Homework #8: CMPT-379

Distributed on Mon, Nov 27; Due on Mon, Dec 4

Anoop Sarkar — anoop@cs.sfu.ca

This assignment finally wraps up the compiler that you have been building throughout this semester. In this final
step, you will implement some basic semantic checks, and code generation to MIPS assembly for the entire
Decaf reference grammar.

(D

2)

Code Generation:

As before, the target of the code generation step will be MIPS R2000 assembly language. You should
augment your code generator for the sub-grammar from the last assignment to cover the entire Decaf
syntax. Mostly, this means adding in additional code generation steps that deal with control flow
statements like for and while loops, if statements and the like in Decaf.

In this assignment, you should try to implement register spilling. However, I will not enforce this strictly,
if your code generation step runs out of registers to use, your program can exit with an error message.
Once you have implemented code generation for the remainder of Decaf syntax, you can test with Decaf
programs like catalan.decaf and gcd.decaf into MIPS and run it using spim. Submit the entire
compiler pipeline which accepts Decaf code and produces MIPS assembly that can then be run using
spim.

Semantic Checking

Perform at least the following semantic checks for any syntactically valid input Decaf program:

a. A method called main has to exist in the Decaf program.

b. Find all cases where there is a type mismatch between the definition of the type of a variable and a
value assigned to that variable. e.g. bool x; x = 10; isan example of a type mismatch.

c. Find all cases where an expression is well-formed, where binary and unary operators are
distinguished from relational and equality operators. e.g. true + false is an example of a
mismatch but true != true is not a mismatch.

d. Check that all variables are defined in the proper scope before they are used as an lvalue or rvalue in a
Decaf program (see below for hints on how to do this).

e. Check that the return statement in a method matches the return type in the method definition. e.g.
bool foo() { return(1®); }is an example of a mismatch.

To do these semantic checks you will need to use either your attribute grammar implementation or
tree-matching implementation. In addition, you will need to use the symbol table which stores with each
identifier specification, the type of the identifier (for variables) or typed parameter list and return type (for
methods). You will need to know proper scoping, that is, when the variable or method where the variable
or method is alive in the program. The implementation of mutually recursive methods is optional in this
homework. You can assume that each method is defined before it is called in all input Decaf programs.

Raise a semantic error if the input Decaf program does not pass any of the above semantic checks.

Submit a program that takes a syntactically valid Decaf program as input and performs all the semantic
checks listed above. You can include any other semantic checks that seem reasonable based on your
analysis of the language. Provide a readme file with a description of any additional semantic checks.



(3) Compiler Contest (optional; not graded):
Submit your compiler as a self-contained package that can be used to compile Decaf programs into MIPS
assembly and subsequently execute them using the spim simulator for the MIPS processor. Make sure
that your compiler can be compiled by running make or a script called compileit. Create a script called
decafcc (or decafcc. sh) that is used to run the entire compiler chain from lexical analysis to code
generation to running the MIPS simulator (assume spim is in the PATH).
In your submission, provide in a subdirectory called positives any number of Decaf programs that
work with your compiler (the programs should be valid Decaf based on the language definition and
execute using spim) along with the legitimate output for that Decaf program, e.g. for a program called
exprTest.decaf also include the legitimate output in a file called exprTest.decaf.output. Also
provide a subdirectory called negatives with Decaf programs that should exit with an error. Your
makefile should include an entry such that when make testall is run, it should run your Decaf
compiler on all the Decaf programs in the positives and negatives directory.
You could try to break the compilers written by your peers, but only if your compiler can survive those
Decaf programs itself. For instance, a Decaf compiler that implements register spilling will be more
robust to Decaf programs that use up a lot of registers and could be used as a positives Decaf program
to boost your own (unofficial) ranking.



