
Homework #1: CMPT-379
Distributed on Sep 11; due on Sep 25

Anoop Sarkar – anoop@cs.sfu.ca

Reading for this homework includes Chp 3 of the Dragon book. If needed, refer to:

http://tldp.org/HOWTO/Lex-YACC-HOWTO.html

Only submit answers for questions marked with †. Provide a makefile such that make compiles all your
programs, and make test runs each program, and supplies the necessary input files.

(1) The simplest way to use lex is to match an input string with a regular expression. For instance, the
following is complete lex program that matches a single regexp with the entire input string and prints yes
if it matches, and no otherwise.

%%

ˆ(ab?)*$ { printf("yes\n"); }

ˆ.*$ { printf("no\n"); }

%%

Assume we save the above text to the file matchre.lex. The command flex matchre.lex produces a
C file called lex.yy.c, which is compiled using the command gcc -o matchre lex.yy.c -lfl. The
main function is provided by the lex library libfl.a which is statically linked to the object code from
lex.yy.c to create the final binary file matchre.
Write down a makefile to compile and test the above lex source. Compare this lex regexp matching with
regexp matching using Perl. Here is one way to test this:

perl -e ’print "a" x 100000; print "\n"’ | ./matchre # using lex

perl -e ’print "yes\n" if (("a" x 100000) =˜ /ˆ(ab?)*$/);’ # using perl

Do you observe any difference in behaviour? Can you explain precisely why this difference exists?

(2) Lex can match a right context while matching a regexp by using the r1/r2 where the regexp r1 will match
only if the right context matches the regexp r2. Lex can also match the left context with the use of states.
The following is a lex program that matches keyword called inputfile as the left context so that a string
following this keyword is treated differently from one that does not.

%s INPUT

%%

[\t\n]+ ;

inputfile BEGIN INPUT;

<INPUT>\".*\" { BEGIN 0; printf("Input file:"); ECHO; printf("\n"); }

\".*\" { ECHO; printf("\n"); }

. ;

%%

Modify the above lex program to include a new left context for the keyword outputfile so that for the
input:

inputfile "fileA"

outputfile "fileB"

Your program produces the output:

Input file:"fileA"

Output file:"fileB"

1

(3) Lex can be forced to perform backtracking regexp matching using the REJECT command:

%{

int numpat1, numpat2;

%}

%%

a+ { numpat1++; REJECT; }

a*b? { numpat2++; REJECT; }

%%

int main () {

yylex();

printf("pattern a+: %d -- pattern a*b?: %d\n", numpat1, numpat2);

return(0);

}

On input aaa the above lex program will produce the output:

pattern a+: 6 -- pattern a*b?: 6

This is because there are n(n+1)
2 substrings for a string of length n. Predict the number of pattern matches

for the following input, and check by running the lex program.

aaa

aa

ab

(4) † Provide a lex program that reports the frequency of each pair of words in a text file. Each word is a
sequence of non-whitespace (space and tab) characters separated by one or more whitespace characters.
For example, on the input aa bb bb aa aa bb aa aa it should produce the following output:

aa aa 2

aa bb 2

bb aa 2

bb bb 1

Hint: you should consider the REJECT command, and also consider using the map or hashmap
capabilities of the C++ STL library in the lex actions in order to store counts of word pairs.

(5) † Provide a lex program to strip out single-line and multi-line comments from C or C++ programs.
Single-line comments begin with // and continue to the end of the line, and multi-line comments begin
with /* and end with */ and have no intervening */. Note that /*/ is not a valid comment.
You must provide the output of your program on the file testcomments.c
Hint: Using states (see Q. 2) to match an appropriate left context can be useful, although it is possible to
solve this question without using states.

2

(6) A lex program for a simple lexical analyzer is provided:

%{

#include <stdio.h>

#define NUMBER 256

#define IDENTIFIER 257

%}

%%

[0-9]+ { return NUMBER; }

[a-zA-Z0-9]+ { return IDENTIFIER; }

%%

int main () {

int token;

while (token = yylex()) {

switch (token) {

case NUMBER: printf("NUMBER: %s, LENGTH:%d\n", yytext, yyleng); break;

case IDENTIFIER: printf("IDENTIFIER: %s, LENGTH:%d\n", yytext, yyleng); break;

default: printf("Error: %s not recognized\n", yytext);

}

}

}

Modify the pattern definition of the token IDENTIFIER so that it has to start with a letter (a-z or A-Z) and
followed by a (possibly empty) sequence of letters or numbers. For example, for input 12AB the output
should be:

NUMBER: 12, LENGTH:2

IDENTIFIER: AB, LENGTH:2

And for input AB12 the output should be:

IDENTIFIER: AB12, LENGTH:4

(7) † The general architecture of a lexical analyzer for a programming language is to specify tokens in terms
of patterns.
For instance, we can define a set of tokens (T A, T B, T C) for each pattern pi:

T A p1
T B p2
T C p3

These patterns can be written as regular expressions. For example,

T A a
T B abb
T C a∗b+

The lexical analysis engine should always pick the longest match possible, and in case of two patterns
matching a prefix of the input of equal length, we break the tie by picking the pattern that was listed first
in the specification (e.g. the token T B is preferred over T C for the input string abb, and for the same
input string, token T A followed by T C would be incorrect).

3

Provide a lexical analyzer using lex for the tokens shown above. Test your lexical analyzer on the
following inputs.
If the input text file contains aaba, the program should produce the following output token types and their
values (lexemes):

T_C aab

T_A a

If the input text file contains aabaaabbbbabba, the program should produce the following output token
types and their values (lexemes):

T_C aab

T_C aaabbbb

T_B abb

T_A a

If the input text file contains aabaaabbbbsbba which includes an illegal input character s, the program
should print illegal token to stderr and signal an ERROR in the output stream.

T_C aab

T_C aaabbbb

illegal token

ERROR s

T_C bb

T_A a

You can optionally continue (as shown above) after detecting an error, and you can add more elaborate
error reporting if you wish (such as line and character number where the error occurred).

(8) † Using the Decaf language definition as your guide, provide a lex program that is a lexical analyzer for
the Decaf language.

a. To help you test your lexical analyzer, some sample Decaf programs are provided along with the
output expected from your lexical analyzer.

b. Note that the lexeme values should be identical across different lexical analyzers, but the token names
can be different, e.g. T ID or IDENTIFIER.

c. You should include a special whitespace and comment token. The whitespace token should have a
lexeme value that includes all the whitespace characters. The whitespace and comment lexemes
should convert the newline character into the literal string \n so that the line number and character
number of each token can be recovered from the lexical analyzer output.

d. Provide appropriate error reporting by referring to the Decaf language specification. Include the line
number and location in the line where the error was detected.

4

