CMPT 379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Code Optimization

There 1s no fully optimizing compiler O

Let’s assume O exists: it takes a program P and
produces output Opt(P) which is the smallest
possible

Imagine a program Q that produces no output and

never terminates, then Opt(Q) could be:
Ll: goto L1

Then to check if a program P never terminates on
some 1nputs, check if Opt(P(1)) 1s equal to Opt(Q)

Full Employment Theorem for Compiler Writers,
see Rice(1953) ,

Optimizations

Non-Optimizations
Correctness of optimizations
— Optimizations must not change the meaning of the
program
Types of optimizations
— Local optimizations
— Global dataflow analysis for optimization
— Static Single Assignment (SSA) Form

Amdahl’s Law

Non-Optimizations

enum { GOOD, BAD };
extern int test_condition();

void check() {
int rc;

rc = test_condition();
if (rc !'= GOOD) {
exit(rc);
}
}

enum { GOOD, BAD };
extern int test_condition();

void check() {
int rc;

if ((rc = test_condition())) {
exit(rc);

}

}

Which version of check runs faster?

Types of Optimizations

High-level optimizations

function inlining

Machine-dependent optimizations

e.g., peephole optimizations, instruction scheduling

Local optimizations or Transformations

within basic block

Global optimizations or Data flow Analysis

across basic blocks

within one procedure (intraprocedural)
whole program (interprocedural)
pointers (alias analysis)

Maintaining Correctness

e What does this void main() {
program output? Int X;
3 if (false) {
Not: x = 3/(3-3):
}else {

$ decafcc byzero.decaf =3

Floating exception \

callout(“print_int”, x);

¥

Peephole Optimization

e Redundant instruction elimination

— If two instructions perform that same function
and are 1n the same basic block, remove one

— Redundant loads and stores
li $t0, 3
li $t0, 4
— Remove unreachable code
li $t0, 3
goto L2
... (all of this code until next label can be removed)

Peephole Optimization

Flow control optimization
goto LL1
L1: goto L2

Algebraic simplification

Reduction 1n strength
— Use faster instructions whenever possible

Use of Machine Idioms
Filling delay slots

Constant folding & propagation

e Constant folding

— compute expressions with known values at
compile time

e Constant propagation

— 1f constant assigned to variable, replace uses of
variable with constant unless variable 1s
reassigned

Constant folding & propagation

e Copy Propagation

10

Transformations

Structure preserving transformations

Common subexpression elimination
a:=b+c
b:=a-d
c:=b+c
d:=a-d (=Db)

11

Transformations

Dead-code elimination (combines copy
propogation with removal of unreachable
code)
if (debug) { 1(); } /* debug := false (as a constant) */
if (false) { £(); } /* constant folding */

using deadcode elimination, code for f() is removed
X =13 X =13
t4 :=x becomes t4:=1t3

12

Transformations

Renaming temporary variables
tl := b+c can be changed to t2 := b+c
replace all instances of t1 with t2
Interchange of statements
tl :=b+c t2 ;= X+y

t2 :=x+y can be converted to tl :=b+c

13

Transformations

Algebraic transformations
d:=a+0 (=a)
d:=d*1 (= eliminate)
Reduction of strength
d:=a**2(=a%*a)

14

Control Flow Graph (CFG)

int main() {

extern int f(int);

int i;

int *a;

for (i=0;
i<10;

i=i+1)
{ ali] =1(1); }
}

"adtyl

Basic
Blocks

15

Control Flow Graph in TAC

main:

BeginFunc 72 ;
i=0;

LO:

tmpl =10 ;
tmp2 =i<tmpl ;

IfZ tmp2 Goto L1 ;

tmp3=4;

tmp4 = tmp3 *i;
tmpS = a + tmp4 ;
param i #0 ;
tmp6 = call f ;
pop 4;

*(tmpS) = tmp6 ;
tmp7=1;
i=i+tmp7;

goto LO ;

L1:

EndFunc ;

unambiguous definition/gen
\
v
LO:

tmpl =10 ;

tmp2=i<tmpl; reaches

ifz tmp2 goto L1 ;
v

tmp3=4;

tmp4 = tmp3 *1i ;

tmpS =a + tmp4 ;

param i 40 ; reaches

tmp6 = call f ;

pop 4;

*(tmpS) = tmpb6 ;

tmp7 =1;

i=i+tmp7; kall

goto L0 ; 16

Dataflow Analysis

S—=1d:=E
S—=S;S

S — if E then S else S
S — do S while E
E—id +1d

E —id

17

Dataflow Analysis

T T

S1 If E goto S1 S1
S2 S1 S2 If E goto S1

5

S:S if EthenSelseS do S while E

18

Reaching definitions

T

d: a ;= b+c

.

gen[S]=4{d}
kill[S] = def(a) - { d }

out[S] = gen[S] U (in[S] - kill[S])

19

Reaching definitions

? gen[S] = gen[S2] U (gen[S1] - kill[S2])
g1] kill[S] = kill[S2] U (kill[S1] - gen[S2])

l n[S1] =1n[S]
S2 in[S2] = out[S1]

(l) out[S] = out[S2]

20

Reaching definitions

gen[S] = gen[S1] U gen[S2]
kill[S] = kall[S1] M (kall[S1] - gen[S2])

n[S1] =1n[S]
n[S2] = 1n[S]
out[S] = out[S1] U out[S2]

21

Reaching definitions

? gen[S] = gen[S1]
kill[S] = kill[S1]

S — S1

é in[S1] = in[S] U gen[S1]
out[S] = out[S1]

, , Iteratively find out[S] (fixed point)
out = synthesized attribute

in = inherited attribute out[S1] =gen[S1] U (in[S1] - kill[S1])

22

Bl

Reaching definitions

dl:1:=m-1
d2:j:=n
d3:a:=ul

gen[B1]={dl,d2,d3 }
kill[B1] = { d4, d5, d6,d7 }

gen[B2]={d4,d5 }
kill[B2] = { d1,d2,d7 }

gen[B3]={d6 }
kill[B3]={d3}

gen[B4]={d7 }
kill[B4] ={dl1,d4 }

23

Bl

Reaching definitions

dl:1:=m-1
d2:j:=n
d3:a:=ul

in[B2] = out[B1] U out[B3] U out[B4]

gen[B1]={dl,d2,d3 }
kill[B1] = { d4, d5, d6,d7 }

gen[B2]={d4,d5 }
kill[B2] = { ,d7 }

gen[B3]={d6 }
kill[B3] ={ d3 }

gen[B4]={d7 }
kill[B4]={d1,d4 }

24

Bl

Reaching definitions

dl:1:=m-1
d2:j:=n
d3:a:=ul

V' out[B2] = gen[B2] U (in[B3] - kill[B2])

gen[B1]={dl,d2,d3 }
kill[B1] = { d4, d5, d6,d7 }

gen[B2]={d4,d5 }
kill[B2] ={ ,d7 }

gen[B3]={d6 }
kill[B3] ={ d3 }

gen[B4]={d7 }
kill[B4]={ d1,d4 }

25

out[B2] = gen[B2] U (in[B4] - kill[B2])

Dataflow Analysis

e Compute Dataflow Equations over Control
Flow Graph
— Reaching Definitions (Forward)
out[BB] := gen[BB] U (in[BB] — kill[BB])
in[BB] := U out[s] : forall s € pred[BB]
— Liveness Analysis (Backward)
in[BB] :=use[BB] U (out[BB] — def[BB])
out[BB] := U in|[s] : forall s € succ[BB]

* Computation by fixed-point analysis

26

SSA Form

def-use chains keep track of where variables
were defined and where they were used

Consider the case where each variable has
only one definition in the intermediate
representation

One static definition, accessed many times
Static Single Assignment Form (SSA)

27

SSA Form

e SSA i1s useful because

— Dataflow analysis and optimization 1s simpler
when each variable has only one definition

— If a variable has N uses and M definitions
(which use N+M 1nstructions) 1t takes N*M to
represent def-use chains

— Complexity 1s the same for SSA but 1n practice
it 1s usually linear in number of definitions

— SSA simplifies the register interference graph

28

SSA Form

e Original Program * SSA Form
a:=Xx+y al :=x+y
b:=a-1 bl:=al-1
a:=y+b a2 :=y +Dbl
b:=x%*4 b2 :=x*4
a:=a+b a3 :=a2+b2

what about conditional branches?

29

SSA Form

1: b := M[X] 1: bl :=M[x1]
a :=XO al :=0
2:1fb<4 2:if bl < 4

4: a3 :=¢ (a2, al)
cl :=a3 + bl

30

SSA Form

3: return C

I:al :=0

2:a3:=¢ (a2, al)

bl :=¢ (b0, b2)

c2:=¢ (cO, cl)

b2:=a3+1

cl :=c2+b2

a2 :=b2 *?2

if a2 <N

3: return cl

31

Optimizations using SSA

e SSA form contains statements, basic blocks
and variables

e Dead-code elimination

—1f there 1s a variable v with no uses and
def of v has no side-effects, delete
statement defining v

—1f 7 := ¢ (x, y) then eliminate this stmt if
no defs for x,y

32

Optimizations using SSA

e Constant Propagation

—1f v := ¢ for some constant ¢ then replace
v with ¢ for all uses of v

—v:=¢(cl, c2, .., cn) where all ¢, are equal
to ¢ can be replaced by v :=¢

33

Optimizations using SSA

1

1:=1

1:=1
k:=0

2:1f k < 100

T

3:1f 1< 20 4: return]

34

Optimizations using SSA

e Conditional Constant Propagation
— In previous flow graph, is j always equal to 17
— If j = 1 always, then block 6 will never execute
and so j:=1and j:= 1 always
— If j > 20 then block 6 will execute, and j :=k
will be executed so that eventually j > 20

— Which will happen? Using SSA we can find the
answer.

35

Optimizations using SSA

1:11 =1 jl:=1
kl:=0

——— k2 := ¢(k4, k1)

2:32 = ¢4, 1)

if k2 < 100

N

3:11 2 < 20 4: return j2

L,

3:13 =1l 6: 15 :=k2
k3 :=k2+1 k5 :=k2+1
\u/
7: 34 = 93, 15)

k4 := ¢p(k3,k5)

36

Optimizations using SSA

1:11 =1 jl:=1
kl:=0

——— k2 :=d(k4, 0)

After Constant
Propagation

2:12 =004, 1)

if k2 < 100

N

3:11 2 < 20 4: return j2

L\ —

5:13:=1 6: 15 :=k2
k3 :=k2+1 kS :=k2+1
\u/
7: 14 = ¢(3, k2)

k4 := ¢p(k3,k5)

37

Optimizations using SSA

1: —_|2:k2 := ¢(k4, 0)
if k2 < 100

N

3: 4: return 1

\

5: k3 :=k2+1

After Constant \

Propagation 7: k4 = §(k3)

38

Optimizations using SSA

1: —_|2:k2 = ¢(k3, 0)
if k2 < 100

AN

5: k3 :=k2+1 4: return 1

After Removing
Empty Blocks and
1-arg ¢ functions

Optimizations using SSA

e Arrays, Pointers and Memory

— For more complex programs, we need
dependencies. how does statement B depend on
statement A?

— Read after write: A defines variable v, then B
uses v

— Write after write: A defines v, then B defines v
— Write after read: A uses v, then B defines v
— Control: A controls whether B executes

40

Optimizations using SSA

Memory dependence

M[i] :=4
X := M[j]
MIK] :=]

We cannot tell if i, j, k are all the same value
which makes any optimization difficult

Similar problems with Control dependence

SSA does not offer an easy solution to these
problems

41

SSA Form

e Conversion from a Control Flow Graph
(created from TAC) into SSA Form 1s not
trivial

 Two famous algorithms:

— Lengauer-Tarjan algorithm (see the Tiger book
by Andrew W. Appel for more details)

— Harel algorithm

42

More on Optimization

* Advanced Compiler Design and Implementation

by Steven S. Muchnick

Control Flow Analysis
Data Flow Analysis
Dependence Analysis
Alias Analysis

Early Optimizations

Redundancy
Elimination

Loop Optimizations
Procedure Optimizations

Code Scheduling
(pipelining)

Low-level Optimizations
Interprocedural Analysis

Memory Hierarchy

43

Amdahl’s Law

° Sp eedu’ptotal —

((1 B TlmeFractionoptimized) +
TlmeFractionoptimized/ Sp eedupoptimized) -1
e Optimize the common case, 90/10 rule

e Requires quantitative approach
— Profiling + Benchmarking

e Problem: Compiler writer doesn’t know the
application beforehand

44

Summary

Optimizations can improve speed, while
maintaining correctness

Various early optimization steps
Global optimizations = dataflow analysis

Reachability and Liveness analysis provides
dataflow analysis

Static Single-Assignment Form (SSA)

45

