Homework #2: CMPT-379
Distributed on Oct 2; due on Oct 16
Anoop Sarkar — anoop@cs.sfu.ca

Reading for this homework includes Chp 4 of the Dragon book. If needed, refer to:
http://tldp.org/HOWTO/Lex-YACC-HOWTO.html

Only submit answers for questions marked with . Provide a makefile such that make compiles all your
programs, and make test runs each program, and supplies the necessary input files.

(1) The following program is yacc code for a very simple (and incomplete) expression interpreter.

%{

#include <stdio.h>

%}

%token NAME NUMBER

%%

statement: NAME ’=’ expression { printf("%c = %d\n", $1, $3); }
| expression { printf("%d\n", $1); }

expression: expression '+’ NUMBER { $$ = $1 + $3; }
| expression '-’ NUMBER { $$ = $1 - $3; }
| NUMBER { $$ = $1; }

%%

The %{ ... %} section contains arbitrary C/C++ code and the %token definitions is a list of tokens
provided by the lexical analyzer. bison can be used to convert this parser definition into a parser
implementation by using the following command:

bison -osimple-expr.tab.c -d simple-expr.y

The -d option produces a header file called simple-expr.tab.h to convey information about the tokens
to the lexical analyzer. Examine the contents of this file. The lexical analyzer can be defined in lex code
as follows:

%1

#include "simple-expr.tab.h"

#include <stdlib.h>

extern int yylval;

%}

%%

[0-97+ { yylval = atoi(yytext); return NUMBER; }
[a-z] { yylval = yytext[0]; return NAME; }

[\t\n] ;
. return yytext[0];

%%

The lex file can be compiled to a C program using flex:

flex -oexpr-with-vars.lex.c expr-with-vars.lex

The final interpreter binary is created by compiling the output from flex and bison with a C/C++ compiler:

gcc -0 ./simple-expr simple-expr.tab.c simple-expr.lex.c -ly -1f1
echo "a=2+3+45" | ./simple-expr

2)

Convert the above yacc and lex code so that it can handle multiple expressions, exactly one per line. For
example, it should print out a value for each line in the following input:

10
5+ 10 -5
5

3+5

NN T
1

+
+

You will need a recursive rule in order to handle multiple lines of input. Try different ways of writing this
recursive rule.

The yacc and lex code in Q. (1) does not yet handle assignments to variables. In order to implement this,
we need two different kinds of values to be returned from the lexical analyzer: one for numbers, and
another for variable names. The following fragment of lex code now returns two different types of values
to yacc: for numbers it returns yylval.rvalue and for variable names it returns yylval.lvalue.

... /* removed code common with previous lex code */
%%
/* convert NUMBER token value to integer */
[0-9]+ { yylval.rvalue = atoi(yytext); return NUMBER; }

/* convert NAME token into index */
[a-z] { yylval.lvalue = yytext[0] - ’a’; return NAME; }

... /* removed code common with previous lex code */
%%

The two types of return value, rvalue and 1value are defined in the yacc code using the %union
declaration, as shown in the fragment below:

%{
int symtbl[26];
%}

%union {
int rvalue; /* value of evaluated expression */
int lvalue; /* index into symtbl for variable name */

¥

%token <rvalue> NUMBER
%token <lvalue> NAME

%type <rvalue> expression

%%
statement: NAME ’'=’ expression { symtbl[$1] = $3; }
| expression { printf("%d\n", $1); }

expression: expression '+’ NUMBER { $$ = $1 + $3; }
| expression ’'-’ NUMBER { $$ = $1 - $3; }
| NUMBER { $$ = $1; }

%%

3)

“4)

&)

The %union declaration can include complex datatypes. The yacc code defines a type not just for the
tokens, but also for nonterminals, which is specified in the %type definition above. This allows yacc to
check that the type of the non-terminal expression is rvalue, an integer type.

Use the above code fragments, and add the necessary lex and yacc code in order to handle the following
input and output:

Input: Output:

16

Extend your expression interpreter to include constants of type double, and variables that can hold either
integer or double types. Finally, add the functions: exp, sqrt, 1log so that you can interpret the input:

2.0
= exp(a)

T T o

T Write a Decaf program that implements the quicksort algorithm to sort a list. Your program should
print the sorted list by iteratively calling the print_int library function. Submit the program as the file
quicksort.decaf

Write down a context-free grammar for the structure of Decaf programs based on the reference grammar
in the Decaf language definition (make sure that the non-terminal and terminal symbols used in the CFG
correspond as much as possible to the symbols used in the reference grammar). Submit a file called
decafGrammar.txt which contains the CFG in the following text format: For the CFG:

(start) — A (start) B | € the text format you should use is:

start A start B
start

Follow the convention that the non-terminals in this text format are written in the same format as
identifiers in Decaf but are in lowercase (e.g. start, and for hyphenated non-terminals like
method-name replace the hyphen with an underscore, e.g. method name) and write the terminal symbols
in the same format as identifiers but entirely in uppercase (e.g. A).

You should verify the correctness of your CFG either by examining it closely or you can verify aspects of
the CFG by writing some simple code for checking whether non-terminals are used in the right-hand side
of rules but not defined on the left-hand side anywhere else in the CFG, whether the terminal symbols are
valid tokens, etc.

1 Write down a yacc parser for the following context-free grammar:

e — ePLUSt

e — t

t — tTIMESf

t - f

f — LPAREN e RPAREN
f - ID

The tokens PLUS, TIMES, LPAREN, RPAREN are defined to be +, *, (,) respectively. And the token ID
is defined to be an identifier as in the Decaf specification. These tokens should be defined using a lexical
analyzer produced using lex.

For the input stringx + y * (z) the output produced by the yacc parser should be the parse tree for
the input string produced in the format shown in the left column below. Note the backslash preceding
each instance of a literal parenthesis to avoid confusion with the parentheses used to denote the tree
structure. Note that you may need to augment the grammar to produce the right output. Do not bother to
indent your tree, just print out your parse tree in a single line of output text. A graphical view, using the
Tcl/Tk program viewtree, is shown in the right column below:

(e (e (t (£ (ID X))

(PLUS +) &
(t (t (£ (ID VN
(TIMES *) & pLOs ¢

(f (LPAREN \QO

(RPAREN \))))) + t%lis\l

(e (t (£ (ID 2)))

(6) Grammar Conversion: Consider the following fragment of a Decaf program:

class foo {
int bar

Note that we could continue the above fragment with a field declaration, or a method declaration. This
issue will not be a problem for a LR parser if the CFG for Decaf can be written as an LR grammar.
Convert the following CFG, which represents a small fragment of Decaf syntax, into an LR grammar. As
a result, the LR parsing table for such a grammar will have no shift/reduce or reduce/reduce conflicts.

program — CLASS ID LCB field. decl_list method.decl_1list RCB
field_decl_list — field.decl field. decl_list
field_decl_list — €

method decl_list — method decl method. decl_ list
method_decl_list — €

field_decl — type ID ASSIGN INTCONSTANT SEMICOLON
method_decl — return_type ID LPAREN RPAREN
return_type — type

return_type — VOID

type — INT

type — BOOL

(7)

You can test if your revised grammar is an LR grammar by writing down the grammar as yacc code with
no actions and simply check if you get any shift/reduce conflicts. Note that in this skeleton yacc code, the
token definitions do not need to be linked with a lexical analyzer in order to check for shift/reduce
conflicts.

1 Decaf Parse Trees: Write a yacc program that prints out a parse tree for any input Decaf program.
You will need to make sure that the context-free grammar you use is an LR grammar. The parse tree
format should be the same as in Q. (5). Use the lexical analyzer you have already built based on the
Decaf specification.

