CMPT 379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Run-time Support

Tracking variable usage 1s done using
activation or liveness analysis

Functions or procedures have more complex
activation behaviour

Problem: functions can be recursive

This means each function activation has to
keep 1t’s locals and parameters distinct

Activation Trees

An activation of a function is a particular
invocation of that function

Each activation will have particular values
for the function parameters

Each activation can call another activation
before 1t becomes 1nactive

The sequence of function calls can be
represented as an activation tree

Activation Tree

int Q(int m, int n) {

Start if (n > m) {
int 1 = P(m, n);
///////////7 Q(m, i-1); Q(i+l, n);
R Q(1,9) .
P(1,9) Q(1,3) Q(5,9)

P(1,3) Q(1,0) Q2,3) P(5,9) QG55 Q(7.9)

%\ ﬂ\

P(2,3) Q2,1) QE@G.3) P(7,9) Q(7,7) QO.9)

4

Problems with Functions

Recursive functions

If a function has local variables, and if it
calls another function: what happens to
locals after control returns

Function can access non-local (global)
variables

Parameter passing into a function

More problems

Can we pass functions as parameters’?

Can functions be returned as the result of a
function?

Storage allocation within a function

Is de-allocation to be done by the
programmer before leaving the function

Dangling pointers

Activation Records

* Information for a single execution of a function is
called an activation record or procedure call
frame

e A frame contains:
— Temporary local register values for caller
— Local data
— Snapshot of machine state (important registers)
— Return address
— Link to global data
— Parameters passed to function
— Return value for the caller

Storage Allocation for Functions

o Static Allocation

— Layout all storage for all data objects at
compile time

— Essentially every variable is stored globally

— But the symbol table can still control local
activation and de-activation of variables

— Very restricted recursion 1s allowed
— Fortran 77

Storage Allocation for Functions

e Stack Allocation vV

— Storage for recursive functions is organized as a
stack: last-in first-out (LIFO) order

— Activation records are associated with each
function activation

— Activation records are pushed onto the stack
when a call i1s made to the function

— Size of activation records can be fixed or
variable

Storage Allocation for Functions

e Stack Allocation vV

— Sometimes a minimum size 1s required
— Variable length data is handled using pointers
— Locals are deleted after activation ends

— Caller locals are reinstated and execution
continues

— C, Pascal and most modern programming
languages

10

Storage Allocation for Functions

 Heap Allocation

— In some special cases stack allocation 1s not
possible

— If local variables must be retained after the
activation ends

— If called activation outlives the caller

— Anything that violates the last-in first-out
nature of stack allocation e.g. closures in Lisp
and other functional PLs

11

Heap Allocation

class Ret {

int a; a=10;

fun foo (int m) {
int addm (int n) { return (a+m-+n); }
return addm;

J

int main() {
callout(“print_int”, (foo(2))(3));

J

12

Storage Allocation for Functions

e Function Composition: (f*g)(x) = f(g(x))
class Compose {
fun sq (int x) { return (x * x); }
fun f (fun m) { return (meh); }
fun h () { return sq; }
fun g (fun z) { return (sq*z); }
int main() {
fun v = g*h;
callout(““print_int”, (v())(3));

13

Storage Allocation for Functions

e Function Composition: (f*g)(x) = f(g(x))

class Compose { v=ge*h
fun sq (int x) { return (x * x); }
fun f (fun m) { return (meh); } vO = (g *h0
fun h () { return sq; } v() = g(h())

fun g (fun z) { return (sq°z); } B
int main() { v0 = g(sq)

fun v = geh; v() = (sq°*sq)
callout(““print_int”, (v())(3));
v()(3) = (sq*sq)(3
y 03) = (sq*sq)(3)

} vO3) = (sq(sq(3))

14

Run-time Memory
FALLAALATY™

10000000

400000

hex

hex

l
I

Dynamic data

Static data

Reserved

Stack segment

Data segment

Text segment

15

$fp —»

$sp —»

Stack frame

Argument ©

Argument 5

Saved registers

Local variables

Higher memory addresses

Stack
grows

Lower memory addresses

16

$fp /

$sp

Example: MIPS stack frame

Sa0

Sal

Saz2

Sa3

$ra
$fp

]

16

~ &~ &~ B

(n*4)($tp)
for param n

17

Stack

Old $ra
Old $fp

Old $a0
Old $ra

old $fp

Old $a0
Old $ra

old $fp

Old $a0
Old $ra
old $fp

Old $a0
Old $ra
Old $fp

main

fact (10)

fact (9)

fact (8)

fact (7)

Stack grows

18

Parameter Passing Conventions

e Differences based on:
— The parameter represents an r-value (the rhs of an expr)
— An l-value

— Or the text of the parameter itself

e Call by Value

— Each parameter 1s evaluated
— Pass the r-value to the function
— No side-effect on the parameter

19

Parameter Passing Conventions

e Call by Reference
— Also called call by address/location

— If the parameter 1s a name or expr that 1s an 1-
value then pass the 1-value

— Else create a new temporary I-value and pass
that

— Typical example: passing array elements a[i]

20

Parameter Passing Conventions

* Copy Restore Linkage

— Pass only r-values to the called function (but keep the 1-
value around for those parameters that have it)

— When control returns back, take the r-values and copy it
into the I-values for the parameters that have it

— Fortran

e Call by Name

— Function is treated like a macro (a #define) or in-line
expansion

— The parameters are literally re-written as passed
arguments (keep caller variables distinct by renaming)
21

Parameter Passing Conventions

e Lazy evaluation

— In some languages, call-by-name is accomplished by
sending a function (also called a thunk) instead of an r-
value

— When the r-value is needed the function 1s called with
zero arguments to produce the r-value

— This avoids the time-consuming evaluation of r-values
which may or may not be used by the called function
(especially when you consider short-circuit evaluation)

— Used in lazy functional languages

22

Parameter Passing Conventions

e (Call-by-need
— Similar to lazy evaluation, but more efficient

— To avoid executing similar r-values multiple times,
some languages used a memo slot to avoid repeated
function evaluations

— A function parameter is only evaluated when used
inside the called function

— When used multiple times there is no overhead due to
the memo table

— Haskell

23

Summary

Run-time support for functions
Dealing with (potentially infinite) recursion
Activation records for each function invocation

Storage allocation for activation records in
recursive function calls

Stack allocation 1s easiest to implement while
retaining recursion

Functional PLs use heap allocation

24

