
Homework #4: CMPT-379
Distributed on Nov 13; due on Nov 27

Anoop Sarkar – anoop@cs.sfu.ca

Only submit answers for questions marked with †. Provide a makefile such that make compiles all your
programs, and make test runs each program, and supplies the necessary input files.

(1) Code generation for global variables and methods
The following fragment of Decaf extends Q. 5 of Homework #3 to include the definition of global
variables, method definitions and method calls. Note that global array variables are the only kind of arrays
allowed in Decaf. Extend your previous code generation implementation to deal with this fragment of
Decaf syntax.

〈program〉 → class 〈class-name〉 ‘{’ 〈field-decl〉 ∗ 〈method-decl〉 ∗ ‘}’
〈class-name〉 → id
〈field-decl〉 → 〈type〉

{
id |

{
id ‘[’ intConstant ‘]’

} }
+, ‘;’

| 〈type〉 id ‘=’ 〈constant〉 ‘;’

〈method-decl〉 →
{
〈type〉 | void

}
id ‘(’

[{
〈type〉 id

}
+,
]

‘)’ 〈block〉

〈block〉 → ‘{’ 〈var-decl〉 ∗ 〈statement〉 ∗ ‘}’
〈var-decl〉 → 〈type〉

{
id
}
+, ‘;’

〈type〉 → int | bool

〈statement〉 → 〈assign〉 ‘;’ | 〈method-call〉 ‘;’ | 〈block〉 | return
[
〈expr〉

]
‘;’

〈assign〉 → 〈lvalue〉 ‘=’ 〈expr〉

〈method-call〉 → 〈method-name〉 ‘(’
[{
〈expr〉

}
+,
]

‘)’

| callout ‘(’ stringConstant
[{

‘,’
{
〈callout-arg〉

}
+,
}]

‘)’
〈method-name〉 → id
〈callout-arg〉 → 〈expr〉 | stringConstant
〈lvalue〉 → id | id ‘[’ 〈expr〉 ‘]’
〈expr〉 → 〈lvalue〉 | 〈method-call〉 | 〈constant〉

| 〈expr〉 〈bin-op〉 〈expr〉

| ‘-’ 〈expr〉 | ‘!’ 〈expr〉 | ‘(’ 〈expr〉 ‘)’
〈bin-op〉 → 〈arith-op〉 | 〈rel-op〉 | 〈eq-op〉 | 〈cond-op〉

〈arith-op〉 → ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘<<’ | ‘>>’ | ‘%’ | rot
〈rel-op〉 → ‘<’ | ‘>’ | ‘<=’ | ‘>=’
〈eq-op〉 → ‘==’ | ‘!=’

〈cond-op〉 → ‘&&’ | ‘||’
〈constant〉 → intConstant | charConstant | 〈bool-constant〉

〈bool-constant〉 → true | false

Your program should implement register spilling either to the stack or the heap. Your program should
allow method definitions and method calls with an arbitrary number of parameters by generating the
appropriate stack frame for method calls, especially recursive method calls.
Save the MIPS assembly program to file filename.mips and run the simulator spim as follows:

spim -file <filename.mips>

1

(2) Code generation for control-flow & loops
The following fragment of Decaf syntax should be added to the grammar in Q. 1. It adds control flow (if
statements) and loops (while and for statements) to Decaf.

〈statement〉 → if ‘(’ 〈expr〉 ‘)’ 〈block〉
[
else 〈block〉

]
| while ‘(’ 〈expr〉 ‘)’ 〈block〉

| for ‘(’
{
〈assign〉

}
+, ‘;’ 〈expr〉 ‘;’

{
〈assign〉

}
+, ‘)’ 〈block〉

| break ‘;’
| continue ‘;’

Your program must implement short-circuit evaluation for the if statement.
As before, save the MIPS assembly program to file filename.mips and run the simulator spim as
follows:

spim -file <filename.mips>

(3) Semantic checks
Perform at least the following semantic checks for any syntactically valid input Decaf program:

a. A method called main has to exist in the Decaf program.

b. Find all cases where there is a type mismatch between the definition of the type of a variable and a
value assigned to that variable. e.g. bool x; x = 10; is an example of a type mismatch.

c. Find all cases where an expression is well-formed, where binary and unary operators are
distinguished from relational and equality operators. e.g. true + false is an example of a
mismatch but true != true is not a mismatch.

d. Check that all variables are defined in the proper scope before they are used as an lvalue or rvalue in a
Decaf program (see below for hints on how to do this).

e. Check that the return statement in a method matches the return type in the method definition. e.g.
bool foo() { return(10); } is an example of a mismatch.

The implementation of mutually recursive methods is optional in this homework. You can assume that
each method is defined before it is called in all input Decaf programs.
Raise a semantic error if the input Decaf program does not pass any of the above semantic checks.
Your program should take a syntactically valid Decaf program as input and perform all the semantic
checks listed above. You can optionally include any other semantic checks that seem reasonable based on
your analysis of the language. Provide a readme file with a description of any additional semantic checks.

(4) † The Decaf compiler
Combine all the Decaf fragments you have implemented so far (Q. 5 from Homework #3 and Q. 1 and
Q. 2 from this homework). Create a single yacc/lex program that accepts any syntactically valid Decaf
programs and produces MIPS R2000 assembly language output. Your program should also perform the
semantic checks defined in Q. 3 above.
Submit your compiler as a self-contained package that can be used to compile Decaf programs into MIPS
assembly and subsequently execute it using the spim simulator for the MIPS processor. Make sure that
your compiler can be compiled by running make. Create a shell script called decafcc (or decafcc.sh)
that accepts a Decaf program as input and runs the MIPS simulator on the code generation output of your
compiler (assume spim is in the PATH).

2

