
Homework #5: CMPT-379
Distributed on Nov 27; due on Dec 4

Anoop Sarkar – anoop@cs.sfu.ca

Only submit answers for questions marked with †. Provide a makefile such that make compiles all your
programs, and make test runs each program, and supplies the necessary input files.

(1) † Decaf Compiler
Submit your compiler as a self-contained package that can be used to compile Decaf programs into MIPS
assembly and subsequently execute them using the spim simulator for the MIPS processor. Make sure
that the binary of your compiler can be created by running make.
Create a script called decafcc (or decafcc.sh) that is used to run the entire compiler chain from lexical
analysis to code generation to running the MIPS simulator (assume spim is in the PATH).
In your submission, provide in a subdirectory called positives any number of Decaf programs that
work with your compiler (the programs should be valid Decaf based on the language definition and
execute using spim) along with the legitimate output for that Decaf program, e.g. for a program called
exprTest.decaf also include the legitimate output in a file called exprTest.decaf.output. Also
provide a subdirectory called negatives with Decaf programs that should exit with an error. Your
makefile should include an entry such that when make testall is run, it should run your Decaf
compiler on all the Decaf programs in the positives and negatives directory.
Please check that you do not have any spelling errors in the names of the directories (to enable automatic
testing). Also, for non-trivial Decaf programs, provide a readme file explaining the code and the desired
output or why it should not produce any output (the syntax or semantic error involved). For
exprTest.decaf provide a readme file called exprTest.decaf-readme.txt.
Note that in your makefile, to ignore errors in a command line that executes a program, write a ‘-’ at the
beginning of the line’s text (after the initial tab). The ‘-’ is discarded before the command is passed to the
shell for execution. For example,

test:

-sh decafcc.sh negatives/exprTest.decaf > negatives/exprTest.decaf.output

You could try to break the compilers written by your peers, but only if your compiler can survive those
Decaf programs itself.
The grade for this homework will be determined by reading the source code of your compiler
implementation as well as the performance on the global set of positive and negative Decaf programs.

1


