Parsing: use a grammar that generates trees (not
strings), e.g. twig, burs, iburg

11/12/07 63

Summary

* The parser produces concrete syntax trees

» Abstract syntax trees: define semantic checks or a
syntax-directed translation to the desired output

* Attribute grammars: static definition of syntax-

directed translation

— Synthesized and Inherited attributes

— S-attribute grammars

— L-attributed grammars

Complex inherited attributes can be defined if the

full parse tree is available

11/12/07 64

32

