Homework #7: CMPT-379

Distributed on Mon, Nov 20; Due on Mon, Nov 27

Anoop Sarkar — anoop@cs.sfu.ca

(1) Code Generation (Second Steps):
In this section of the homework, you make the second step towards full code generation in Decaf. You
will extend your previous code generation implementation to deal with method definitions (especially
recursive methods) and method calls as well as global variables and global array variables (which are the
only kind of arrays allowed in Decaf). As before, the target of the code generation step will be MIPS
R2000 assembly language. You should augment your code generator for the fragment of Decaf from the
last assignment to cover the following fragment of Decaf syntax.

(program)
(class-name)
(field-decl)

(method-decl)
(block)
(var-decl)
(type)
(statement)
(assign)
(method-call)

(method-name)
(callout-arg)
(Ivalue)

(expr)

(bin-op)
(arith-op)
(rel-op)
(eq-op)
(cond-op)

N

Ll Ll Ll T

—— -1 11

R

class (class-name) ¢{’ (field-decl) * {(method-decl) * ¢}’
id

(type) {id | { id ‘[* intConstant <1* } }*,¢;’
(type) id ‘=’ (constant) ¢;’

{ (type) | void } id < [{ (type)id } *, | ©)* (block)
‘> (var-decl) * (statement) * ¢}’

(type) {id | *, ¢’

int | bool

(assign) ¢;’ | (method-call) ¢;° | (block) | return [(expr)] i
(lvalue) ‘=’ (expr)

(method-name) ‘C [{ (expr) } *,] DK

callout ¢ C stringConstant [{ ‘,’ { (callout-arg) } +, }])’
id

(expr) | stringConstant

id | id ‘[’ (expr) ‘1’

(Ivalue) | (method-call) | {constant)

(expr) (bin-op) {(expr)

“~* (expr)

‘1’ (expr)

‘C (expr) ‘)’

(arith-op) | (rel-op) | (eq-op)| (cond-op)

T 0 R 4] k< > ‘% | ot

| k=2 | =

== | “1=

‘&&’| ‘II’

(constant)y — intConstant | charConstant | (bool-constant)

(bool-constant) — true| false

You should attempt to implement register spilling. However, I will not enforce this strictly, if your code
generation step runs out of registers to use, your program can exit with an error message.

Save the MIPS assembly program to file filename.mips and run the simulator spim as follows:

spim -file <filename.mips>

Create the entire compiler pipeline which accepts Decaf code and produces MIPS assembly that can then
be run using spim as shown above.

