
Homework #6: CMPT-379
Distributed on Wed, Nov 8; Due on Mon, Nov 20

Anoop Sarkar – anoop@cs.sfu.ca

(1) Code Generation (First Steps)
In this homework, you make the first step towards full code generation in Decaf. In the first stage,
implement the steps listed below for the following fragment of Decaf syntax:

〈block〉 → ‘{’ 〈var-decl〉 ∗ 〈statement〉 ∗ ‘}’
〈var-decl〉 → 〈type〉

{
id
}
+, ‘;’

〈type〉 → int | bool
〈statement〉 → 〈assign〉 ‘;’ | 〈method-call〉 ‘;’ | 〈block〉

〈assign〉 → 〈lvalue〉 ‘=’ 〈expr〉

〈method-call〉 → callout ‘(’ stringConstant
[{

‘,’
{
〈callout-arg〉

}
+,
}]

‘)’
〈callout-arg〉 → 〈expr〉 | stringConstant
〈lvalue〉 → id
〈expr〉 → 〈lvalue〉

| 〈method-call〉

| 〈constant〉

| 〈expr〉 〈bin-op〉 〈expr〉

| ‘-’ 〈expr〉

| ‘!’ 〈expr〉

| ‘(’ 〈expr〉 ‘)’
〈bin-op〉 → 〈arith-op〉 | 〈rel-op〉 | 〈eq-op〉 | 〈cond-op〉

〈arith-op〉 → ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘<<’ | ‘>>’ | ‘%’ | rot
〈rel-op〉 → ‘<’ | ‘>’ | ‘<=’ | ‘>=’
〈eq-op〉 → ‘==’ | ‘!=’

〈cond-op〉 → ‘&&’ | ‘||’
〈constant〉 → intConstant | charConstant | 〈bool-constant〉

〈bool-constant〉 → true | false

This fragment of Decaf essentially represents the expression-level sub-grammar. Note that you should
use your LR(0) or SLR(1) implementation of this reference sub-grammar from your previous work.
Here’s an example input for this sub-grammar (print a boolean as an integer: 0=false and 1=true):

{

int x; bool y; x = 2+2*3+5+(43*23-44);

{ int y; y = x * -30 + 40 * 2; x = -y; }

y = !true; callout("print_int", x);

}

You have a couple of options for implementing code-generation on top of your LR parser:

1

• Implement synthesized and/or inherited attribute passing on top of your LR parser. A reduce action
can pass synthesized attributes in the parser stack (information such as MIPS assembly code
fragments). For inherited L-attributes, goto actions store information on the stack where subsequent
rule predictions can access the inherited attributes by peeking into the stack. Source code to
implement the attribute grammar can be stored along with the CFG rules and compiled into the
parser.

• Implement code generation by reading in the parse tree and producing code via tree rewriting using
the techniques and algorithms given in Chapter 9 of the Dragon book. In this option, you will have
to write tree patterns which match the output Decaf parse trees and produce output information
(like MIPS code fragments and a target register location). The output will be created by pasting
individual tree patterns until it covers the parse tree. The matching can be done top-down (greedy)
or bottom-up (dynamic programming). If you choose bottom-up, do a two-pass algorithm to store
variable info in the symbol table and add a pointer to the block sub-tree where it is alive (see below).

For either option, you will have to implement a symbol table which will store information about the
variables. The easiest way to implement this will be using a hash-table or map data-structure which stores
the mapping: identifier-string→ list of 〈type, value〉 where the value could be null. The
identifier-string for each variable needs to map to a list so that it can handle shadowing of variables
(as in the above example, where variable y has a shadow definition in the nested block).
The target of the code generation step will be MIPS R2000 assembly language. We will treat MIPS
assembly code as a virtual machine and use an simulator for MIPS assembly called spim that takes MIPS
assembly and simulates (runs) it on x86 Linux. spim is available for your use from the location
mentioned on the course web page. Chapter 8 in the Dragon Book provides a case-by-case treatment of
code generation issues for each kind of statement in Decaf.
In addition to stack/tree manipulation, you have to manage the register names used in the output assembly
code. For this assignment, we will ignore some of the complexities of code generation by assuming that
we have a sufficient number of temporary registers at hand. The MIPS target machine allows the use of
the following registers: $a0-$a3, $t0-$t9, $s0-$s7. Your program should use the algorithm for
stacked temporary registers explained in Section 8.3 (page 480) of the Dragon book. However, if despite
using this algorithm if your code generation step runs out of registers to use, your program can exit with
an error message. Optionally, if you are done with the rest of the homework, you can use the heap to store
values associated with identifiers, and load them when needed into a register. This will allow the re-use of
registers (using register spilling to the heap). See using-heap.mips on the course web page.
The standard input-output library is provided through the syscall interface (compiled into spim).

I/O library service syscall code Arguments Result
print int 1 $a0 = integer
print string 4 $a0 = string
read int 5 integer in $v0
read string 8 $a0 = buffer, $a1 = length
exit 10

I/O should be done only using the syscall service. Do not use the jal printf idiom used in some
examples in the MIPS/spim documentation.
Submit the entire compiler pipeline which accepts Decaf code and produces MIPS assembly. Save the
MIPS assembly program to file filename.mips and run the simulator spim as follows:

spim -file <filename.mips>

(2) Submission Procedure: Create a shell script called decafcc or decafcc.sh which should do all the
phases of compilation, from lexical analysis, to parsing, to the code generation step, and running spim on
the MIPS assembly (assume spim and the other binaries you need are in the PATH).

2

