
1

11/27/07 1

CMPT 379
Compilers

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

11/27/07 2

Code Optimization

• There is no fully optimizing compiler O
• Let’s assume O exists: it takes a program P and

produces output Opt(P) which is the smallest
possible

• Imagine a program Q that produces no output and
never terminates, then Opt(Q) could be:
L1: goto L1

• Then to check if a program P never terminates on
some inputs, check if Opt(P(i)) is equal to Opt(Q)

• Full Employment Theorem for Compiler Writers,
see Rice(1953)

2

11/27/07 3

Optimizations

• Non-Optimizations
• Correctness of optimizations

– Optimizations must not change the meaning of the
program

• Types of optimizations
– Local optimizations
– Global dataflow analysis for optimization
– Static Single Assignment (SSA) Form

• Amdahl’s Law

11/27/07 4

Non-Optimizations
enum { GOOD, BAD };
extern int test_condition();

void check() {
 int rc;

 rc = test_condition();
 if (rc != GOOD) {
 exit(rc);
 }
}

enum { GOOD, BAD };
extern int test_condition();

void check() {
 int rc;

 if ((rc = test_condition())) {
 exit(rc);
 }
}

Which version of check runs faster?

3

11/27/07 5

Types of Optimizations

• High-level optimizations
– function inlining

• Machine-dependent optimizations
– e.g., peephole optimizations, instruction

scheduling
• Local optimizations or Transformations

– within basic block

11/27/07 6

Types of Optimizations

• Global optimizations or Data flow Analysis
– across basic blocks
– within one procedure (intraprocedural)
– whole program (interprocedural)
– pointers (alias analysis)

4

11/27/07 7

Maintaining Correctness

• What does this
program output?

3
Not:

$ decafcc byzero.decaf
Floating exception

void main() {
 int x;
 if (false) {
 x = 3/(3-3);
 } else {
 x = 3;
 }
 callout(“print_int”, x);
}

branch delay
slot (cf. load
delay slot)

11/27/07 8

Peephole Optimization

• Redundant instruction elimination
– If two instructions perform that same function
and are in the same basic block, remove one

– Redundant loads and stores
li $t0, 3
li $t0, 4

– Remove unreachable code
li $t0, 3
goto L2
... (all of this code until next label can be removed)

5

11/27/07 9

Peephole Optimization

• Flow control optimization
goto L1
L1: goto L2

• Algebraic simplification
• Reduction in strength

– Use faster instructions whenever possible
• Use of Machine Idioms
• Filling delay slots

11/27/07 10

Constant folding & propagation

• Constant folding
– compute expressions with known values at

compile time
• Constant propagation

– if constant assigned to variable, replace uses of
variable with constant unless variable is
reassigned

6

11/27/07 11

Constant folding & propagation

• Copy Propagation
a := d + e b := d + e

c := d + e

t := d + e
a := t

t := d + e
b := t

c := t

11/27/07 12

Transformations

• Structure preserving transformations
• Common subexpression elimination

a := b + c
b := a - d
c := b + c
d := a - d (⇒ b)

7

11/27/07 13

Transformations

• Dead-code elimination (combines copy
propogation with removal of unreachable
code)

if (debug) { f(); } /* debug := false (as a constant) */
if (false) { f(); } /* constant folding */
using deadcode elimination, code for f() is removed
x := t3 x := t3
t4 := x becomes t4 := t3

11/27/07 14

Transformations

• Renaming temporary variables
t1 := b+c can be changed to t2 := b+c
replace all instances of t1 with t2

• Interchange of statements
t1 := b+c t2 := x+y
t2 := x+y can be converted to t1 := b+c

8

11/27/07 15

Transformations

• Algebraic transformations
d := a + 0 (⇒ a)
d := d * 1 (⇒ eliminate)

• Reduction of strength
d := a ** 2 (⇒ a * a)

11/27/07 16

Control Flow Graph (CFG)

int main() {
 extern int f(int);
 int i;
 int *a;
 for (i = 0;

 i < 10;
i = i + 1)

{ a[i] = f(i); }
}

i = 0

i < 10

a[i] = f(i);
i = i+1;

Entry

Exit

Basic
Blocks

9

11/27/07 17

Control Flow Graph in TAC
main:
 i = 0
L0:
 t1 = 10
 t2 = i < t1
 ifFalse t2 Goto L1
 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0
L1:
 return

i = 0

L0:
 t1 = 10
 t2 = i < t1
 ifFalse t2 goto L1

 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0

Entry

Exit

definition/gen

reaches

reaches

kill

unambiguous

11/27/07 18

Dataflow Analysis

• S → id := E
• S → S ; S
• S → if E then S else S
• S → do S while E
• E → id + id
• E → id

10

11/27/07 19

Dataflow Analysis

S1

S2

If E goto S1

S1 S2

S1

If E goto S1

S ; S if E then S else S do S while E

11/27/07 20

Reaching definitions

S →
gen[S] = { d }
kill[S] = def(a) - { d }

out[S] = gen[S] ∪ (in[S] - kill[S])

d: a := b+c

11

11/27/07 21

Reaching definitions

S1

S2

S →

gen[S] = gen[S2] ∪ (gen[S1] - kill[S2])
kill[S] = kill[S2] ∪ (kill[S1] - gen[S2])

in[S1] = in[S]
in[S2] = out[S1]
out[S] = out[S2]

11/27/07 22

Reaching definitions

S →

gen[S] = gen[S1] ∪ gen[S2]
kill[S] = kill[S1] ∩ (kill[S1] - gen[S2])

in[S1] = in[S]
in[S2] = in[S]
out[S] = out[S1] ∪ out[S2]

S1 S2

12

11/27/07 23

Reaching definitions

S →

gen[S] = gen[S1]
kill[S] = kill[S1]

in[S1] = in[S] ∪ gen[S1]
out[S] = out[S1]

S1

in = inherited attribute

out = synthesized attribute

out[S1] = gen[S1] ∪ (in[S1] - kill[S1])

Iteratively find out[S] (fixed point)

11/27/07 24

Reaching definitions
d1: i := m-1
d2: j := n
d3: a := u1

d4: i := i+1
d5: j := j-1

d6: a := u2
d7: i := u3

B1

B2

B3
B4

gen[B1] = { d1, d2, d3 }
kill[B1] = { d4, d5, d6, d7 }

gen[B2] = { d4, d5 }
kill[B2] = { d1, d2, d7 }

gen[B3] = { d6 }
kill[B3] = { d3 }

gen[B4] = { d7 }
kill[B4] = { d1, d4 }

13

11/27/07 25

Reaching definitions
d1: i := m-1
d2: j := n
d3: a := u1

d4: i := i+1
d5: j := j-1

d6: a := u2
d7: i := u3

B1

B2

B3
B4

gen[B1] = { d1, d2, d3 }
kill[B1] = { d4, d5, d6, d7 }

gen[B2] = { d4, d5 }
kill[B2] = { d1, d2, d7 }

gen[B3] = { d6 }
kill[B3] = { d3 }

gen[B4] = { d7 }
kill[B4] = { d1, d4 }

in[B2] = out[B1] ∪ out[B3] ∪ out[B4]

11/27/07 26

Reaching definitions
d1: i := m-1
d2: j := n
d3: a := u1

d4: i := i+1
d5: j := j-1

d6: a := u2
d7: i := u3

B1

B2

B3
B4

gen[B1] = { d1, d2, d3 }
kill[B1] = { d4, d5, d6, d7 }

gen[B2] = { d4, d5 }
kill[B2] = { d1, d2, d7 }

gen[B3] = { d6 }
kill[B3] = { d3 }

gen[B4] = { d7 }
kill[B4] = { d1, d4 }

out[B2] = gen[B2] ∪ (in[B3] - kill[B2])
out[B2] = gen[B2] ∪ (in[B4] - kill[B2])

14

11/27/07 27

Dataflow Analysis

• Compute Dataflow Equations over Control
Flow Graph
– Reaching Definitions (Forward)

out[BB] := gen[BB] ∪ (in[BB] – kill[BB])
in[BB] := ∪ out[s] : forall s ∈ pred[BB]

– Liveness Analysis (Backward)
in[BB] := use[BB] ∪ (out[BB] – def[BB])
out[BB] := ∪ in[s] : forall s ∈ succ[BB]

• Computation by fixed-point analysis

11/27/07 28

SSA Form

• def-use chains keep track of where variables
were defined and where they were used

• Consider the case where each variable has
only one definition in the intermediate
representation

• One static definition, accessed many times
• Static Single Assignment Form (SSA)

15

11/27/07 29

SSA Form

• SSA is useful because
– Dataflow analysis and optimization is simpler

when each variable has only one definition
– If a variable has N uses and M definitions

(which use N+M instructions) it takes N*M to
represent def-use chains

– Complexity is the same for SSA but in practice
it is usually linear in number of definitions

– SSA simplifies the register interference graph

11/27/07 30

SSA Form

• Original Program

a := x + y
b := a - 1
a := y + b
b := x * 4
a := a + b

• SSA Form

a1 := x + y
b1 := a1 - 1
a2 := y + b1
b2 := x * 4
a3 := a2 + b2

what about conditional branches?

16

11/27/07 31

SSA Form
1: b := M[x]
 a := 0

2: if b < 4

3: a := b

4: c := a+b

1: b1 := M[x1]
 a1 := 0

2: if b1 < 4

3: a2 := b1

4: a3 := φ (a2, a1)
 c1 := a3 + b1

11/27/07 32

SSA Form
1: a := 0

2: b := a + 1
 c := c + b
 a := b * 2
 if a < N

3: return c

1: a1 := 0

2: a3 := φ (a2, a1)
 b1 := φ (b0, b2)
 c2 := φ (c0, c1)
 b2 := a3 + 1
 c1 := c2 + b2
 a2 := b2 * 2
 if a2 < N

3: return c1

17

11/27/07 33

Optimizations using SSA

• SSA form contains statements, basic blocks
and variables

• Dead-code elimination
– if there is a variable v with no uses and

def of v has no side-effects, delete
statement defining v

– if z := φ (x, y) then eliminate this stmt if
no defs for x,y

11/27/07 34

Optimizations using SSA

• Constant Propagation
– if v := c for some constant c then replace

v with c for all uses of v
– v := φ (c1, c2, ..., cn) where all ci are equal

to c can be replaced by v := c

18

11/27/07 35

Optimizations using SSA
1: i := 1 j := 1
 k := 0

2: if k < 100

3: if j < 20 4: return j

5: j := i
 k := k+1

6: j := k
 k := k+1

7:

11/27/07 36

Optimizations using SSA

• Conditional Constant Propagation
– In previous flow graph, is j always equal to 1?
– If j = 1 always, then block 6 will never execute

and so j := i and j := 1 always
– If j > 20 then block 6 will execute, and j := k

will be executed so that eventually j > 20
– Which will happen? Using SSA we can find the

answer.

19

11/27/07 37

Optimizations using SSA
1: i1 := 1 j1 := 1
 k1 := 0

2: j2 := φ(j4, j1)
 k2 := φ(k4, k1)
 if k2 < 100

3: if j2 < 20 4: return j2

5: j3 := i1
 k3 := k2+1

6: j5 := k2
 k5 := k2+1

7: j4 := φ(j3, j5)
 k4 := φ(k3,k5)

11/27/07 38

Optimizations using SSA
1: i1 := 1 j1 := 1
 k1 := 0

2: j2 := φ(j4, 1)
 k2 := φ(k4, 0)
 if k2 < 100

3: if j2 < 20 4: return j2

5: j3 := 1
 k3 := k2+1

6: j5 := k2
 k5 := k2+1

7: j4 := φ(j3, k2)
 k4 := φ(k3,k5)

After Constant
Propagation

20

11/27/07 39

Optimizations using SSA
1: 2: k2 := φ(k4, 0)

 if k2 < 100

3: 4: return 1

5: k3 := k2+1

7: k4 := φ(k3)

After Constant
Propagation

11/27/07 40

Optimizations using SSA

1: 2: k2 := φ(k3, 0)
 if k2 < 100

4: return 15: k3 := k2+1

After Removing
Empty Blocks and
1-arg φ functions

21

11/27/07 41

Optimizations using SSA

• Arrays, Pointers and Memory
– For more complex programs, we need

dependencies: how does statement B depend on
statement A?

– Read after write: A defines variable v, then B
uses v

– Write after write: A defines v, then B defines v
– Write after read: A uses v, then B defines v
– Control: A controls whether B executes

11/27/07 42

Optimizations using SSA

• Memory dependence
M[i] := 4
x := M[j]
M[k] := j

• We cannot tell if i, j, k are all the same value
which makes any optimization difficult

• Similar problems with Control dependence
• SSA does not offer an easy solution to these

problems

22

11/27/07 43

SSA Form

• Conversion from a Control Flow Graph
(created from TAC) into SSA Form is not
trivial

• Two famous algorithms:
– Lengauer-Tarjan algorithm (see the Tiger book

by Andrew W. Appel for more details)
– Harel algorithm

11/27/07 44

More on Optimization

• Control Flow Analysis
• Data Flow Analysis
• Dependence Analysis
• Alias Analysis
• Early Optimizations
• Redundancy

Elimination

• Loop Optimizations
• Procedure Optimizations
• Code Scheduling

(pipelining)
• Low-level Optimizations
• Interprocedural Analysis
• Memory Hierarchy

• Advanced Compiler Design and Implementation
by Steven S. Muchnick

23

11/27/07 45

Amdahl’s Law

• Speeduptotal =
((1 - TimeFractionoptimized) +
TimeFractionoptimized/Speedupoptimized)-1

• Optimize the common case, 90/10 rule
• Requires quantitative approach

– Profiling + Benchmarking
• Problem: Compiler writer doesn’t know the

application beforehand

11/27/07 46

Summary

• Optimizations can improve speed, while
maintaining correctness

• Various early optimization steps
• Global optimizations = dataflow analysis
• Reachability and Liveness analysis provides

dataflow analysis
• Static Single-Assignment Form (SSA)

