
CMPT 379
Compilers

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

2

Run-time Support

• Tracking variable usage is done using
activation or liveness analysis

• Functions or procedures have more complex
activation behaviour

• Problem: functions can be recursive
• This means each function activation has to

keep it’s locals and parameters distinct

3

Activation Trees

• An activation of a function is a particular
invocation of that function

• Each activation will have particular values
for the function parameters

• Each activation can call another activation
before it becomes inactive

• The sequence of function calls can be
represented as an activation tree

4

Activation Tree

Start

R Q(1,9)

P(1,9) Q(1,3) Q(5,9)

Q(1,0)P(1,3) P(5,9)Q(2,3)

P(2,3) Q(2,1) Q(3,3)

Q(5,5) Q(7,9)

P(7,9) Q(7,7) Q(9,9)

int Q(int m, int n) {
 if (n > m) {
 int i = P(m, n);
 Q(m, i-1); Q(i+1, n);
 }
}

5

Problems with Functions

• Recursive functions
• If a function has local variables, and if it

calls another function: what happens to
locals after control returns

• Function can access non-local (global)
variables

• Parameter passing into a function

6

More problems

• Can we pass functions as parameters?
• Can functions be returned as the result of a

function?
• Storage allocation within a function
• Is de-allocation to be done by the

programmer before leaving the function
• Dangling pointers

7

Activation Records

• Information for a single execution of a function is
called an activation record or procedure call
frame

• A frame contains:
– Temporary local register values for caller
– Local data
– Snapshot of machine state (important registers)
– Return address
– Link to global data
– Parameters passed to function
– Return value for the caller

8

Storage Allocation for Functions

• Static Allocation
– Layout all storage for all data objects at

compile time
– Essentially every variable is stored globally
– But the symbol table can still control local

activation and de-activation of variables
– Very restricted recursion is allowed
– Fortran 77

9

Storage Allocation for Functions

• Stack Allocation √
– Storage for recursive functions is organized as a

stack: last-in first-out (LIFO) order
– Activation records are associated with each

function activation
– Activation records are pushed onto the stack

when a call is made to the function
– Size of activation records can be fixed or

variable

10

Storage Allocation for Functions

• Stack Allocation √
– Sometimes a minimum size is required
– Variable length data is handled using pointers
– Locals are deleted after activation ends
– Caller locals are reinstated and execution

continues
– C, Pascal and most modern programming

languages

11

Storage Allocation for Functions

• Heap Allocation
– In some special cases stack allocation is not

possible
– If local variables must be retained after the

activation ends
– If called activation outlives the caller
– Anything that violates the last-in first-out

nature of stack allocation e.g. closures in Lisp
and other functional PLs

12

Heap Allocation

class Ret {
 int a; a = 10;
fun foo (int m) {
int addm (int n) { return (a+m+n); }
return addm;

}
int main() {
callout(“print_int”, (foo(2))(3));

}
}

13

Storage Allocation for Functions

• Function Composition: (f•g)(x) = f(g(x))
class Compose {

fun sq (int x) { return (x * x); }
fun f (fun m) { return (m•h); }
fun h () { return sq; }
fun g (fun z) { return (sq•z); }
int main() {

fun v = g•h;
callout(“print_int”, (v())(3));

}
}

14

• Function Composition: (f•g)(x) = f(g(x))
class Compose {

fun sq (int x) { return (x * x); }
fun f (fun m) { return (m•h); }
fun h () { return sq; }
fun g (fun z) { return (sq•z); }
int main() {

fun v = g•h;
callout(“print_int”, (v())(3));

}
}

v = g•h

v() = (g•h)()

v() = g(h())

v() = g(sq)

v() = (sq•sq)

v()(3) = (sq•sq)(3)

v()(3) = (sq(sq(3))

Storage Allocation for Functions

15

Run-time Memory

16

Stack frame

17

Example: MIPS stack frame

$a3
$a2
$a1
$a0 4

4
4
4

16

(n*4)($fp)
for param n

$fp

$sp

$ra
$fp

18

19

Parameter Passing Conventions

• Differences based on:
– The parameter represents an r-value (the rhs of an expr)
– An l-value
– Or the text of the parameter itself

• Call by Value
– Each parameter is evaluated
– Pass the r-value to the function
– No side-effect on the parameter

20

Parameter Passing Conventions

• Call by Reference
– Also called call by address/location
– If the parameter is a name or expr that is an l-

value then pass the l-value
– Else create a new temporary l-value and pass

that
– Typical example: passing array elements a[i]

21

Parameter Passing Conventions

• Copy Restore Linkage
– Pass only r-values to the called function (but keep the l-

value around for those parameters that have it)
– When control returns back, take the r-values and copy it

into the l-values for the parameters that have it
– Fortran

• Call by Name
– Function is treated like a macro (a #define) or in-line

expansion
– The parameters are literally re-written as passed

arguments (keep caller variables distinct by renaming)

22

Parameter Passing Conventions

• Lazy evaluation
– In some languages, call-by-name is accomplished by

sending a function (also called a thunk) instead of an r-
value

– When the r-value is needed the function is called with
zero arguments to produce the r-value

– This avoids the time-consuming evaluation of r-values
which may or may not be used by the called function
(especially when you consider short-circuit evaluation)

– Used in lazy functional languages

23

Parameter Passing Conventions

• Call-by-need
– Similar to lazy evaluation, but more efficient
– To avoid executing similar r-values multiple times,

some languages used a memo slot to avoid repeated
function evaluations

– A function parameter is only evaluated when used
inside the called function

– When used multiple times there is no overhead due to
the memo table

– Haskell

24

Summary

• Run-time support for functions
• Dealing with (potentially infinite) recursion
• Activation records for each function invocation
• Storage allocation for activation records in

recursive function calls
• Stack allocation is easiest to implement while

retaining recursion
• Functional PLs use heap allocation

