CMPT 379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Syntax directed Translation

 Models for translation from parse trees into
assembly/machine code

e Representation of translations

— Attribute Grammars (semantic actions for
CFGs)

— Tree Matching Code Generators

— Tree Parsing Code Generators

Attribute Grammars

Syntax-directed translation uses a grammar
to produce code (or any other “semantics”)

Consider this technique to be a
generalization of a CFG definition

Each grammar symbol 1s associated with an
attribute

An attribute can be anything: a string, a
number, a tree, any kind of record or object

Attribute Grammars

A CFG can be viewed as a (finite) representation
of a function that relates strings to parse trees

Similarly, an attribute grammar 1s a way of
relating strings with “meanings”

Since this relation 1s syntax-directed, we associate
each CFG rule with a semantics (rules to build an
abstract syntax tree)

In other words, attribute grammars are a method to
decorate or annotate the parse tree

Syntax directed definition

Var — IntConstant
{ $0.val = $1.lexval; }
Expr — Var
{ $0.val = $1.val; }
Expr — Expr B-op Expr
{ $0.val = $2.val ($1.val, $3.val); }
B-op — +
{ $0.val = PLUS; }
B-op — *
{ $0.val = TIMES; }

Flow of Attributes in Expr

Consider the flow of the attributes in the
Expr syntax-directed detn

The lhs attribute 1s computed using the rhs
attributes

Purely bottom-up: compute attribute values
of all children (rhs) in the parse tree

And then use them to compute the attribute
value of the parent (1hs)

Synthesized Attributes

 Synthesized attributes are attributes that
are computed purely bottom-up

* A grammar with semantic actions (or
syntax-directed definition) can choose to
use only synthesized attributes

e Such a grammar plus semantic actions is
called an S-attributed definition

10

Inherited Attributes

* Synthesized attributes may not be sufficient
for all cases that might arise for semantic
checking and code generation

e Consider the (sub)grammar:
Var-decl — Type Id-comma-list ;
Type — int | bool
Id-comma-list — ID
Id-comma-list — ID , Id-comma-list

11

Example: int x, y, 7 ;

Var-decl

/v‘

Type Id-Comma-List ’
int ID Id-Comma-List
X /\
ID , Id-Comma-List
y |

ID
Z

12

Example: int x, y, z ;

Var-decl

T T

Type _ [d-Comma-List I-C-L.in=int ’

Id-Comma-List [-C-L.in=int

- /\

, Id-Comma-List [_C.L .in=int

- y l
ID
ID.val=int)

<

Syntax-directed definition

Var-decl — Type Id-comma-list ;
{$2.in = $1.val; }
Type — int | bool
{ $0.val = int; } & { $0.val = bool; }
Id-comma-list — ID
{ $1.val = $0.in; }
Id-comma-list — ID , Id-comma-list
{ $1.val = $0.in; $3.in = $0.in; }

14

Flow of Attributes in Var-decl

How do the attributes flow 1n the Var-decl
grammar

ID takes 1ts attribute value from its parent node

ld-Comma-List takes its attribute value from its
left sibling Type

Computing attributes purely bottom-up is not
sufficient in this case

Do we need synthesized attributes 1n this
grammar?

15

Inherited Attributes

* Inherited attributes are attributes that are
computed at a node based on attributes from
siblings or the parent

* Typically we combine synthesized attributes
and 1nherited attributes

It is possible to convert the grammar into a
form that only uses synthesized attributes

16

Removing Inherited Attributes

Var-decl
T
Type-list ID ;
U
Type-list ID)
N
Type-list ID)
|
Ty\pe intx,y, 7,

int
17

Removing Inherited Attributes

Vardeclval=int y,

T
[EYPCSHSEVAISIAR Ty pe 1ist D

Typ

e-list ID ,
Type-list ID)
|
Type

| intx,y, 7,

int
18

Removing inherited attributes

Var-decl — Type-List ID ;
{ $0.val = $1.val; }
Type-list = Type-list ID ,
{ $0.val = $1.val; }
Type-list = Type
{ $0.val = $1.val; }
Type — int | bool
{ $0.val = int; } & { $0.val = bool; }

19

Direction of inherited attributes

e Consider the syntax directed detns:
A—LM
{ $1.in = $0.in; $2.in = $1.val; $0.val = $2.val; }
A—QR
{ $2.in = $0.in; $1.in = $2.val; $0.val = $1.val; }
e Problematic definition: $1.in = $2.val

* Difference between incremental processing
vs. using the completed parse tree

20

Incremental Processing

Incremental processing: constructing output
as we are parsing

Bottom-up or top-down parsing

Both can be viewed as left-to-right and
depth-first construction of the parse tree

Some 1nherited attributes cannot be used 1n
conjunction with incremental processing

21

[-attributed Definitions

e A syntax-directed definition is L-attributed
if for a CFG rule

A — X,.X 1 X;..X, two conditions hold:

— Each inherited attribute of X; depends on X,..X;,
— Each inherited attribute of X; depends on A

* These two conditions ensure left to right
and depth first parse tree construction

* Every S-attributed definition 1s L-attributed

22

Top-down translation

Assume that we have a top-down predictive
parser

Typical strategy: take the CFG and
eliminate left-recursion

Suppose that we start with an attribute
grammar

Can we still eliminate left-recursion?

23

Top-down translation

E—=E+T

{ $0.val = $1.val + $3.val; }
E—=E-T

{ $0.val = $1.val - $3.val; }
T — IntConstant

{ $0.val = $1.lexval; }
E—=T

{ $0.val = $1.val; }
T—(E)

{ $0.val = $1.val; }

24

Top-down translation

E—=TR

{$2.in = $1.val; $0.val = $2.val; }
R—=+TR

{ $3.in = $0.in + $2.val; $0.val = $3.val; }
R—-TR

{ $3.in = $0.in - $2.val; $0.val = $3.val; }
R — ¢ {$0.val =$0.in; }
T— (E) {$0.val = $1.val; }
T — IntConstant { $0.val = $1.lexval; }

25

T.val
(I - 5
IntConst T.val
o

IntConst + T.val 2 R.in
(.
IntConst

2 26

Example: 9-5 + 2

T.val

|

IntConst - T.val

IntConst + T.val

IntConst €

27

Translation Scheme

o A translation scheme 1s a CFG where each
rule 1s associated with a semantic attribute

A TS that maps infix expressions to postfix:
E—TR

R—+T{print(‘+”); } R

R—-T{prnt(‘-’); } R

R—¢

T — id { print(id.lookup); }

28

LR parsing and inherited attributes

As we just saw, 1nherited attributes are
possible when doing top-down parsing

How can we compute inherited attributes in
a bottom-up shift-reduce parser

Problem: doing i1t incrementally (while
parsing)

Note that LR parsing implies depth-first
visit which matches L-attributed definitions

29

LR parsing and inherited attributes

e Attributes can be stored on the stack used
by the shift-reduce parsing

* For synthesized attributes: when a reduce
action 1s invoked, store the value on the
stack based on value popped from stack

e For inherited attributes: transmit the
attribute value when executing the goto
function

30

Example: Synthesized Attributes

T—F {$0.val="%1.val;}
T—T*F
{ $0.val = $1.val * $3.val; }
F—id
{ val :=id.lookup();
if (val) { $0.val = $1.val; }
else { error; } }
F—(T) {$0.val =$1.val; }

31

Productions
T—F

Reduce 2
4: T—->T*F e

= W DN =
e
y

:

N\

= \Beduce 3

T—eT*F
F—eid
F—e(T)

T F—(T)e
Reduce 4

1Y >I<' %29
Trace “(1d,,,_3)™1d -,

Stack | Input Action Attributes

0 (id) *id $ | Shift 5

05 id) * id $ | Shift 8 a.Push id.val=3;

058) *id $ | Reduce 3 F—id, [$0.val = $1.val }
pop 8, goto [5,F]=1 . .

051) *id $ | Reduce 1 T— F, a.Pop; a.Push 3;
pop 1, goto [5,T]=6 { $0.val = $1.val }

056) *id $ | Shift 7 a.Pop; a.Push 3;

0567 *id $ | Reduce 4 F— (T), £ $0.val = $2.val }

pop 7 6 5, goto [0,F]=1 3 pops; a.Push 3

33

1Y >I<' %29
Trace “(1d,,,_3)™1d -,

Stack |Input | Action Attributes

01 *id $ | Reduce 1 T—F, { $0.val = $1.val }
pop 1, goto [0,T]=2 a.Pop; a.Push 3

02 * id 5 Shift 3 a.Push mul

023 id $ | Shift 8 .

0238 $ | Reduce 3 F—id, a.Push id.val=2
pop 8, goto [3,F]=4 a.Pop a.Push 2

0234 $ | Reduce 2 T—T * F { $0.val = $1.val *
pop 4 32, goto [0,T]=2 |$2.val; }

02 $ | Accept 3 pops;

a.Push 3%2=6

g
I

Example: Inherited Attributes

E—TR

{ $2.in = $1.val; $0.val = $2.val; }
R—=+TR

{ $3.in = $0.in + $2.val; $0.val = $3.val; }
R — ¢ {$0.val =$0.in; }
T— (E) {$0.val =$l1.val; }
T — id { $0.val = id.lookup; }

35

Productions
TESTR Reduce 3 Reduce 1
2/ R—-+TR ItE=T¢*R R 22E—=TRe
3R R—*4+TR
¢ R—¢e
ull il 4: R TR
‘R >+
T—id T :
5 i T%O(E)
/(T — eid
0:S” —=°FE n
E—¢TR < .
T%O(E) T —ei1d |
IT—-<ud jd\ld 5-R—+Te*R
\v 7:T —id R—e+TR
E (]
Reduce 5 R —¢
8-S’ - F e p— — /Reduce3
Reduce 0 R R

36

Reduce 2

Productions
TESTR Reduce 3 Reduce 1
2/ R—-+TR ItE=T¢*R R 22E—=TRe
3R R—*¢+TR
¢ R—¢e
il 4: R TR
‘R >+
T —id T '
5 i T%‘(E)
/(T—eid
S’ —= e) /‘
— e | +
E TR < T =+ (E) Y 04
T%O(E) T — e1d |
T—eud id\ld 5:R—+TeR
\v 7:T —id R—e+TR
E (]
Reduce 5 R —¢
8-S’ - F e p— — /Reduce3
Reduce 0 R R

37

Reduce 2

Productions

goto [5,R]=6

1 | E—TR{$2.in=$1.val; $0.val = $2.val; }
2 | R—+TR{$3.in=9%0.in + $2.val; $0.val = $3.val; }

13 |R — ¢ {$0.val = $0.in; } 5

1 4 | T — (E) { $0.val = $1.val; } tributes

VS, T—dd $O'Va1, ildiOOkup; s —er —50.val = id.lookup }
pop 7, goto [0,T]=1 { pop; attr.Push(3)

01 + id $ | Shift 4 $2.in = $1.val

014 id $ | Shift 7 $2.in := (1).attr }

0147 $ | Reduce 5 T—id { $0.val = id.lookup }
pop 7, goto [4,T]=5 { pop; attr.Push(2); }

0145 $ | Reduce 3R— ¢

{ $3.in = $0.in+$1.val
(5).attr := (1).attr+2
$0.val = $0.in
$0.val = (5).attr3& 5 }

Trace “1d

° 29
s+1d, o

val=
Stack | Input Action Attributes
0 id + id $ | Shift 7
07 +id $ | Reduce 5 T—id { $0.val = id.lookup }
pop 7, goto [0,T]=1 { pop; attr.Push(3)
01 + id $ | Shift 4 $2.in = $1.val
014 id $ | Shift 7 $2.in := (1).attr }
0147 $ | Reduce 5 T—id { $0.val = id.lookup }
pop 7, goto [4,T]=5 { pop; attr.Push(2); }
0145 $ | Reduce 3 R— ¢

goto [5,R]=6

{ $3.in = $0.in+$1.val
(5).attr := (1).attr+2
$0.val = $0.in
$0.val = (5).attr3= 5 }

(1P . 29
Trace “1d,,_;+1d, ..,

val=
Stack | Input Action Attributes
01456 $ | Reduce 2 R— + TR { $0.val = $3.val
Pop 4 5 6, goto [1,R]=2 pop; attr.Push(5); }
012 $ Reducel E= TR { $0.val = $3.val

Pop 1 2, goto [0,E]=8 pop; attr.Push(S); }

08 $ | Accept {$0.val =5
attr.top =5; }

40

Marker Non-terminals

E—TR

R—+T{print(‘+”); } R
R—-T{prnt(‘-’); } R
R—¢

T — id { print(id.lookup); }

Actions that should be done after

recognizing T but before predicting
R

41

Marker Non-terminals

E—TR

R—+TMR Equivalent SDT using
R—-TNR marker non-terminals
R—¢

T — 1d { print(id.lookup); }
M — ¢ { print(‘+’); }
N — ¢ { print(*-*); }

42

Tree Matching Code Generators

* Write tree patterns that match portions of

the parse tree

e Each tree pattern can be associated with an
action (just like attribute grammars)

e There can be multip

e combinations of tree

patterns that match t

e Input parse tree

43

Tree Matching Code Generators

* To provide a unique output, we assign costs
to the use of each tree pattern

e E.g. assigning uniform costs leads to
smaller code or instruction costs can be
used for optimizing code generation

e Three algorithms: Maximal Munch (§9.12),
Dynamic Programming (89.11), Tree
Grammars

44

Maximal Munch: Example 1

Maximal Munch: Example 1

Top-down
Fit the largest tile
Recursively descend

46

Maximal Munch: Example 2

print “error” if !x

ID

kwclass method_list } x=0lx,

method_decl method_list x;=01x,

@thod_dec%d_m\xz =1

Checking for ﬂy
semantic errors return_type 1D { body }

with Tree-matching)
main 17

Tree Parsing Code Generators

Take the prefix representation of the syntax tree

— E.g. (+ (*clrl) (+ ma c2)) in prefix
representation uses an inorder traversal to get +
*clrl +mac2

Write CFG rules that match substrings of the
above representation and non-terminals are
registers or memory locations

Each matching rule produces some predefined
output

Example 9.18 (Dragon book)

48

Code-generation Generators

A CGGQG 1s like a compiler-compiler: write down a
description and generate code for it

* Code generation by:

— Adding semantic actions to the original CFG and each
action 1s executed while parsing, e.g. yacc

— Tree Rewriting: match a tree and commit an action, e.g.
Icc

— Tree Parsing: use a grammar that generates trees (not
strings), €.g. twig, burs, iburg

49

Summary

The parser produces concrete syntax trees

Abstract syntax trees: define semantic checks or a
syntax-directed translation to the desired output

Attribute grammars: static definition of syntax-
directed translation

— Synthesized and Inherited attributes

— S-attribute grammars

— L-attributed grammars

Complex inherited attributes can be defined if the
full parse tree 1s available
50

