
1

9/21/07 1

CMPT 379
Compilers

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

9/21/07 2

Lexical Analysis

• Also called scanning, take input program
string and convert into tokens

• Example: T_DOUBLE (“double”)
T_IDENT (“f”)
T_OP (“=“)
T_IDENT (“sqrt”)
T_LPAREN (“(“)
T_OP (“-”)
T_INTCONSTANT (“1”)
T_RPAREN (“)”)
T_SEP (“;”)

double f = sqrt(-1);

2

9/21/07 3

Token Attributes

• Some tokens have attributes
– T_IDENT “sqrt”
– T_INTCONSTANT 1

• Other tokens do not
– T_WHILE

• Token=T_IDENT, Lexeme=“sqrt”, Pattern
• Source code location for error reports

9/21/07 4

Lexical errors

• What if user omits the space in “doublef”?
– No lexical error, single token

T_IDENT(“doublef”) is produced instead of
sequence T_DOUBLE, T_IDENT(“f”)!

• Typically few lexical error types
– E.g., illegal chars, opened string constants or

comments that are not closed

3

9/21/07 5

Ad-hoc Scanners

9/21/07 6

Implementing Lexers: Loop and
switch scanners

• Ad hoc scanners
• Big nested switch/case statements
• Lots of getc()/ungetc() calls

– Buffering; Sentinels for push-backs; streams
• Can be error-prone, use only if

– Your language’s lexical structure is very simple
– The tools do not provide what you need for your token definitions

• Changing or adding a keyword is problematic
• Have a look at an actual implementation of an ad-hoc

scanner

4

9/21/07 7

Implementing Lexers: Loop and
switch scanners

• Another problem: how to show that the
implementation actually captures all tokens
specified by the language definition?

• How can we show correctness
• Key idea: separate the definition of tokens from

the implementation
• Problem: we need to reason about patterns and

how they can be used to define tokens (recognize
strings).

9/21/07 8

Specification of Patterns using
Regular Expressions

5

9/21/07 9

• Symbols: a, b, c
• Alphabet : finite set of symbols Σ = {a, b}
• String: sequence of symbols bab
• Empty string: ε Define: Σε = Σ ∪ {ε}
• Set of all strings: Σ*
• (Formal) Language: a set of strings

{ an bn : n > 0 }

Formal Languages: Recap

cf. The Library of Babel, Jorge Luis Borges

9/21/07 10

Regular Languages

• The set of regular languages: each element
is a regular language

• Each regular language is an example of a
(formal) language, i.e. a set of strings
e.g. { am bn : m, n are +ve integers }

6

9/21/07 11

• Defining the set of all regular languages:
– The empty set and {a} for all a in Σε are regular

languages
– If L1 and L2 and L are regular languages, then:

 are also regular languages
– There are no other regular languages

(concatenation)

(union)
(Kleene closure)

Regular Languages

9/21/07 12

Formal Grammars

• A formal grammar is a concise description of a
formal language

• A formal grammar uses a specialized syntax
• For example, a regular expression is a concise

description of a regular language
(a|b)*abb : is the set of all strings over the alphabet {a, b}

which end in abb
• We will use regular expressions (regexps) in order

to define tokens in our compiler, e.g. lexemes for a
string token can be defined as \" Σ* \"

7

9/21/07 13

Regular Expressions: Definition

• Every symbol of Σ ∪ { ε } is a regular expression
– E.g. if Σ = {a,b} then ‘a’, ‘b’ are regexps

• If r1 and r2 are regular expressions, then the core
operators to combine two regexps are
– Concatenation: r1r2, e.g. ‘ab’ or ‘aba’
– Alternation: r1|r2, e.g. ‘a|b’
– Repetition: r1*, e.g. ‘a*’ or ‘b*’

• No other core operators are defined
– But other operators can be defined using the basic

operators (as in lex regular expressions) e.g. a+ = aa*

9/21/07 14

Lex regular expressions

(a|b)same as r(r)

used for matchingabc/123r1 when followed by an r2r1/r2

a|ban r1 or an r2r1|r2

aban r1 followed by an r2r1r2

(aa|aaa)a{2,3}between m and n occurences of rr{m,n}

(a|ε)a?zero or one rr?

aa*a+one or more strings matching rr+
a*zero or more strings matching rr*

(b|c) where S = {a,b,c}[^a]any one character not in string s[^s]

(a|b|c)[abc]any one of characters in string s[s]

used for matchingabc$end of line$
used for matching^abcbeginning of line^

a.*bany character but newline.

"**"string s literally"s"

*character c literally\c

anon-operator character cc

Using core operatorsExampleMatchesExpression

8

9/21/07 15

Regular Expressions: Definition

• Note that operators apply recursively and these
applications can be ambiguous
– E.g. is aa|bc equal to a(a|b)c or ((aa)|b)c?

• Avoid such cases of ambiguity - provide explicit
arguments for each regexp operator
– For convenience, for examples on this page, let us use

the symbol ‘⋅’ to denote the operator for concatenation
• Remove ambiguity with an explicit regexp tree

– a(a|b)c is written as (⋅(⋅a(|ab))c) or in postfix: aab|⋅c⋅
– ((aa)|b)c is written as (⋅(|(⋅aa)b)c) or in postfix: aa⋅b|c⋅

9/21/07 16

Regular Expressions: Definition
• Remove ambiguity with

an explicit regexp tree
a(a|b)c is written as
(⋅(⋅a(|ab))c)
or in postfix: aab|⋅c⋅

((aa)|b)c is written as
(⋅(|(⋅aa)b)c)
or in postfix: aa⋅b|c⋅

• Does the order of
concatenation matter?

c

|

a b

⋅

a

⋅

⋅

a a

|

b

c

⋅

9

9/21/07 17

• Alphabet { 0, 1 }
• All strings that represent binary numbers

divisible by 4 (but accept 0) ((0|1)*00)|0
• All strings that do not contain “01” as a

substring 1*0*

Regular Expressions: Examples

9/21/07 18

Equivalence of Regexps

• (R|S)|T == R|(S|T) ==
R|S|T

• (RS)T == R(ST)
• (R|S) == (S|R)
• R*R* == (R*)* == R*

== RR*| ε
• R** == R*
• (R|S)T = RT|ST

• R(S|T) == RS | RT
• (R|S)* == (R*S*)* ==

(R*S)*R* ==
(R*|S*)*

• RR* == R*R
• (RS)*R == R(SR)*
• R = R|R = Rε

10

9/21/07 19

Equivalence of Regexps

• 0(10)*1|(01)*
• (01)(01)*|(01)*
• (01)(01)*|(01)(01)*|ε
• (01)(01)*|ε
• (01)*

• (RS)*R == R(SR)*
• RS == (RS)
• R* == RR*|ε
• R == R|R
• R* == RR*| ε

9/21/07 20

Regular Expressions

• To describe all lexemes that form a token as
a pattern
– (0|1|2|3|4|5|6|7|8|9)+

• Need decision procedure: to which token
does a given sequence of characters belong
(if any)?
– Finite State Automata
– Can be deterministic (DFA) or non-

deterministic (NFA)

11

9/21/07 21

Implementing Regular Expressions
with Finite-state Automata

9/21/07 22

Deterministic Finite State Automata: DFA

• A set of states S
– One start state q0, zero or more final states F

• An alphabet ∑ of input symbols
• A transition function:

– δ: S x Σ ⇒ S
• Example: δ(1, a) = 2

12

9/21/07 23

DFA: Example

• What regular expression does this
automaton accept?

A B C0 0

1

1 01

Answer: (0|1)*00A: start state
C: final state

9/21/07 24

DFA simulation

A B C0 0

1

1 01

Input string: 00100 • Start state: A
1. δ(A,0) = B
2. δ(B,0) = C
3. δ(C,1) = A
4. δ(A,0) = B
5. δ(B,0) = C

• no more input and C
is final state: accept

DFA simulation takes at
most n steps for input of
length n to return accept
or reject

13

9/21/07 25

FA: Pascal Example
- 1

2

3

4

5

6

8 9

A

B C

D

E

F

G

H

letter letter| digit

digit
digit

{

*

+,-

: =

< >

=

> =

=
.

;

(

)

}

Any but }

}

7

9/21/07 26

Building a Lexical Analyzer

• Token ⇒ Pattern
• Pattern ⇒ Regular Expression
• Regular Expression ⇒ NFA
• NFA ⇒ DFA
• DFAs or NFAs for all the tokens ⇒ Lexical

Analyzer
• Two basic rules to deal with multiple matching:

greedy match + regexp ordering

Note that greedy means longest leftmost match

14

9/21/07 27

%{
#include <stdio.h>
#define NUMBER 256
#define IDENTIFIER 257
%}

/* regexp definitions */
num [0-9]+

%%

{num} { return NUMBER; }
[a-zA-Z0-9]+ { return IDENTIFIER; }

%%

int
main () {
 int token;
 while ((token = yylex())) {
 switch (token) {
 case NUMBER: printf("NUMBER: %s, LENGTH:%d\n", yytext, yyleng); break;
 case IDENTIFIER: printf("IDENTIFIER: %s, LENGTH:%d\n", yytext, yyleng); break;
 default: printf("Error: %s not recognized\n", yytext);
 }
 }
}

Lexical Analysis using Lex

9/21/07 28

NFAs

• NFA: like a DFA, except
– A transition can lead to more than one state,

that is, δ: S x Σ ⇒ 2S

– One state is chosen non-deterministically
– Transitions can be labeled with ε, meaning

states can be reached without reading any input,
that is,

δ: S x Σ ∪ { ε } ⇒ 2S

15

9/21/07 29

Thompson’s construction

c

|

a b

⋅

a

⋅

n2 n3

n1 n4

n5 n6

n7
Input = aab|⋅c⋅
• read a, push n1 = nfa(a)
• read a, push n2 = nfa(a)
• read b, push n3 = nfa(b)
• read |, n3=pop(); n2=pop(); push
n4 = nfa(or, n2, n3)
• read ⋅, n4 = pop(); n1 = pop(); push
n5 = nfa(cat, n1, n4)
• read c, push n6 = nfa(c)
• read ⋅, n6 = pop(); n5 = pop(); push
n7 = nfa(cat, n5, n6)

Build NFA recursively
from regexp tree

Converts regexps to NFA

Build NFA with left-to-right parse
of postfix string using a stack

9/21/07 30

Thompson’s construction

• Converts regexps to NFA
• Six simple rules

– Empty language
– Symbols
– Empty String
– Alternation (r1 or r2)
– Concatenation (r1 followed by r2)
– Repetition (r1*)

Used by Ken
Thompson for
pattern-based
search in text editor
QED (1968)

16

9/21/07 31

Thompson Rule 0

• For the empty language φ (optionally include a
sinkhole state)

Σ
Σ

9/21/07 32

Thompson Rule 1

• For each symbol x of the alphabet, there is a
NFA that accepts it (include a sinkhole state)

x

Σ\x Σ

Σ

17

9/21/07 33

Thompson Rule 2

• There is an NFA that accepts only ε

Σ
Σ

9/21/07 34

Thompson Rule 3

• Given two NFAs for r1, r2, there is a NFA
that accepts r1|r2

r1

r2

18

9/21/07 35

Thompson Rule 3

• Given two NFAs for r1, r2, there is a NFA
that accepts r1|r2

ε r1
ε

ε r2

ε

9/21/07 36

Thompson Rule 4

• Given two NFAs for r1, r2, there is a NFA
that accepts r1r2

r1 r2

19

9/21/07 37

Thompson Rule 4

• Given two NFAs for r1, r2, there is a NFA
that accepts r1r2

ε
r1

ε
r2

ε

9/21/07 38

Thompson Rule 5

• Given a NFA for r1, there is an NFA that
accepts r1*

r1

20

9/21/07 39

Thompson Rule 5

• Given a NFA for r1, there is an NFA that
accepts r1*

ε
r1

ε

ε

ε

9/21/07 40

Example

• Set of all binary strings that are divisible
by four (include 0 in this set)

• Defined by the regexp: ((0|1)*00) | 0
• Apply Thompson’s Rules to create an

NFA

21

9/21/07 41

• 0

• 1

Basic Blocks 0 and 1
0

1

(this version does not report errors: no sinkholes)

9/21/07 42

0

1

ε

ε

ε

ε

0|1

22

9/21/07 43

0

1

ε

ε

ε

ε

ε

ε

ε

ε

(0|1)*

9/21/07 44

0

1

ε

ε

ε

ε

ε

ε

ε

ε

00

(0|1)*00

23

9/21/07 45

ε

0

1

ε

ε

ε

ε

εε

ε

00

0 ε

ε

ε

ε

((0|1)*00)|0

9/21/07 46

Simulating NFAs

• Similar to DFA simulation
• But have to deal with ε transitions and

multiple transitions on the same input
• Instead of one state, we have to consider

sets of states
• Simulating NFAs is a problem that is

closely linked to converting a given NFA to
a DFA

24

9/21/07 47

NFA to DFA Conversion

• Subset construction
• Idea: subsets of set of all NFA states are

equivalent and become one DFA state
• Algorithm simulates movement through

NFA
• Key problem: how to treat ε-transitions?

9/21/07 48

ε-Closure

• Start state: q0

• ε-closure(S): S is a set of states

25

9/21/07 49

ε-Closure (T: set of states)

 push all states in T onto stack
initialize ε-closure(T) to T
while stack is not empty do begin

pop t off stack
for each state u with u ∈ move(t, ε) do
 if u ∉ ε-closure(T) do begin
 add u to ε-closure(T)
 push u onto stack
 end

end

9/21/07 50

NFA Simulation

• After computing the ε-closure move, we get
a set of states

• On some input extend all these states to get
a new set of states

26

9/21/07 51

NFA Simulation

• Start state: q0

• Input: c1, …, ck

9/21/07 52

Conversion from NFA to DFA

• Conversion method closely follows the
NFA simulation algorithm

• Instead of simulating, we can collect those
NFA states that behave identically on the
same input

• Group this set of states to form one state in
the DFA

27

9/21/07 53

Example: subset construction

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
00

12 13
0

1

14
ε

ε

ε

ε

ε

9/21/07 54

ε-closure(q0)

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
00

12 13
0

1

14
ε

ε

ε

ε

ε

28

9/21/07 55

move(ε-closure(q0), 0)

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
00

12 13
0

1

14
ε

ε

ε

ε

ε

9/21/07 56

ε-closure(move(ε-closure(q0), 0))

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
00

12 13
0

1

14
ε

ε

ε

ε

ε

29

9/21/07 57

move(ε-closure(q0), 1)

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
00

12 13
0

1

14
ε

ε

ε

ε

ε

9/21/07 58

ε-closure(move(ε-closure(q0), 1))

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
00

12 13
0

1

14
ε

ε

ε

ε

ε

30

9/21/07 59

Subset Construction

 add ε-closure(q0) to Dstates unmarked
while ∃ unmarked T ∈ Dstates do begin

mark T;
for each symbol c do begin

 U := ε-closure(move(T, c));
 if U ∉ Dstates then
 add U to Dstates unmarked
 Dtrans[d, c] := U;
end

end

9/21/07 60

Subset Construction
states[0] = ε-closure({q0})
p = j = 0
while j ≤ p do begin

for each symbol c do begin
e = DFAedge(states[j], c)
if e = states[i] for some i ≤ p
then Dtrans[j, c] = i
else p = p+1

states[p] = e
Dtrans[j, c] = p

j = j + 1
end

end

31

9/21/07 61

DFA (partial)

[1, 2,
3, 4, 6, 9,

12]

[3, 4, 5,
6, 8, 9, 10,

13, 14]

[3, 4, 6,
7, 8, 9]

1

0

9/21/07 62

DFA for ((0|1)*00)|0

[1, 2,
3, 4, 6, 9,

12]

[3, 4, 5,
6, 8, 9, 10,

13, 14]

[3, 4, 6,
7, 8, 9]

0

1

1

[3, 4, 5,
6, 8, 9, 10,

11, 14]

0

[3, 4,
5, 6, 8,
9, 10]

0 0

11

1

0

32

9/21/07 63

Minimization of DFAs

[1, 2,
3, 4, 6, 9,

12]

[3, 4, 6,
7, 8, 9]

0

1

[3, 4, 5,
6, 8, 9, 10,

11, 14]

[3, 4,
5, 6, 8,
9, 10]

0 0

11

1

0

9/21/07 64

Minimization of DFAs

[3, 4, 6,
7, 8, 9]

[3, 4, 5,
6, 8, 9, 10,

11, 14]

[3, 4,
5, 6, 8,
9, 10]

0 0

11

1

0
01

1 0

1

0

33

9/21/07 65

Minimization of DFAs

• Algorithm for minimizing the number of
states in a DFA

• Step 1: partition states into 2 groups:
accepting and non-accepting

A

B

D

0

1

1
C

0

E
0 0

11

1
0

9/21/07 66

Minimization of DFAs

• Step 2: in each group, find a sub-group of states
having property P

• P: The states have transitions on each symbol (in
the alphabet) to the same group

A

B

D

0

1

1
C

0

E
0 0

11

1
0A, 0: blue

A, 1: yellow
E, 0: blue
E, 1: yellow
D, 0: yellow
D, 1: yellow

B, 0: blue
B, 1: yellow
C, 0: blue
C, 1: yellow

34

9/21/07 67

Minimization of DFAs

• Step 3: if a sub-group does not obey P split up the
group into a separate group

• Go back to step 2. If no further sub-groups emerge
then continue to step 4

A

B

D

0

1

1
C

0

E
0 0

11

1
0A, 0: blue

A, 1: green
E, 0: blue
E, 1: green
D, 0: yellow
D, 1: green

B, 0: blue
B, 1: green
C, 0: blue
C, 1: green

9/21/07 68

Minimization of DFAs

• Step 4: each group becomes a state in the
minimized DFA

• Transitions to individual states are mapped to a
single state representing the group of states

01

1 0

1

0
A

B

D

0

1

1
C

0

E
0 0

11

1
0

35

9/21/07 69

NFA to DFA

• Subset construction converts NFA to DFA
• Complexity:

– For FSAs, we measure complexity in terms of initial
cost (creating the automaton) and per string cost

– Let r be the length of the regexp and n be the length of
the input string

– NFA, Initial cost: O(r); Per string: O(rn)
– DFA, Initial cost: O(r2s); Per string: O(n)
– DFA, common case, s = r, but worst case s = 2r

9/21/07 70

NFA to DFA

• A regexp of size r can become a 2r state DFA, an
exponential increase in complexity
– Try the subset construction on NFA built for the regexp

A*aAn-1 where A is the regexp (a|b)
• Note that the NFA for regexp of size r will have r

states
• Minimization can reduce the number of states
• But minimization requires determinization

36

9/21/07 71

NFA to DFA

9/21/07 72

NFA to DFA

37

9/21/07 73

NFA to DFA

25 = 32 states

9/21/07 74

NFA vs. DFA in the wild

mawk, MKS utilities, GNU Emacs (when
requested)

POSIX NFA

GNU awk, GNU grep/egrep, TclHybrid
NFA/DFA

GNU Emacs, Java, grep (most versions), less,
more, .NET languages, PCRE library, Perl, PHP
(pcre routines), Python, Ruby, sed (most
versions), vi

Traditional NFA

awk (most versions), egrep (most versions), flex,
lex, MySQL, Procmail

DFA

ProgramsEngine Type

38

9/21/07 75

Extensions to Regular Expressions

• Most modern regexp implementations provide extensions:
– matching groups; \1 refers to the string matched by the first

grouping (), \2 to the second match, etc.,
• e.g. ([a-z]+)\1 which matches abab where \1=ab

– match and replace operations,
• e.g. s/([a-z]+)/\1\1/g which changes ab into abab where \1=ab

• These extensions are no longer “regular”. In fact, extended
regexp matching is NP-hard
– Extended regular expressions (including POSIX and Perl) are

called REGEX to distinguish from regexp (which are regular)
• In order to capture these difficult cases, the algorithms

used even for simple regexp matching run in time
exponential in the length of the input

9/21/07 76

Converting Regular Expressions
directly into DFAs

This algorithm was first used
by Al Aho in egrep, and
used in awk, lex, flex

39

9/21/07 77

Regexp to DFA: ((ab)|(ba))*#

•

*

|

a

1

b

2

5
#

•

•

3

b

4

a
(1)

{1}
(2)
{2}

(3)
{3}

(4)
{4}

(5)
{5}

(2)
{1}

(4)
{3}

(2,4)
{1,3}

(2,4)
{1,3}

(5)
{1,3,5}

ε-node

firstpos = {}
lastpos = ()

9/21/07 78

Regexp to DFA: followpos

• followpos(p) tells us which positions can follow a
position p

• There are two rules that use the firstpos {} and
lastpos () information

•

c1 c2(i,j) {k,l}

followpos(i)+=k,l
followpos(j)+=k,l

(i,j){k,l}

followpos(i)+=k,l
followpos(j)+=k,l

*

…

40

9/21/07 79

Regexp to DFA: ((ab)|(ba))*#

•

*

|

a

1

b

2

5
#

•

•

3

b

4

a
(1)

{1}
(2)
{2}

(3)
{3}

(4)
{4}

(5)
{5}

(2,4)
{1,3}

(5)
{1,3,5}

root={1,3,5}
fp(1)=2
fp(3)=4
fp(2)=1,3,5
fp(4)=1,3,5

fp(1)+=2 fp(3)+=4

fp(2)+=1,3
fp(4)+=1,3

fp(2)+=5
fp(4)+=5

9/21/07 80

Regexp to DFA: ((ab)|(ba))*#
root={1,3,5}
fp(1)=2
fp(3)=4
fp(2)=1,3,5
fp(4)=1,3,5

0

1 2

3 4

5

a

b

a

b

a

b

b a

#

#

1:a
2:b
3:b
4:a
5:#

#

41

9/21/07 81

Regexp to DFA: ((ab)|(ba))*#
root={1,3,5}
fp(1)=2
fp(3)=4
fp(2)=1,3,5
fp(4)=1,3,5
1:a
2:b
3:b
4:a
5:#

{1,3,5} A

A: fp(1),a {2},a B,a

A: fp(3),b {4},b C,b

B: fp(2),b {1,3,5},b A,b

C: fp(4),a {1,3,5},a A,a

A

A: fp(5),# {},# E,#

b

C

b
a

Ba

E#
A

b

C
b

a

Ba

9/21/07 82

Converting an NFA into a
Regular Expression

42

9/21/07 83

NFA to RegExp

a b

a

b

A B

C

D

a

What is the regular expression for this NFA?

9/21/07 84

NFA to RegExp

• A = a B
• B = b D | b C

a b

a

b

A B

C

D

a

• D = a B | ε
• C = a D

43

9/21/07 85

NFA to RegExp

• Three steps in the algorithm (apply in any
order):

1. Substitution: for B = X pick every A = B | T and
replace to get A = X | T

2. Factoring: (R S) | (R T) = R (S | T) and (R T) |
(S T) = (R | S) T

3. Arden's Rule: For any set of strings S and T, the
equation X = (S X) | T has X = (S*) T as a
solution.

9/21/07 86

NFA to RegExp

• A = a B
 B = b D | b C
 D = a B | ε
 C = a D
• Substitute:
 A = a B
 B = b D | b a D
 D = a B | ε

• Factor:
 A = a B
 B = (b | b a) D
 D = a B | ε
• Substitute:
 A = a (b | b a) D
 D = a (b | b a) D | ε

44

9/21/07 87

NFA to RegExp

 A = a (b | b a) D
 D = a (b | b a) D | ε
• Factor:
 A = (a b | a b a) D
 D = (a b | a b a) D | ε
• Arden:
 A = (a b | a b a) D
 D = (a b | a b a)* ε

• Remove epsilon:
 A = (a b | a b a) D
 D = (a b | a b a)*
• Substitute:
 A = (a b | a b a)
 (a b | a b a)*
• Simplify:
 A = (a b | a b a)+

9/21/07 88

NFA to Regexp using GNFAs

i j

rip

r4

r1 r3

r2

i j
((r1)(r2)*(r3)) | (r4)

Generalized NFA: transition
function takes state and regexp
and returns a set of states

Algorithm:
1. Add new start & accept state
2. For each state s: rip state s creating GNFA,

consider each state i and j adjacent to s
3. Return regexp from start to accept state

45

9/21/07 89

NFA to Regexp using GNFAs

1

2

a

a, b

b

1

2

a

a, b

b

s

a

ε

ε

1 a

b(a|b)*

s

a

ε

s a
a*b(a|b)*

9/21/07 90

NFA to Regexp using GNFAs

Rip states 1, 2, 3 in that order, and we get:
(a(aa|b)*ab|b)((ba|a)(aa|b)*ab|bb)*((ba|a)(aa|b)*|ε)|a(aa|b)*

1

3
b

2

b

a

a

b

a

46

9/21/07 91

Implementing a Lexical Analyzer

9/21/07 92

Lexical Analyzer using NFAs
• For each token convert its regexp into a DFA or NFA
• Create a new start state and create a transition on ε to the

start state of the automaton for each token
• For input i1, i2, …, in run NFA simulation which returns

some final states (each final state indicates a token)
• If no final state is reached then raise an error
• Pick the final state (token) that has the longest match in the

input,
– e.g. prefer DFA #8 over all others because it read the input until i30

and none of the other DFAs reached i30
– If two DFAs reach the same input character then pick the one that

is listed first in the ordered list

47

9/21/07 93

Lexical Analysis using NFAs
1 2a

3 4 5 6a b b

87 b
a b

TOKEN_A = a

TOKEN_B = abb

TOKEN_C = a*b+

9/21/07 94

Lexical Analysis using NFAs
1 2a

3 4 5 6a b b

87 b
a b

TOKEN_A = a

TOKEN_B = abb

TOKEN_C = a*b+

0

ε

ε

ε

Input: aaba
0a1a2b3a4

0,
1,
3,
7

2,
4,
7

7 8a a b NONEa

TOKEN_A matches 0,1

TOKEN_C matches 0,30 1

2 3

48

9/21/07 95

Lexical Analysis using NFAs
1 2a

3 4 5 6a b b

87 b
a b

TOKEN_A = a

TOKEN_B = abb

TOKEN_C = a*b+

0

ε

ε

ε

Input: aaba
0a1a2b3a4

0,
1,
3,
7

2,
4,
7

a $ NONE

3 4

TOKEN_A matches 3,4

Output:
TOKEN_C aab [0,3]
TOKEN_A a [3,4]

9/21/07 96

Lexical Analyzer using DFAs

• Each token is defined using a regexp ri

• Merge all regexps into one big regexp
– R = (r1 | r2 | … | rn)

• Convert R to an NFA, then DFA, then
minimize
– remember orig NFA final states with each DFA

state

49

9/21/07 97

Lexical Analyzer using DFAs

• The DFA recognizer has to find the longest
leftmost match for a token
– continue matching and report the last final state reached

once DFA simulation cannot continue
– e.g. longest match: <print> and not <pr>, <int>
– e.g. leftmost match: for input string aabaaaaab the

regexp a+b will match aab and not aaaaab
• If two patterns match the same token, pick the one

that was listed earlier in R
– e.g. prefer final state (in the original NFA) of r2 over r3

9/21/07 98

Lookahead operator

• Implementing r1/r2 : match r1 when followed by r2

• e.g. a*b+/a*c accepts a string bac but not abd
• The lexical analyzer matches r1εr2 up to position q

in the input
• But remembers the position p in the input where r1

matched but not r2

• Reset to start state and start from position p

50

9/21/07 99

Efficient data-structures for DFAs

9/21/07 100

Implementing DFAs

• 2D array storing the transition table
• Adjacency list, more space efficient but

slower
• Merge two ideas: array structures used for

sparse tables like DFA transition tables
– base & next arrays: Tarjan and Yao, 1979
– Dragon book (default+base & next+check)

51

9/21/07 101

Implementing DFAs

0

2

1

bd

b

a c

a c

-1212
-1-11
2-1-0
dcba

9/21/07 102

Implementing DFAs

-1212
-1-11
2-1-0
dcba

-1211121
-121

76543210

-1-1
2-1-

02
41
20base

next

-1010222 check
nextstate(s, x) :
 L := base[s] + x
 return next[L] if check[L] eq s

52

9/21/07 103

Implementing DFAs

-1212
-1-11
2-1-0
dcba

-12112-
--2-

6543210

-1-1
2-1-

02
31
10base

next

-10102- check
nextstate(s, x) :
 L := base[s] + x
 return next[L] if check[L] eq s
 else return nextstate(default[s], x)

1
-
-

default

9/21/07 104

Summary

• Token ⇒ Pattern
• Pattern ⇒ Regular Expression
• Regular Expression ⇒ NFA

– Thompson’s Rules
• NFA ⇒ DFA

– Subset construction
• DFA ⇒ minimal DFA

– Minimization
⇒ Lexical Analyzer (multiple patterns)

