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Lexical Analysis

• Also called scanning, take input program
string and convert into tokens

• Example: T_DOUBLE    (“double”)
T_IDENT   (“f”)
T_OP   (“=“)
T_IDENT   (“sqrt”)
T_LPAREN   (“(“)
T_OP   (“-”)
T_INTCONSTANT (“1”)
T_RPAREN   (“)”)
T_SEP   (“;”)

double f = sqrt(-1);
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Token Attributes

• Some tokens have attributes
– T_IDENT   “sqrt”
– T_INTCONSTANT           1

• Other tokens do not
– T_WHILE

• Token=T_IDENT, Lexeme=“sqrt”, Pattern
• Source code location for error reports
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Lexical errors

• What if user omits the space in “doublef”?
– No lexical error, single token

T_IDENT(“doublef”) is produced instead of
sequence T_DOUBLE, T_IDENT(“f”)!

• Typically few lexical error types
– E.g., illegal chars, opened string constants or

comments that are not closed
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Implementing Lexers: Loop and
switch scanners

• Ad hoc scanners
• Big nested switch/case statements
• Lots of getc()/ungetc() calls

– Buffering
• Can be error-prone, use only if

– Your language’s lexical structure is simple
– Tools don’t do what you want

• Changing or adding a keyword is problematic
• Key idea: separate the defn from the implementation
• Problem: we need to reason about patterns and how they

can be used to define tokens (recognize strings).
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Formal Languages: Recap

• Symbols: a, b, c   
• Alphabet : finite set of symbols Σ = {a, b}
• String: sequence of symbols bab
• Empty string: ε        Define: Σε = Σ ∪ {ε}
• Set of all strings: Σ*
• (Formal) Language: a set of strings

{ an bn : n > 0 }

cf. The Library of Babel, Jorge Luis Borges
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Regular Languages

• The set of regular languages: each element
is a regular language

• Each regular language is an example of a
(formal) language, i.e. a set of strings
e.g. { am bn : m, n are +ve integers }
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• Defining the set of all regular languages:
– The empty set and {a} for all a in Σε are regular

languages
– If L1 and L2 and L are regular languages, then:

    are also regular languages
– There are no other regular languages

(concatenation)

(union)
(Kleene closure)

Regular Languages
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Formal Grammars

• A formal grammar is a concise description
of a formal language

• A formal grammar uses a specialized syntax
• For example, a regular expression is a

concise description of a regular language
(a|b)*abb : is the set of all strings over the

alphabet {a, b} which end in abb
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Regular Expressions: Definition

• Every symbol of Σ ∪ { ε } is a regular
expression

• If r1 and r2 are regular expressions, so are
– Concatenation:  r1 r2
– Alternation:  r1|r2
– Repetition: r1*

• Nothing else is.
– Grouping re’s: e.g. aa|bc vs. ((aa)|b)c
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• Alphabet { 0, 1 }
• All strings that represent binary numbers

divisible by 4 (but accept 0)  ((0|1)*00)|0
• All strings that do not contain “01” as a

substring  1*0*

Regular Expressions: Examples
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Regular Expressions

• To describe all lexemes that form a token as
a pattern
– (0|1|2|3|4|5|6|7|8|9)+

• Need decision procedure: to which token
does a given sequence of characters belong
(if any)?
– Finite State Automata
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Finite Automata: Recap

• A set of states S
– One start state q0, zero or more final states F

• An alphabet ∑ of input symbols
• A transition function:

– δ: S x Σ ⇒ S
• Example: δ(1, a) = 2
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Finite Automata: Example

• What regular expression does this
automaton accept?

0 0

1

1 01

Answer: (0|1)*00
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FA: Pascal Example
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Building a Lexical Analyzer

• Token  ⇒ Pattern
• Pattern ⇒ Regular Expression
• Regular Expression  ⇒ NFA
• NFA ⇒ DFA
• DFA ⇒ Lexical Analyzer
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NFAs

• NFA: like a DFA, except
– A transition can lead to more than one state,

that is, δ: S x Σ ⇒ 2S

– One state is chosen non-deterministically
– Transitions can be labeled with ε, meaning

states can be reached without reading any input,
that is,

δ: S x Σ ∪ { ε } ⇒ 2S
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Thompson’s construction

• Converts regexps to NFA
• Five simple rules

– Symbols
– Empty String
– Alternation (r1 or r2)
– Concatenation (r1 followed by r2)
– Repetition (r1*)
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Thompson Rule 1

• For each symbol x of the alphabet, there is a
NFA that accepts it (include a sinkhole state)

x

Σ\x Σ

Σ
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Thompson Rule 2

• There is an NFA that accepts only ε

Σ
Σ
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Thompson Rule 3

• Given two NFAs for r1, r2, there is a NFA
that accepts r1|r2

ε r1
ε

ε r2

ε
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Thompson Rule 4

• Given two NFAs for r1, r2, there is a NFA
that accepts r1r2

ε
r1

ε
r2

ε
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Thompson Rule 5

• Given a NFA for r1, there is an NFA that
accepts r1*

ε
r1

ε

ε

ε
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Example

• Set of all binary strings that are divisible
by four (include 0 in this set)

• Defined by the regexp: ((0|1)*00) | 0
• Apply Thompson’s Rules to create an

NFA
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• 0

• 1

Basic Blocks 0 and 1
0

1

(this version does not report errors: no sinkholes)
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0

1
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ε

ε

ε

0|1



9/25/06 27

0

1

ε

ε

ε

ε

ε

ε

ε

ε

(0|1)*
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(0|1)*00
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ε
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((0|1)*00)|0
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Simulating NFAs

• Similar to DFA simulation
• But have to deal with ε transitions and

multiple transitions on the same input
• Instead of one state, we have to consider

sets of states
• Simulating NFAs is a problem that is

closely linked to converting a given NFA to
a DFA
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NFA to DFA Conversion

• Subset construction
• Idea: subsets of set of all NFA states are

equivalent and become one DFA state
• Algorithm simulates movement through

NFA
• Key problem: how to treat ε-transitions?
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ε-Closure

• Start state: q0

• ε-closure(S): S is a set of states
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ε-Closure (T: set of states)

   push all states in T onto stack
initialize ε-closure(T) to T
while stack is not empty do begin

pop t off stack
for each state u with u ∈ move(t, ε) do
     if u ∉ ε-closure(T) do begin
         add u to ε-closure(T)
         push u onto stack
     end

end
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NFA Simulation

• After computing the ε-closure move, we get
a set of states

• On some input extend all these states to get
a new set of states
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NFA Simulation

• Start state: q0

• Input: c1, …, ck
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Conversion from NFA to DFA

• Conversion method closely follows the
NFA simulation algorithm

• Instead of simulating, we can collect those
NFA states that behave identically on the
same input

• Group this set of states to form one state in
the DFA
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Subset Construction

    add ε-closure(q0) to Dstates unmarked
while ∃ unmarked T ∈ Dstates do begin

mark T;
for each symbol c do begin

       U := ε-closure(move(T, c));
      if U ∉ Dstates then
          add U to Dstates unmarked
      Dtrans[d, c] := U;
end

end
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Subset Construction
states[0] = ε-closure({q0})
p = j = 0
while j ≤ p do begin

for each symbol c do begin
e = DFAedge(states[j], c)
if e = states[i] for some i ≤ p
then Dtrans[j, c] = i
else p = p+1

states[p] = e
Dtrans[j, c] = p

j = j + 1
end

end
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Example: subset construction

4 5
0

6 7
1

3 8

ε

ε

ε

ε

9
ε

2
ε

ε

10 11
00

12 13
0

1

14
ε

ε

ε

ε

ε



9/25/06 40

ε-closure(q0)
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move(ε-closure(q0), 0)
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ε-closure(move(ε-closure(q0), 0))
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move(ε-closure(q0), 1)
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ε-closure(move(ε-closure(q0), 1))
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DFA (partial)

[1, 2, 
3, 4, 6, 9, 

12]

[3, 4, 5, 
6, 8, 9, 10, 

13, 14]

[3, 4, 6, 
7, 8, 9]

1

0
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DFA for ((0|1)*00)|0

[1, 2, 
3, 4, 6, 9, 

12]

[3, 4, 5, 
6, 8, 9, 10, 

13, 14]

[3, 4, 6, 
7, 8, 9]

0

1

1

[3, 4, 5, 
6, 8, 9, 10,

11, 14]

0

[3, 4, 
5, 6, 8, 
9, 10]

0 0

11

1

0
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Minimization (I)

[1, 2, 
3, 4, 6, 9, 

12]

[3, 4, 6, 
7, 8, 9]

0

1

[3, 4, 5, 
6, 8, 9, 10,

11, 14]

[3, 4, 
5, 6, 8, 
9, 10]

0 0

11

1

0
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Minimization (II)

[3, 4, 6, 
7, 8, 9]

[3, 4, 5, 
6, 8, 9, 10,

11, 14]

[3, 4, 
5, 6, 8, 
9, 10]

0 0

11

1

0
01

1 0

1

0
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Minimization of DFAs

• Algorithm for minimizing the number of
states in a DFA

• Step 1: partition states into 2 groups:
accepting and non-accepting

A

B

D

0

1

1
C

0

E
0 0

11

1
0
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Minimization of DFAs

• Step 2: in each group, find a sub-group of states
having property P

• P: The states have transitions on each symbol (in
the alphabet) to the same group

A

B

D

0

1

1
C

0

E
0 0

11

1
0A, 0: blue

A, 1: yellow
E, 0: blue
E, 1: yellow
D, 0: yellow
D, 1: yellow

B, 0: blue
B, 1: yellow
C, 0: blue
C, 1: yellow
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Minimization of DFAs

• Step 3: if a sub-group does not obey P split up the
group into a separate group

• Go back to step 2. If no further sub-groups emerge
then continue to step 4

A

B

D

0

1

1
C

0

E
0 0

11

1
0A, 0: blue

A, 1: green
E, 0: blue
E, 1: green
D, 0: yellow
D, 1: green

B, 0: blue
B, 1: green
C, 0: blue
C, 1: green
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Minimization of DFAs

• Step 4: each group becomes a state in the
minimized DFA

• Transitions to individual states are mapped to a
single state representing the group of states

A

B

D

0

1

1
C

0

E
0 0

11

1
0

01

1 0

1

0
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NFA to DFA

• Subset construction converts NFA to DFA
• Complexity:

– in programs we measure time complexity in
number of steps

– For FSAs, we measure complexity in terms of
the number of states
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NFA to DFA

• Problem: An n state NFA can sometimes
become a 2n state DFA, an exponential
increase in complexity
– Try the subset construction on NFA built for

the regexp A*aAn-1 where A is the regexp (a|b)
• Minimization can reduce the number of

states
• But minimization requires determinization
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NFA to DFA
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NFA to DFA
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NFA to DFA

25 = 32 states
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NFA vs. DFA in the wild

mawk, MKS utilities, GNU Emacs (when
requested)

POSIX NFA

GNU awk, GNU grep/egrep, TclHybrid
NFA/DFA

GNU Emacs, Java, grep (most versions), less,
more, .NET languages, PCRE library, Perl, PHP
(pcre routines), Python, Ruby, sed (most
versions), vi

Traditional NFA

awk (most versions), egrep (most versions), flex,
lex, MySQL, Procmail

DFA

ProgramsEngine Type
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Regexp to DFA: ((ab)|(ba))*#

•

*

|

a

1

b

2

5
#

•

•

3

b

4

a
(1)
{1}

(2)
{2}

(3)
{3}

(4)
{4}

(5)
{5}

(2)
{1}

(4)
{3}

(2,4)
{1,3}

(2,4)
{1,3}

(5)
{1,3,5}

ε-node

firstpos = {}
lastpos = ()
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Regexp to DFA: followpos

• followpos(p) tells us which positions can follow a
position p

• There are two rules that use the firstpos {} and
lastpos () information

•

c1 c2(i,j) {k,l}

followpos(i)+=k,l
followpos(j)+=k,l

(i,j){k,l}

followpos(i)+=k,l
followpos(j)+=k,l

*

…
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Regexp to DFA: ((ab)|(ba))*#

•

*

|

a

1

b

2

5
#

•

•

3

b

4

a
(1)
{1}

(2)
{2}

(3)
{3}

(4)
{4}

(5)
{5}

(2,4)
{1,3}

(5)
{1,3,5}

root={1,3,5}
fp(1)=2
fp(3)=4
fp(2)=1,3,5
fp(4)=1,3,5

fp(1)+=2 fp(3)+=4

fp(2)+=1,3
fp(4)+=1,3

fp(2)+=5
fp(4)+=5
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Regexp to DFA: ((ab)|(ba))*#
root={1,3,5}
fp(1)=2
fp(3)=4
fp(2)=1,3,5
fp(4)=1,3,5

0

1 2

3 4

5

a

b

a

b

a

b

b a

#

#

1:a
2:b
3:b
4:a
5:#

#
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Regexp to DFA: ((ab)|(ba))*#
root={1,3,5}
fp(1)=2
fp(3)=4
fp(2)=1,3,5
fp(4)=1,3,5
1:a
2:b
3:b
4:a
5:#

{1,3,5} A

A: fp(1),a {2},a  B,a

A: fp(3),b {4},b  C,b

B: fp(2),b {1,3,5},b  A,b

C: fp(4),a {1,3,5},a  A,a

A

A: fp(5),# {},#  E,#

b

C

b

a

Ba

E#
A

b

C

b

a

Ba
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Equivalence of Regexps

• (R|S)|T == R|(S|T) ==
R|S|T

• (RS)T == R(ST)
• (R|S) == (S|R)
• R*R* == (R*)* == R*

== RR*| ε
• R** == R*
• (R|S)T = RT|ST

• R(S|T) == RS | RT
• (R|S)* == (R*S*)* ==

(R*S)*R* ==
(R*|S*)*

• RR* == R*R
• (RS)*R == R(SR)*
• R = R|R = Rε
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Equivalence of Regexps

• 0(10)*1|(01)*
• (01)(01)*|(01)*
• (01)(01)*|(01)(01)*|ε
• (01)(01)*|ε
• (01)*

• (RS)*R == R(SR)*
• RS == (RS)
• R* == RR*|ε
• R == R|R
• R* == RR*| ε
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Lexical Analyzer using DFAs

• Each token is defined using a regexp ri

• Merge all regexps into one big regexp
– R = (r1 | r2 | … | rn)

• Convert R to an NFA, then DFA, then
minimize
– remember orig NFA final states with each DFA

state
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Lexical Analyzer using DFAs

• The DFA recognizer has to find the longest
match for a token
– e.g. <print> and not <pr>, <int>

• If two patterns match the same token, pick
the one that was listed earlier in R
– e.g. prefer final state (in the original NFA) of r2

over r3
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Lexical Analyzer using DFAs

• Alternative method:
– Organize all the DFAs for each token in an ordered list
– For input i1, i2, …, in run all DFAs until some reach a

final state (pick the longest match for each DFA)
– Pick the token for which some DFA could read the

longest match in the input,
• e.g. prefer DFA #8 over all others because it read the input

until i30 and none of the other DFAs reached i30

– If two DFAs reach the same input character then pick
the one that is listed first in the ordered list
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Implementing DFAs

• 2D array storing the transition table
• Adjacency list, more space efficient but

slower
• Merge two ideas: array structures used for

sparse tables like DFA transition tables
– base & next arrays: Tarjan and Yao, 1979
– Dragon book (default+base & next+check)



9/25/06 70

Implementing DFAs

0

2

1

bd

b

a c

a c

-1212
-1-11
2-1-0
dcba
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Implementing DFAs

-1212
-1-11
2-1-0
dcba

-1211121
-121

76543210

-1-1
2-1-

02
41
20base

next

-1010222 check
nextstate(s, x) :
  L := base[s] + x
  return next[L] if check[L] eq s
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Implementing DFAs

-1212
-1-11
2-1-0
dcba

-12112-
--2-

6543210

-1-1
2-1-

02
31
10base

next

-10102- check
nextstate(s, x) :
  L := base[s] + x
  return next[L] if check[L] eq s
  else return nextstate(default[s], x)

1
-
-

default
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Summary

• Token  ⇒ Pattern
• Pattern ⇒ Regular Expression
• Regular Expression ⇒ NFA

– Thompson’s Rules
• NFA ⇒ DFA

– Subset construction
• DFA ⇒ minimal DFA

– Minimization
⇒ Lexical Analyzer (multiple patterns)


