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Code Optimization

• There is no fully optimizing compiler O
• Let’s assume O exists: it takes a program P and

produces output Opt(P) which is the smallest
possible

• Imagine a program Q that produces no output and
never terminates, then Opt(Q) could be:
L1: goto L1

• Then to check if a program P never terminates on
some inputs, check if Opt(P(i)) is equal to Opt(Q)

• Full Employment Theorem for Compiler Writers,
see Rice(1953)
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Optimizations

• Non-Optimizations
• Correctness of optimizations

– Optimizations must not change the meaning of the
program

• Types of optimizations
– Local optimizations
– Global dataflow analysis for optimization
– Static Single Assignment (SSA) Form

• Amdahl’s Law
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Non-Optimizations
enum { GOOD, BAD };
extern int test_condition();

void check() {
  int rc;

  rc = test_condition();
  if (rc != GOOD) {
    exit(rc);
  }
}

enum { GOOD, BAD };
extern int test_condition();

void check() {
 int rc;

 if ((rc = test_condition())) {
   exit(rc);
 }
}

Which version of check runs faster?
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Types of Optimizations

• High-level optimizations
– function inlining

• Machine-dependent optimizations
– e.g., peephole optimizations, instruction scheduling

• Local optimizations or Transformations
– within basic block

• Global optimizations or Data flow Analysis
– across basic blocks
– within one procedure (intraprocedural)
– whole program (interprocedural)
– pointers (alias analysis)
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Maintaining Correctness

• What does this
program output?

3
Not:

$ decafcc byzero.decaf
Floating exception

void main() {
    int x;
    if (false) {
        x = 3/(3-3);
    } else {
        x = 3;
    }
    callout(“print_int”, x);
}
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Peephole Optimization

• Redundant instruction elimination
– If two instructions perform that same function
and are in the same basic block, remove one

– Redundant loads and stores
li $t0, 3
li $t0, 4

– Remove unreachable code
li $t0, 3
goto L2
... (all of this code until next label can be removed)
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Peephole Optimization

• Flow control optimization
goto L1
L1: goto L2

• Algebraic simplification
• Reduction in strength

– Use faster instructions whenever possible
• Use of Machine Idioms
• Filling delay slots
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Constant folding & propagation

• Constant folding
– compute expressions with known values at

compile time
• Constant propagation

– if constant assigned to variable, replace uses of
variable with constant unless variable is
reassigned
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Constant folding & propagation

• Copy Propagation
a := d + e b := d + e

c := d + e

t := d + e
a := t

t := d + e
b := t

c := t
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Transformations

• Structure preserving transformations
• Common subexpression elimination

a := b + c
b := a - d
c := b + c
d := a - d  (⇒ b)
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Transformations

• Dead-code elimination (combines copy
propogation with removal of unreachable
code)

if (debug) { f(); } /* debug :=  false (as a constant) */
if (false) { f(); }  /* constant folding */
using deadcode elimination, code for f() is removed
x := t3                     x := t3
t4 := x    becomes   t4 := t3
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Transformations

• Renaming temporary variables
t1 := b+c  can be changed to t2 := b+c
replace all instances of t1 with t2

• Interchange of statements
t1 := b+c                                      t2 := x+y
t2 := x+y    can be converted to  t1 := b+c
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Transformations

• Algebraic transformations
d := a + 0  (⇒ a)
d := d * 1  (⇒ eliminate)

• Reduction of strength
d := a ** 2 (⇒ a * a)



15

Control Flow Graph (CFG)

int main() {
 extern int f(int);
 int i;
 int *a;
 for (i = 0;

    i < 10;
i = i + 1)

{ a[i] = f(i); }
}

i = 0

i < 10

a[i] = f(i);
i = i+1;

Entry

Exit

Basic
Blocks
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Control Flow Graph in TAC
main:
    BeginFunc 72 ;
    i = 0 ;
L0:
    tmp1 = 10 ;
    tmp2 = i < tmp1 ;
    IfZ tmp2 Goto L1 ;
    tmp3 = 4 ;
    tmp4 = tmp3 * i ;
    tmp5 = a + tmp4 ;
    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
    tmp7 = 1 ;
    i = i + tmp7 ;
    goto L0 ;
L1:
    EndFunc ;

i = 0

L0:
    tmp1 = 10 ;
    tmp2 = i < tmp1 ;
    ifz tmp2 goto L1 ;

    tmp3 = 4 ;
    tmp4 = tmp3 * i ;
    tmp5 = a + tmp4 ;
    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
    tmp7 = 1 ;
    i = i + tmp7 ;
    goto L0 ;

Entry

Exit

definition/gen

reaches

reaches

kill

unambiguous
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Dataflow Analysis

• S → id := E
• S → S ; S
• S → if E then S else S
• S → do S while E
• E → id + id
• E → id
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Dataflow Analysis

S1

S2

If E goto S1

S1 S2

S1

If E goto S1

S ; S if E then S else S do S while E
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Reaching definitions

S →
gen[S] = { d }
kill[S] = def(a) - { d }

out[S] = gen[S] ∪ (in[S] - kill[S])

d: a := b+c
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Reaching definitions

S1

S2

S →

gen[S] = gen[S2] ∪ (gen[S1] - kill[S2])
kill[S] = kill[S2] ∪ (kill[S1] - gen[S2])

in[S1] = in[S]
in[S2] = out[S1]
out[S] = out[S2]
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Reaching definitions

S →

gen[S] = gen[S1] ∪ gen[S2]
kill[S] = kill[S1] ∩ (kill[S1] - gen[S2])

in[S1] = in[S]
in[S2] = in[S]
out[S] = out[S1] ∪ out[S2]

S1 S2
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Reaching definitions

S →

gen[S] = gen[S1]
kill[S] = kill[S1]

in[S1] = in[S] ∪ gen[S1]
out[S] = out[S1]

S1

in = inherited attribute

out = synthesized attribute

out[S1] = gen[S1] ∪ (in[S1] - kill[S1])

Iteratively find out[S] (fixed point)
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Reaching definitions
d1: i := m-1
d2: j := n
d3: a := u1

d4: i := i+1
d5: j := j-1

d6: a := u2
d7: i := u3

B1

B2

B3
B4

gen[B1] = { d1, d2, d3 }
kill[B1] = { d4, d5, d6, d7 }

gen[B2] = { d4, d5 }
kill[B2] = { d1, d2, d7 }

gen[B3] = { d6 }
kill[B3] = { d3 }

gen[B4] = { d7 }
kill[B4] = { d1, d4 }
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Reaching definitions
d1: i := m-1
d2: j := n
d3: a := u1

d4: i := i+1
d5: j := j-1

d6: a := u2
d7: i := u3

B1

B2

B3
B4

gen[B1] = { d1, d2, d3 }
kill[B1] = { d4, d5, d6, d7 }

gen[B2] = { d4, d5 }
kill[B2] = { d1, d2, d7 }

gen[B3] = { d6 }
kill[B3] = { d3 }

gen[B4] = { d7 }
kill[B4] = { d1, d4 }

in[B2] = out[B1] ∪ out[B3] ∪ out[B4]



25

Reaching definitions
d1: i := m-1
d2: j := n
d3: a := u1

d4: i := i+1
d5: j := j-1

d6: a := u2
d7: i := u3

B1

B2

B3
B4

gen[B1] = { d1, d2, d3 }
kill[B1] = { d4, d5, d6, d7 }

gen[B2] = { d4, d5 }
kill[B2] = { d1, d2, d7 }

gen[B3] = { d6 }
kill[B3] = { d3 }

gen[B4] = { d7 }
kill[B4] = { d1, d4 }

out[B2] = gen[B2] ∪ (in[B3] - kill[B2])
out[B2] = gen[B2] ∪ (in[B4] - kill[B2])

√
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Dataflow Analysis

• Compute Dataflow Equations over Control
Flow Graph
– Reaching Definitions (Forward)

out[BB] := gen[BB] ∪ (in[BB] – kill[BB])
in[BB] := ∪ out[s] : forall s ∈ pred[BB]

– Liveness Analysis (Backward)
in[BB] := use[BB] ∪ (out[BB] – def[BB])
out[BB] := ∪ in[s] : forall s ∈ succ[BB]

• Computation by fixed-point analysis
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SSA Form

• def-use chains keep track of where variables
were defined and where they were used

• Consider the case where each variable has
only one definition in the intermediate
representation

• One static definition, accessed many times
• Static Single Assignment Form (SSA)
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SSA Form

• SSA is useful because
– Dataflow analysis and optimization is simpler

when each variable has only one definition
– If a variable has N uses and M definitions

(which use N+M instructions) it takes N*M to
represent def-use chains

– Complexity is the same for SSA but in practice
it is usually linear in number of definitions

– SSA simplifies the register interference graph
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SSA Form

• Original Program

a := x + y
b := a - 1
a := y + b
b := x * 4
a := a + b

• SSA Form

a1 := x + y
b1 := a1 - 1
a2 := y + b1
b2 := x * 4
a3 := a2 + b2

what about conditional branches?
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SSA Form
1: b := M[x]
    a := 0

2: if b < 4

3: a := b

4: c := a+b

1: b1 := M[x1]
    a1 := 0

2: if b1 < 4

3: a2 := b1

4: a3 := φ (a2, a1)
    c1 := a3 + b1
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SSA Form
1: a := 0

2: b := a + 1
    c := c + b
    a := b * 2
    if a < N

3: return c

1: a1 := 0

2: a3 := φ (a2, a1) 
    b1 := φ (b0, b2)
    c2 := φ (c0, c1)
    b2 := a3 + 1
    c1 := c2 + b2
    a2 := b2 * 2
    if a2 < N

3: return c1
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Optimizations using SSA

• SSA form contains statements, basic blocks
and variables

• Dead-code elimination
– if there is a variable v with no uses and

def of v has no side-effects, delete
statement defining v

– if z := φ (x, y) then eliminate this stmt if
no defs for x,y
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Optimizations using SSA

• Constant Propagation
– if v := c for some constant c then replace

v with c for all uses of v
– v := φ (c1, c2, ..., cn) where all ci are equal

to c can be replaced by v := c
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Optimizations using SSA
1: i := 1  j := 1
    k := 0

2: if k < 100

3: if j < 20 4: return j

5: j := i
    k := k+1

6: j := k
    k := k+1

7:
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Optimizations using SSA

• Conditional Constant Propagation
– In previous flow graph, is j always equal to 1?
– If j = 1 always, then block 6 will never execute

and so j := i and j := 1 always
– If j > 20 then block 6 will execute, and j := k

will be executed so that eventually j > 20
– Which will happen? Using SSA we can find the

answer.
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Optimizations using SSA
1: i1 := 1  j1 := 1
    k1 := 0

2: j2 := φ(j4, j1)
    k2 := φ(k4, k1)
    if k2 < 100

3: if j2 < 20 4: return j2

5: j3 := i1
    k3 := k2+1

6: j5 := k2
    k5 := k2+1

7: j4 := φ(j3, j5)
   k4 := φ(k3,k5)
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Optimizations using SSA
1: i1 := 1  j1 := 1
    k1 := 0

2: j2 := φ(j4, 1)
    k2 := φ(k4, 0)
    if k2 < 100

3: if j2 < 20 4: return j2

5: j3 := 1
    k3 := k2+1

6: j5 := k2
    k5 := k2+1

7: j4 := φ(j3, k2)
   k4 := φ(k3,k5)

After Constant
Propagation
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Optimizations using SSA
1: 2: k2 := φ(k4, 0)

    if k2 < 100

3: 4: return 1

5: k3 := k2+1

7: k4 := φ(k3)

After Constant
Propagation
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Optimizations using SSA

1: 2: k2 := φ(k3, 0)
    if k2 < 100

4: return 15: k3 := k2+1

After Removing
Empty Blocks and 
1-arg φ functions
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Optimizations using SSA

• Arrays, Pointers and Memory
– For more complex programs, we need

dependencies: how does statement B depend on
statement A?

– Read after write: A defines variable v, then B
uses v

– Write after write: A defines v, then B defines v
– Write after read: A uses v, then B defines v
– Control: A controls whether B executes
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Optimizations using SSA

• Memory dependence
M[i] := 4
x := M[j]
M[k] := j

• We cannot tell if i, j, k are all the same value
which makes any optimization difficult

• Similar problems with Control dependence
• SSA does not offer an easy solution to these

problems
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SSA Form

• Conversion from a Control Flow Graph
(created from TAC) into SSA Form is not
trivial

• Two famous algorithms:
– Lengauer-Tarjan algorithm (see the Tiger book

by Andrew W. Appel for more details)
– Harel algorithm
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More on Optimization

• Control Flow Analysis
• Data Flow Analysis
• Dependence Analysis
• Alias Analysis
• Early Optimizations
• Redundancy

Elimination

• Loop Optimizations
• Procedure Optimizations
• Code Scheduling

(pipelining)
• Low-level Optimizations
• Interprocedural Analysis
• Memory Hierarchy

• Advanced Compiler Design and Implementation
by Steven S. Muchnick
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Amdahl’s Law

• Speeduptotal =
((1 - TimeFractionoptimized) +
TimeFractionoptimized/Speedupoptimized)-1

• Optimize the common case, 90/10 rule
• Requires quantitative approach

– Profiling + Benchmarking
• Problem: Compiler writer doesn’t know the

application beforehand
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Summary

• Optimizations can improve speed, while
maintaining correctness

• Various early optimization steps
• Global optimizations = dataflow analysis
• Reachability and Liveness analysis provides

dataflow analysis
• Static Single-Assignment Form (SSA)


