
1

11/27/07 1

CMPT 379
Compilers

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

11/27/07 2

Code Generation

• Instruction selection
• Register allocation
• Stack frame allocation √
• Static or global allocation √
• Basic blocks and Flow graphs
• Transformations on Basic blocks

2

11/27/07 3

Code Generation

• Produce code that is correct
• Produce code that is of high quality (size

and speed)
• The problem of generating optimal code is

undecidable
• In practice, we need heuristics that generate

good, but perhaps not optimal, code

11/27/07 4

Instruction Costs

• Since optimal code generation is not possible a
useful way to think about the problem is as an
optimization problem

• Each instruction can be assigned a cost
– For complex instruction sets some instructions can be

more preferable than others
• Using registers have zero cost, while using

memory locations is costlier
• If each instruction is equally expensive, this will

minimize the number of instructions as well

3

11/27/07 5

Register Allocation

• Code generation either directly to assembly or
from 3-address code (TAC)

• For each location, we have to find a register to
store values or temporary values
– Problem: limited number of registers

• Compiler has to find optimal assignment of
locations to registers
– Register use can involve stacked temporaries or other

ways to reuse registers
• If no more registers available, we spill a location

into memory

11/27/07 6

Register Allocation

• Bind locations to registers for all or part of a
function

• Dynamic Optimization Problem
– Not compile-time, but run-time frequency is what

counts
• Heuristics

– Allocate registers for variables likely to be used
frequently

– Keep temporaries in registers  minimize their number
• Register Allocation using Liveness Analysis

4

11/27/07 7

Basic Blocks

• Functions transfer control from one place (the
caller) to another (the called function)

• Other examples include any place where there are
branch instructions

• A basic block is a sequence of statements that
enters at the start and ends with a branch at the
end

• Remaining task of code generation is to create
code for basic blocks and branch them together

11/27/07 8

Blocks
main()
{

int a = 0; int b = 0;
{

int b = 1;
{

int a = 2; printf(“%d %d\n”, a, b);
}
{

int b = 3; printf(“%d %d\n”, a, b);
}
printf(“%d %d\n”, a, b);

}
printf(“%d %d\n”, a, b);

}

5

11/27/07 9

Partition into Basic Blocks

• Input: sequence of TAC instructions
1. Determine set of leaders, the 1st statement of

each basic block
a) The 1st statement is a leader
b) Any statement that is the target of a conditional

jump or goto is a leader
c) Any statement immediately following a

conditional jump or goto is a leader
2. For each leader, the basic block contains all

statements upto the next leader

11/27/07 10

Control Flow Graph (CFG)

int main() {
 extern int f(int);
 int i;
 int *a;
 for (i = 0;

 i < 10;
i = i + 1)

{ a[i] = f(i); }
}

i = 0

i < 10

a[i] = f(i);
i = i+1;

Entry

Exit

Basic
Blocks

6

11/27/07 11

Control Flow Graph in TAC
main:
 i = 0
L0:
 t1 = 10
 t2 = i < t1
 ifFalse t2 goto L1
 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0
L1:
 return

i = 0

L0:
 t1 = 10
 t2 = i < t1
 ifFalse t2 goto L1

 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0

Entry

return

11/27/07 12

Dataflow Analysis

• Compute Dataflow Equations over Control Flow
Graph

• in = all variables coming into basic block
– def = variable is defined, e.g. x := 0
– use = variable is used, e.g. y := x + 1

• out = all variables going out of basic block
• Liveness Analysis:

in[BB] := use[BB] ∪ (out[BB] – def[BB])
out[BB] := ∪ in[s] : forall s ∈ succ[BB]

• Computation by fixed-point analysis

7

11/27/07 13

Liveness Analysis

 a := 0

L1: b := a + 1

 c := c + b

 a := b * 2

 if a < N goto L1

 return c

1, a := 0

3, c := c + b

2, b := a + 1

4, a := b * 2

5, a < N

6, return c

build a
control
flow graph

11/27/07 14

Liveness Analysis

• Liveness Analysis:
in[BB] := use[BB] ∪ (out[BB] – def[BB])
out[BB] := ∪ in[s] : forall s ∈ succ[BB]

• Fixed point computation:
for each n: in[n] := {}; out[n] := {}
repeat

for each n:
in’[n] := in[n]; out’[n] := out[n]
in[n] := use[n] ∪ (out[n] - def[n])
out[n] := ∪ in[s] : forall s ∈ succ[n]

until in’[n] == in[n] && out’[n] == out[n] for all n

8

11/27/07 15

Liveness Analysis
1, a := 0

3, c := c + b

2, b := a + 1

4, a := b * 2

5, a < N

6, return c

 a
a b
bc c
b a
a
c

1
2
3
4
5
6

use/def

a
bc
b
a a
c

in/out

1st

c ac
ac bc
bc bc
bc ac
ac ac
c

in/out

7th

 a
a bc
bc b
b a
a ac
c

in/out

2nd

c ac
ac bc
bc bc
bc ac
ac ac
c

in/out

6th

c ac
ac bc
bc b
bc ac
ac ac
c

in/out

5th

 ac
ac bc
bc b
b ac
ac ac
c

in/out

4th

 a
ac bc
bc b
b a
ac ac
c

in/out

3rd

can we do this faster? try going from 6 downto 1 instead

in[BB] := use[BB] ∪ (out[BB] – def[BB])
out[BB] := ∪ in[s] : forall s ∈ succ[BB]

11/27/07 16

Liveness Analysis

i = 0

L0:
 t1 = 10
 t2 = i < t1
 ifFalse t2 goto L1

 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0

Entry

return

IN = {a, i}

OUT = {a, i}

OUT = {a, i}
IN = {a, i}

OUT = {a, i}

IN = {}

IN = {}

9

11/27/07 17

Register Allocation

• Do liveness analysis on Control Flow Graph
– Straightforward (iteration-less) computation

within basic block
– Compute live ranges for each location

• Build interference graph
– Two locations are connected if their live ranges

overlap

11/27/07 18

Register Allocation

 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0

a i t3 t4 t5 t6 t7

10

11/27/07 19

Register Allocation

 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0

a i t3 t4 t5 t6 t7

11/27/07 20

Register Allocation

 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0

a i t3 t4 t5 t6 t7

11

11/27/07 21

Register Allocation

 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0

a i t3 t4 t5 t6 t7

11/27/07 22

Register Allocation

 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0

a i t3 t4 t5 t6 t7

12

11/27/07 23

Register Allocation

 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0

a i t3 t4 t5 t6 t7

11/27/07 24

Register Allocation

 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0

a i t3 t4 t5 t6 t7

13

11/27/07 25

Register Allocation

 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0

a i t3 t4 t5 t6 t7

11/27/07 26

Interference Graph

i

t1

t2

a

t3

t4

t5

t6
t7

14

11/27/07 27

Interference Graph

• Assume we have four registers: 1, 2, 3, 4
• By register allocation we mean: assign each

register to a node in the interference graph
• However, we cannot assign the same

register to two nodes connected by an edge
• If we have an algorithm that can color a

graph with 4 colors, we have a register
allocation algorithm!

11/27/07 28

Colored Interference Graph

i

t1

t2

a

t3

t4

t5

t6
t7

15

11/27/07 29

Register Allocation as Graph Coloring

• First pass: use as many symbolic registers
as needed including registers for stack
pointers, frame pointers, etc.

• Register Interference Graph
– Two nodes in the graph are connected if their

live ranges overlap
• Color interference graph

– Result is register assignment -- k colors for k
registers

11/27/07 30

Register Allocation as Graph
Coloring

• Second pass: assign physical registers to
symbolic ones
– Construct a register interference graph (nodes

are symbolic registers and edge denotes that
they cannot be assigned to the same physical
register)

– Attempt to k-color the interference graph,
where k is the number of available registers

– k-coloring a graph is NP-complete

16

11/27/07 31

Register Allocation as Graph Coloring

• Algorithm for solving whether a graph G is k-
colorable:

• Pick any node n with fewer than k neighbours
• Remove n and adjacent edges to create a new

graph G’
• k-coloring of G’ can be extended to k-coloring to

G by assigning to n a color that is not assigned to
any of n’s neighbours

• If we cannot extend G’ to G, then k-coloring of G
is not possible

11/27/07 32

Register Allocation as Graph
Coloring

• If every node in G has more than k neighbours, k-
coloring of G is not possible

• Take some node n and spill into memory, remove
it from the graph and continue k-coloring

• Spilling = generating code to store contents of
register to memory and when location is used
generate code to load from memory into an
available register (by spilling another location)

17

11/27/07 33

Register Allocation as Graph
Coloring

• Many different heuristics for picking a node n to
spill

• E.g. avoid introducing spilling symbolic registers
that are inside loops or heavily visited regions of
code

• C allows a register and a volatile keyword to
direct the compiler whether a variable contains a
value that is heavily used.

• Special case: Register Allocation for Expression
Trees (Maximal Munch suffices for this task)

11/27/07 34

Summary

• Code generation: from Intermediate
Representation (IR) to Assembly

• Three Address Code (TAC) can be easily
converted to a control flow graph

• The control flow graph allows sophisticated
dataflow analysis

• The liveness of each location can be used for
register allocation

• Register Allocation as heuristic graph coloring.

