CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

9/21/07

Lexical Analysis

• Also called *scanning*, take input program *string* and convert into tokens

```
• Example:

T_DOUBLE ("double")

T_IDENT ("f")

T_OP ("=")

T_IDENT ("sqrt")

T_IDENT ("sqrt")

T_LPAREN ("(")

T_OP ("-")

T_INTCONSTANT ("1")

T_RPAREN (")")

T_SEP (";")
```

Token Attributes

- Some tokens have attributes
 - T_IDENT "sqrt"
 - T_INTCONSTANT 1
- Other tokens do not
 - T_WHILE
- *Token*=T_IDENT, *Lexeme*="sqrt", *Pattern*
- Source code location for error reports

9/21/07

Lexical errors

- What if user omits the space in "doublef"?
 - No lexical error, single token
 T_IDENT("doublef") is produced instead of sequence T_DOUBLE, T_IDENT("f")!
- Typically few lexical error types
 - E.g., illegal chars, opened string constants or comments that are not closed

Ad-hoc Scanners

9/21/07

Implementing Lexers: Loop and switch scanners

- · Ad hoc scanners
- Big nested switch/case statements
- Lots of getc()/ungetc() calls
 - Buffering; Sentinels for push-backs; streams
- Can be error-prone, use only if
 - Your language's lexical structure is very simple
 - The tools do not provide what you need for your token definitions
- Changing or adding a keyword is problematic
- Have a look at an actual implementation of an ad-hoc scanner

Implementing Lexers: Loop and switch scanners

- Another problem: how to show that the implementation actually captures all tokens specified by the language definition?
- How can we show correctness
- Key idea: separate the definition of tokens from the implementation
- Problem: we need to reason about patterns and how they can be used to define tokens (recognize strings).

9/21/07

Specification of Patterns using Regular Expressions

Formal Languages: Recap

- Symbols: a, b, c
- Alphabet : finite set of symbols $\Sigma = \{a, b\}$
- String: sequence of symbols bab
- Empty string: ε Define: $\Sigma^{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- Set of all strings: Σ^* cf. The Library of Babel, Jorge Luis Borges
- (Formal) Language: a set of strings

 $\{ a^n b^n : n > 0 \}$

9/21/07

Regular Languages

- The set of regular languages: each element is a regular language
- Each regular language is an example of a (formal) language, i.e. a set of strings

```
e.g. \{a^m b^n : m, n \text{ are +ve integers }\}
```

Regular Languages

- Defining the set of all regular languages:
 - The empty set and $\{a\}$ for all a in Σ^{ϵ} are regular languages
 - $-% \frac{1}{2}\left(L_{1}\right) =L_{1}\left(L_{2}\right) =L_{1}\left(L_{1}\right) =L_{1}\left(L_{1}\right) =L_{1}\left(L_{1}\right) =L_{1}\left(L_{1}\right) =L_{1}\left(L_{1}\right)$ and L_{2} and L_{3} are regular languages, then:

$$L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$$
 (concatenation)
 $L_1 \cup L_2$ (union)
 $L^* = \bigcup_{i=0}^{\infty} L^i$ (Kleene closure)

are also regular languages

- There are no other regular languages

9/21/07

Formal Grammars

- A formal grammar is a concise description of a formal language
- A formal grammar uses a specialized syntax
- For example, a **regular expression** is a concise description of a regular language

(a|b)*abb: is the set of all strings over the alphabet $\{a,b\}$ which end in abb

 We will use regular expressions (regexps) in order to define tokens in our compiler, e.g. lexemes for a string token can be defined as \" Σ* \"

Regular Expressions: Definition

- Every symbol of $\Sigma \cup \{ \epsilon \}$ is a regular expression
 - E.g. if $\Sigma = \{a,b\}$ then 'a', 'b' are regexps
- If r₁ and r₂ are regular expressions, then the core operators to combine two regexps are
 - Concatenation: r₁r₂, e.g. 'ab' or 'aba'
 - Alternation: r₁lr₂, e.g. 'alb'
 - Repetition: r₁*, e.g. 'a*' or 'b*'
- No other core operators are defined
 - But other operators can be defined using the basic operators (as in lex regular expressions) e.g. a+ = aa*

9/21/07

Lex regular expressions

Expression	Matches	Example	Using core operators
c	non-operator character c	a	
\c	character c literally	*	
"s"	string s literally	"**"	
	any character but newline	a.*b	
Λ	beginning of line	^abc	used for matching
\$	end of line	abc\$	used for matching
[s]	any one of characters in string s	[abc]	(alblc)
[^s]	any one character not in string s	[^a]	(blc) where $S = \{a,b,c\}$
r*	zero or more strings matching r	a*	
r+	one or more strings matching r	a+	aa*
r?	zero or one r	a?	(alε)
r{m,n}	between m and n occurences of r	a{2,3}	(aalaaa)
r_1r_2	an r ₁ followed by an r ₂	ab	
$r_1 r_2$	an r ₁ or an r ₂	a b	
(r)	same as r	(a b)	
r_1/r_2	r ₁ when followed by an r ₂	abc/123	used for matching

Regular Expressions: Definition

- Note that operators apply recursively and these applications can be ambiguous
 - E.g. is aalbc equal to a(alb)c or ((aa)lb)c?
- Avoid such cases of ambiguity provide explicit arguments for each regexp operator
 - For convenience, for examples on this page, let us use the symbol '·' to denote the operator for concatenation
- Remove ambiguity with an explicit regexp tree
 - a(alb)c is written as (·(·a(lab))c) or in postfix: aabl·c·
 - ((aa)lb)c is written as $(\cdot(l(\cdot aa)b)c)$ or in postfix: $aa \cdot blc \cdot$

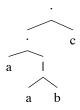
9/21/07

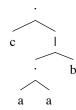
Regular Expressions: Definition

• Remove ambiguity with an explicit regexp tree a(alb)c is written as (·(·a(lab))c) or in postfix: aabl·c·

> ((aa)lb)c is written as (·(l(·aa)b)c) or in postfix: aa·blc·

• Does the order of concatenation matter?





9/21/07

16

15

Regular Expressions: Examples

- Alphabet { 0, 1 }
- All strings that represent binary numbers divisible by 4 (but accept 0) ((0|1)*00)|0
- All strings that do not contain "01" as a substring 1*0*

9/21/07 17

Equivalence of Regexps

- (R|S)|T == R|(S|T) == RS | RT**RISIT**
- (RS)T == R(ST)
- (R|S) == (S|R)
- R*R* == (R*)* == R* RR* == R*R $==RR*|\epsilon$
- R** == R*
- (R|S)T = RT|ST

- $(R|S)^* == (R^*S^*)^* ==$ (R*S)*R* ==(R*|S*)*
- (RS)*R == R(SR)*
- $R = R | R = R \epsilon$

Equivalence of Regexps

- 0(10)*1l(01)*
- (01)(01)*I(01)*
- $(01)(01)*|(01)(01)*|\epsilon$ $R^* == RR*|\epsilon$
- $(01)(01)*|\epsilon$
- (01)*

- (RS)*R == R(SR)*
- RS == (RS)
- R == R | R
- $R^* == RR^* | \epsilon$

9/21/07 19

Regular Expressions

- To describe all lexemes that form a token as a *pattern*
 - -(0|1|2|3|4|5|6|7|8|9)+
- Need decision procedure: to which token does a given sequence of characters belong (if any)?
 - Finite State Automata
 - Can be deterministic (DFA) or nondeterministic (NFA)

Implementing Regular Expressions with Finite-state Automata

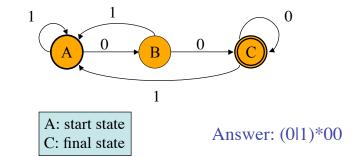
9/21/07

Deterministic Finite State Automata: DFA

- A set of states S
 - One start state q_0 , zero or more final states F
- An alphabet \sum of input symbols
- A transition function:
 - $-\delta$: $S \times \Sigma \Rightarrow S$
- Example: $\delta(1, a) = 2$

DFA: Example

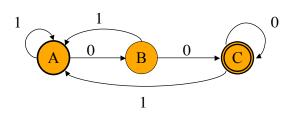
• What regular expression does this automaton accept?



9/21/07

23

DFA simulation



Input string: 00100

DFA simulation takes at most *n* steps for input of length *n* to return accept or reject

9/21/07

• Start state: A

1. $\delta(A,0) = B$

2. $\delta(B,0) = C$

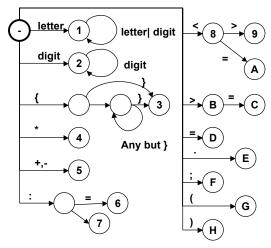
3. $\delta(C,1) = A$

4. $\delta(A,0) = B$

5. $\delta(B,0) = C$

no more input and C is final state: **accept**

FA: Pascal Example



9/21/07 25

Building a Lexical Analyzer

- Token ⇒ Pattern
- Pattern ⇒ Regular Expression
- Regular Expression \Rightarrow NFA
- NFA ⇒ DFA
- DFAs or NFAs for all the tokens ⇒ Lexical Analyzer
- Two basic rules to deal with multiple matching: greedy match + regexp ordering

9/21/07

Note that **greedy** means *longest leftmost match*

13

Lexical Analysis using Lex

NFAs

- NFA: like a DFA, except
 - A transition can lead to more than one state, that is, δ : S x $\Sigma \Rightarrow 2^S$
 - One state is chosen non-deterministically
 - Transitions can be labeled with ϵ , meaning states can be reached without reading any input, that is,

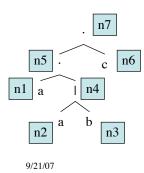
$$δ$$
: S x Σ ∪ { $ε$ } $⇒$ 2 ^S

Thompson's construction

Converts regexps to NFA

Build NFA recursively from regexp tree

Build NFA with left-to-right parse of postfix string using a stack



 $Input = aabl \cdot c \cdot$

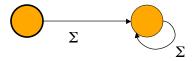
- read a, push n1 = nfa(a)
- read a, push n2 = nfa(a)
- read b, push n3 = nfa(b)
- read l, n3=pop(); n2=pop(); push n4 = nfa(or, n2, n3)
- read ·, n4 = pop(); n1 = pop(); push n5 = nfa(cat, n1, n4)
- read c, push n6 = nfa(c)
- read \cdot , n6 = pop(); n5 = pop(); push n7 = nfa(cat, n5, n6)

Thompson's construction

- Converts regexps to NFA
- Six simple rules
 - Empty language
 - Symbols
 - Empty String
 - Alternation $(r_1 \text{ or } r_2)$
 - Concatenation (r_1 followed by r_2)
 - Repetition (r_1^*)

Used by Ken Thompson for pattern-based search in text editor QED (1968)

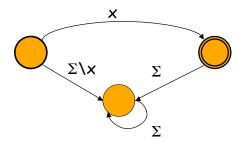
• For the empty language φ (optionally include a *sinkhole* state)



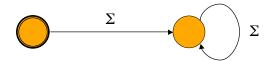
9/21/07

Thompson Rule 1

• For each symbol *x* of the alphabet, there is a NFA that accepts it (include a *sinkhole* state)



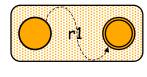
 \bullet There is an NFA that accepts only ϵ

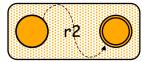


9/21/07

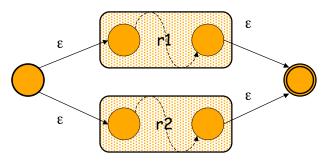
Thompson Rule 3

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts $r_1 | r_2$





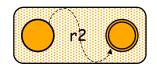
• Given two NFAs for r_1 , r_2 , there is a NFA that accepts $r_1 | r_2$



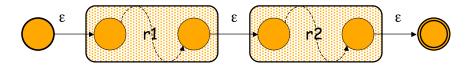
9/21/07 35

Thompson Rule 4

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts r_1r_2



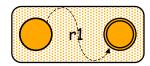
• Given two NFAs for r_1 , r_2 , there is a NFA that accepts r_1r_2



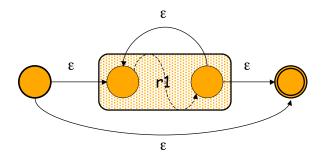
9/21/07

Thompson Rule 5

• Given a NFA for r_1 , there is an NFA that accepts r_1^*



• Given a NFA for r_1 , there is an NFA that accepts r_1^*



9/21/07 39

Example

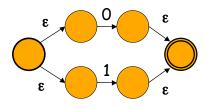
- Set of all binary strings that are divisible by four (include 0 in this set)
- Defined by the regexp: ((0|1)*00) | 0
- Apply Thompson's Rules to create an NFA

Basic Blocks 0 and 1

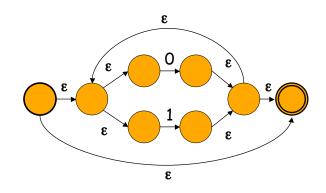
- 0
- 1

(this version does not report errors: no sinkholes)

9/21/07 41

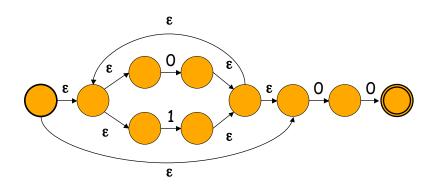


0|1

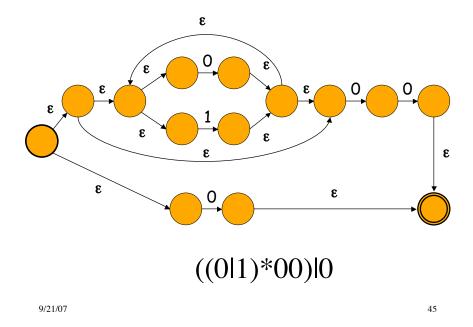


(0|1)*

9/21/07 43



(0|1)*00



Simulating NFAs

- Similar to DFA simulation
- But have to deal with ε transitions and multiple transitions on the same input
- Instead of one state, we have to consider *sets* of states
- Simulating NFAs is a problem that is closely linked to converting a given NFA to a DFA

NFA to DFA Conversion

- Subset construction
- Idea: subsets of set of all NFA states are *equivalent* and become one DFA state
- Algorithm simulates movement through NFA
- Key problem: how to treat ε -transitions?

9/21/07 47

ε-Closure

• Start state: q₀

• ϵ -closure(S): S is a set of states

initialize:
$$S \leftarrow \{q_0\}$$

 $T \leftarrow S$
repeat $T' \leftarrow T$
 $T \leftarrow T' \cup [\cup_{s \in T'} \mathbf{move}(s, \epsilon)]$
until $T = T'$

ϵ -Closure (T: set of states)

```
push all states in T onto stack
initialize \varepsilon-closure(T) to T
while stack is not empty do begin
pop t off stack
for each state u with u \in move(t, \varepsilon) do
if u \notin \varepsilon-closure(T) do begin
add u to \varepsilon-closure(T)
push u onto stack
end
```

9/21/07 49

NFA Simulation

- After computing the ε-closure move, we get a set of states
- On some input extend all these states to get a new set of states

 $\mathbf{DFAedge}(T,c) = \epsilon\text{-}\mathbf{closure}\left(\cup_{q \in T}\mathbf{move}(q,c)\right)$

NFA Simulation

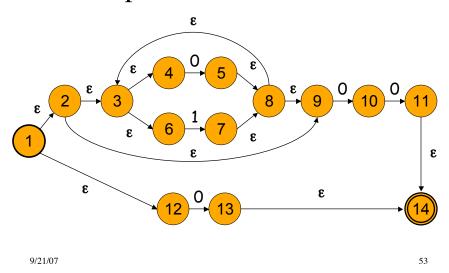
• Start state: q_0 • Input: $c_1, ..., c_k$ $T \leftarrow \epsilon\text{-closure}(\{q_0\})$ for $i \leftarrow 1$ to k $T \leftarrow \mathbf{DFAedge}(T, c_i)$

9/21/07 51

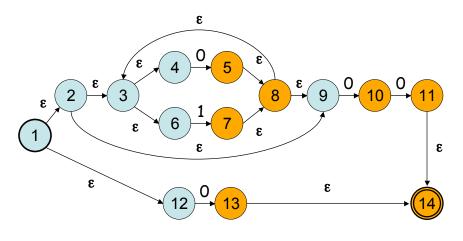
Conversion from NFA to DFA

- Conversion method closely follows the NFA simulation algorithm
- Instead of simulating, we can collect those NFA states that behave identically on the same input
- Group this set of states to form one state in the DFA

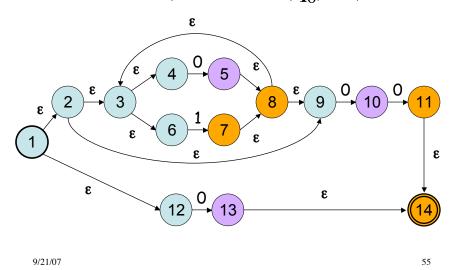
Example: subset construction



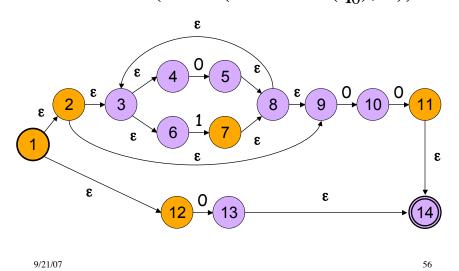
ϵ -closure(q_0)



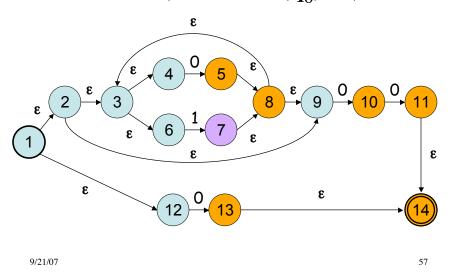
$move(\epsilon$ - $closure(q_0), 0)$



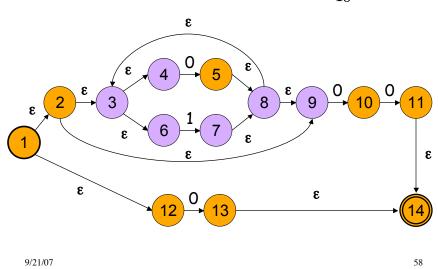
ϵ -closure(move(ϵ -closure(q_0), 0))



$move(\epsilon$ - $closure(q_0), 1)$



ϵ -closure(move(ϵ -closure(q_0), 1))



Subset Construction

```
add \epsilon-closure(q_0) to Dstates unmarked

while \exists unmarked T \in Dstates do begin

mark T;

for each symbol c do begin

U := \epsilon-closure(move(T, c));

if U \notin Dstates then

add U to Dstates unmarked

Dtrans[d, c] := U;

end

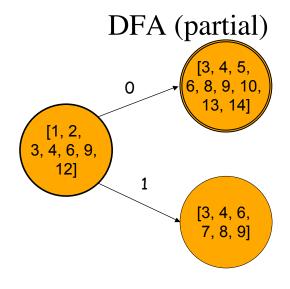
end
```

9/21/07 59

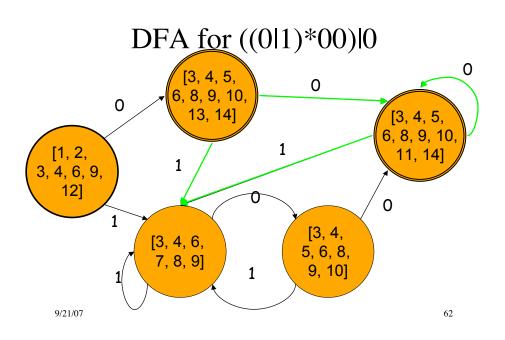
Subset Construction

```
states[0] = \epsilon\text{-closure}(\{q_0\})
p = j = 0
while \ j \le p \ do \ begin
e = DFAedge(states[j], c)
if \ e = states[i] \ for \ some \ i \le p
then \quad Dtrans[j, c] = i
else \quad p = p+1
states[p] = e
Dtrans[j, c] = p
j = j+1
end
end
```

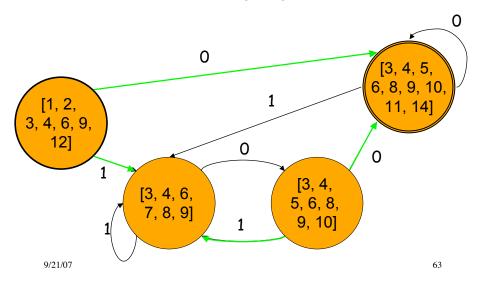
60



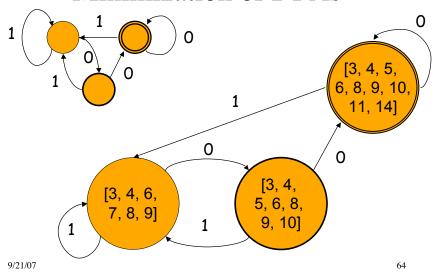
9/21/07



Minimization of DFAs

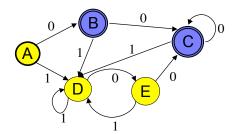


Minimization of DFAs



Minimization of DFAs

- Algorithm for minimizing the number of states in a DFA
- Step 1: partition states into 2 groups: accepting and non-accepting



9/21/07

65

Minimization of DFAs

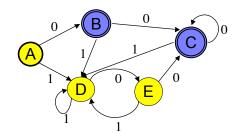
- Step 2: in each group, find a sub-group of states having property P
- P: The states have transitions on each symbol (in the alphabet) to the *same* group

A, 0: blue A, 1: yellow E, 0: blue

E, 1: yellow

D, 0: yellow D, 1: yellow

9/21/07



B, 0: blue

B, 1: yellow

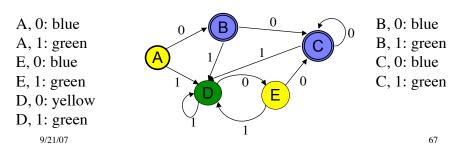
C, 0: blue

C, 1: yellow

66

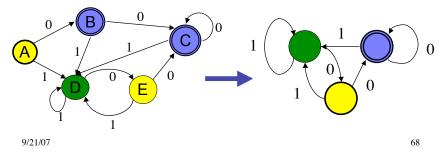
Minimization of DFAs

- Step 3: if a sub-group does not obey P split up the group into a separate group
- Go back to step 2. If no further sub-groups emerge then continue to step 4



Minimization of DFAs

- Step 4: each group becomes a state in the minimized DFA
- Transitions to individual states are mapped to a single state representing the group of states



NFA to DFA

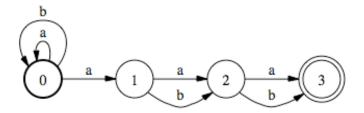
- Subset construction converts NFA to DFA
- Complexity:
 - For FSAs, we measure complexity in terms of initial cost (creating the automaton) and per string cost
 - Let r be the length of the regexp and n be the length of the input string
 - NFA, Initial cost: O(r); Per string: O(rn)
 - DFA, Initial cost: $O(r^2s)$; Per string: O(n)
 - DFA, common case, s = r, but worst case $s = 2^{r}$

9/21/07 69

NFA to DFA

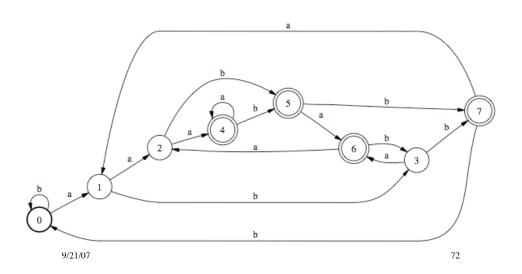
- A regexp of size r can become a 2^r state DFA, an exponential increase in complexity
 - Try the subset construction on NFA built for the regexp A*aAⁿ⁻¹ where A is the regexp (alb)
- Note that the NFA for regexp of size *r* will have *r* states
- Minimization can reduce the number of states
- But minimization requires determinization

NFA to DFA

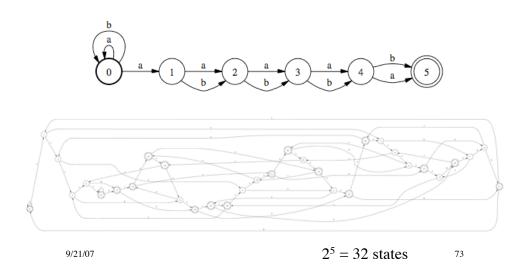


9/21/07 71

NFA to DFA



NFA to DFA



NFA vs. DFA in the wild

Engine Type	Programs
DFA	awk (most versions), egrep (most versions), flex, lex, MySQL, Procmail
Traditional NFA	GNU <i>Emacs</i> , Java, <i>grep</i> (most versions), <i>less</i> , <i>more</i> , .NET languages, PCRE library, Perl, PHP (pcre routines), Python, Ruby, <i>sed</i> (most versions), vi
POSIX NFA	mawk, MKS utilities, GNU Emacs (when requested)
Hybrid NFA/DFA	GNU awk, GNU grep/egrep, Tcl

Extensions to Regular Expressions

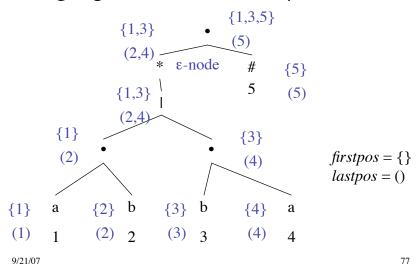
- Most modern regexp implementations provide extensions:
 - matching groups; \1 refers to the string matched by the first grouping (), \2 to the second match, etc.,
 - e.g. $([a-z]+)\1$ which matches abab where 1=ab
 - match and replace operations,
 - e.g. s/([a-z]+)/1/1/g which changes ab into abab where 1=ab
- These extensions are no longer "regular". In fact, extended regexp matching is NP-hard
 - Extended regular expressions (including POSIX and Perl) are called REGEX to distinguish from regexp (which are regular)
- In order to capture these difficult cases, the algorithms used even for simple regexp matching run in time exponential in the length of the input 9/21/07

75

Converting Regular Expressions directly into DFAs

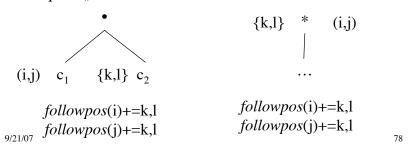
This algorithm was first used by Al Aho in egrep, and used in awk, lex, flex

Regexp to DFA: ((ab) | (ba)) *#

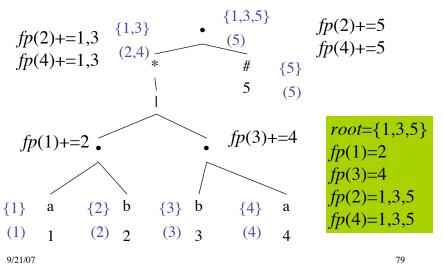


Regexp to DFA: followpos

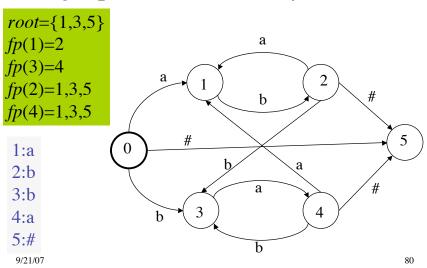
- *followpos(p)* tells us which positions can follow a position *p*
- There are two rules that use the *firstpos* {} and *lastpos* () information



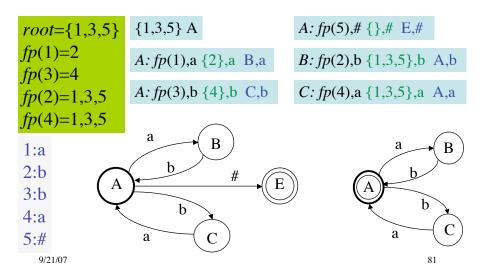
Regexp to DFA: ((ab) | (ba)) *#



Regexp to DFA: ((ab) | (ba))*#

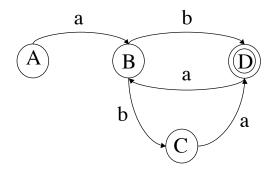


Regexp to DFA: ((ab) | (ba)) *#



Converting an NFA into a Regular Expression

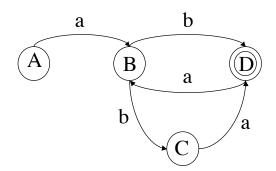
NFA to RegExp



What is the regular expression for this NFA?

9/21/07

NFA to RegExp



• A = a B

- $D = a B \mid \epsilon$
- B = b D | b C
- C = a D

NFA to RegExp

- Three steps in the algorithm (apply in any order):
- 1. Substitution: for B = X pick every $A = B \mid T$ and replace to get $A = X \mid T$
- 2. Factoring: (R S) | (R T) = R (S | T) and (R T) | (S T) = (R | S) T
- 3. Arden's Rule: For any set of strings S and T, the equation $X = (S X) \mid T$ has $X = (S^*) T$ as a solution.

9/21/07

NFA to RegExp

• A = a B

 $B = b D \mid b C$

 $D = a B \mid \epsilon$

C = a D

• Substitute:

A = a B

B = b D | b a D

 $D = a B \mid \epsilon$

• Factor:

A = a B

 $B = (b \mid b \mid a) D$

 $D = a B \mid \epsilon$

• Substitute:

A = a (b | b a) D

 $D = a (b \mid b a) D \mid \varepsilon$

NFA to RegExp

$$A = a (b | b a) D$$
$$D = a (b | b a) D | \epsilon$$

• Factor:

$$A = (a b | a b a) D$$
$$D = (a b | a b a) D | \varepsilon$$

• Arden:

$$A = (a b | a b a) D$$
$$D = (a b | a b a)^* \varepsilon$$

• Remove epsilon:

$$A = (a b | a b a) D$$

$$D = (a b | a b a)^*$$

• Substitute:

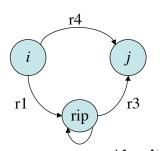
$$A = (a b | a b a)$$
$$(a b | a b a)^*$$

• Simplify:

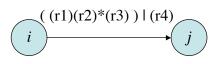
$$A = (a b | a b a) +$$

9/21/07

NFA to Regexp using GNFAs



Generalized NFA: transition function takes state and regexp and returns a set of states

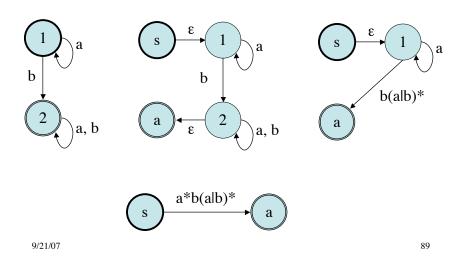


r2 Algorithm:

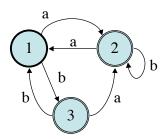
- 1. Add new start & accept state
- 2. For each state s: rip state s creating GNFA, consider each state i and j adjacent to s

3. Return regexp from start to accept state 88

NFA to Regexp using GNFAs



NFA to Regexp using GNFAs



Rip states 1, 2, 3 in that order, and we get: (a(aalb)*ablb)((bala)(aalb)*ablbb)*((bala)(aalb)*le)la(aalb)*

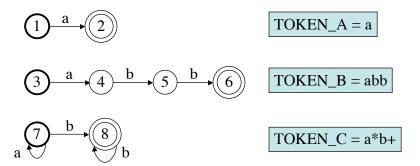
Implementing a Lexical Analyzer

9/21/07

Lexical Analyzer using NFAs

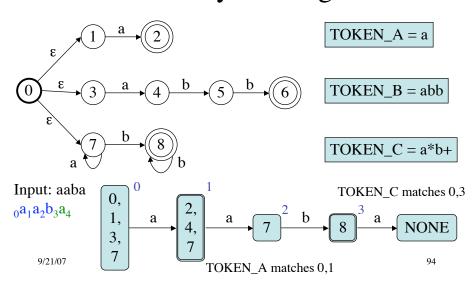
- For each token convert its regexp into a DFA or NFA
- Create a new start state and create a transition on ε to the start state of the automaton for each token
- For input i_1 , i_2 , ..., i_n run NFA simulation which returns some final states (each final state indicates a token)
- If no final state is reached then raise an error
- Pick the final state (token) that has the longest match in the input,
 - e.g. prefer DFA #8 over all others because it read the input until i_{30} and none of the other DFAs reached i_{30}
 - If two DFAs reach the same input character then pick the one that is listed first in the ordered list

Lexical Analysis using NFAs

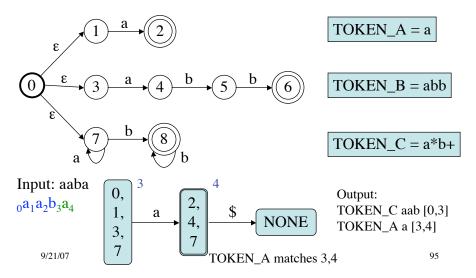


9/21/07 93

Lexical Analysis using NFAs



Lexical Analysis using NFAs



Lexical Analyzer using DFAs

- Each token is defined using a regexp r_i
- Merge all regexps into one big regexp $-R = (r_1 \mid r_2 \mid \dots \mid r_n)$
- Convert *R* to an NFA, then DFA, then minimize
 - remember orig NFA final states with each DFA state

Lexical Analyzer using DFAs

- The DFA recognizer has to find the *longest leftmost match* for a token
 - continue matching and report the last final state reached once DFA simulation cannot continue
 - e.g. longest match: <print> and not <pr>>, <int></pr>
 - e.g. leftmost match: for input string aabaaaaab the regexp a+b will match aab and not aaaaab
- If two patterns match the same token, pick the one that was listed earlier in R
 - e.g. prefer final state (in the original NFA) of r_2 over r_3

9/21/07

Lookahead operator

- Implementing r_1/r_2 : match r_1 when followed by r_2
- e.g. a*b+/a*c accepts a string bac but not abd
- The lexical analyzer matches r₁εr₂ up to position q in the input
- But remembers the position p in the input where r₁ matched but not r₂
- Reset to start state and start from position *p*

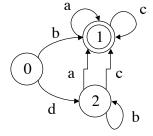
Efficient data-structures for DFAs

9/21/07

Implementing DFAs

- 2D array storing the transition table
- Adjacency list, more space efficient but slower
- Merge two ideas: array structures used for sparse tables like DFA transition tables
 - base & next arrays: Tarjan and Yao, 1979
 - Dragon book (default+base & next+check)

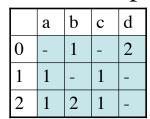
Implementing DFAs



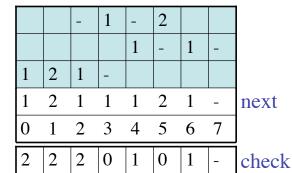
	a	b	c	d
0	-	1	-	2
1	1	-	1	-
2	1	2	1	-

9/21/07

Implementing DFAs



base 0 2 1 4 2 0



nextstate(s, x):

L := base[s] + x

return next[L] if check[L] eq s

Implementing DFAs

		a	b	c	d			-	1	-	2			
	0	-	1	-	2					1	-	1	-	
	1	1	-	1	-		-	2	-	-				
	2	1	2	1	-		-	2	1	1	2	1	-	next
		_					0	1	2	3	4	5	6	
base 0 1 - 2 0 1 0 1 - check 1 3 - nextstate(s, x):														
L := base[s] + x default return next[L] if check[L] eq s else return nextstate(default[s], x)														

Summary

- Token ⇒ Pattern
- Pattern ⇒ Regular Expression
- Regular Expression \Rightarrow NFA
 - Thompson's Rules
- NFA \Rightarrow DFA
 - Subset construction
- DFA ⇒ minimal DFA
 - Minimization

⇒ Lexical Analyzer (multiple patterns)