)

Homework #5: CMPT-379

Distributed on Mon, Oct 23; Due on Fri, Nov 3

Anoop Sarkar — anoop@cs.sfu.ca

LR Parser Table Construction:

Your task for this question is to build the action/goto table needed for LR parsing. We will be using LR(0)
items to build the table. A program called makeLRsets has been provided to you which computes the
LR(0) configuration sets for the augmented context-free grammar and the finite-state machine (FSM) that
is the result of the Set-of-Items construction. Use this FSM to build the action/goto table, which you can
then use with the LR parser you built in your previous homework. makeLRsets can be run as follows:

./makeLRsets -f grammar.txt -o lrfsm.txt > lritems.txt

This invocation takes a grammar file called grammar . txt in the usual format:

t

t t TIMES f

£ ID

f LPAREN t RPAREN

In the above invocation, makeLRsets writes to 1rfsm. txt the automaton based on the Set-of-Items
construction in the following format:

shift LPAREN
shift ID
goto f

goto t

shift LPAREN
shift ID
goto f

goto t

shift TIMES
shift TIMES
shift RPAREN
shift LPAREN
shift ID
goto f
reduce
reduce
accept
reduce
reduce

XNoOooooOO VUV R R R,

O NP WNONREFNOOOOUVIWNRFRE & WN R

N S =W

The format for shift/goto actions is: (fromstate) (tostate) (action) (symbol). and for
reduce/accept actions: % (state) (action) (rule-number), where rule number 0 is assigned to the
new rule top — t added by the construction to create an augmented CFG.

The standard output for makeLRsets, which is saved to the file 1ritems. txt in the above invocation,
contains all the LR(0) items, the configuration sets for each of the states in the automaton, and the
augmented CFG with the rule numbers used to index the reduce actions.

The notation for an item (or dotted rule) is:

number A a \. B

where number is the CFG rule number and \. represents the dot.

Your task it to build an action/goto table for your Decaf context-free grammar using the makeLRsets

program. It is your job to resolve any conflicts in the action/goto table using the following alternative
methods.

Note that for each type of conflict one of these methods will be the most appropriate, e.g. favor shift in
shift/reduce conflicts for dangling else types of ambiguity, and implement precedence and associativity
for arithmetic expressions, etc.

Rewrite the Decaf CFG that you have written for an earlier homework and remove all conflicts.

2. Implement and use the FOLLOW set for the CFG non-terminals to remove shift/reduce and
reduce/reduce conflicts using the SLR(1) construction.

3. Exploit the precedence and associativity definition in the Decaf language definition to handle
ambiguity in the use of binary operators.

4. If none of the above resolve the conflicts in the action/goto table then:

e Resolve shift/reduce conflicts in favor of shifts, and

e Resolve reduce/reduce conflicts by picking the production rule that was listed first in the
grammar file

Submit the CFG for Decaf that you used for this assignment and the action/goto table produced and any
precedence/associativity information you have used as part of the parser definition.

(2) Error Reporting

You should include some minimal error reporting in your LR parser, so that syntax errors report the line
number and character position in the program file (you can stop at the first error). The particular syntax
errors you report is up to you. Optionally, you can exploit the current state of the LR parser to provide
more detailed error reporting.

You will need to submit the entire pipeline: from passing the input Decaf program through the lexical
analysis phase, and based on the LR parser, you should produce the parse tree for valid Decaf programs.
Your LR parser should have at least minimal error reporting implemented. Provide a readme file with any
special instructions.

3)

Introduction to MIPS assembly: The target of the code generation step for the compiler will be MIPS
R2000 assembly language. MIPS is a reduced instruction set (RISC) machine. We will treat MIPS
assembly code as a virtual machine and use a simulator for MIPS assembly called spim that takes MIPS
assembly and simulates (runs) it on x86 Linux. spim is available in the location mentioned on the course
web page.

Your task for this homework is to convert the following Decaf program called catalan.decaf by hand
into MIPS assembly.

class Catalan {

void main() {

int i, j;
i = callout("read_int");
j = cat(i);

callout("print_int", j);
callout("print_str", "\n");

}

// catalan number of n
int cat(int n) {

int t;

t = fact(n);

return(fact(2*n) / (t * t * (n+1)));
}

// factorial of n

int fact(int n) {
if (n == 1) { return(l); }
else { return(n*fact(n-1)); }

}

Provide the MIPS assembly program in a file called catalan.mips which should run on the simulator
spim as follows: spim -file catalan.mips

When the MIPS program is run on the spim simulator, it should wait for an integer input n from the user,
and then print out the result of the catalan function for n followed by a newline character. The MIPS
program must be a direct translation of the Decaf program. Comment your MIPS code heavily. Compare
your generated code to the parse tree and reflect on automating code generation (topic of a future
homework). This exercise will familiarize you with MIPS assembly. Read the documentation provided on
the course web page that introduces you to MIPS assembly, including a detailed tutorial on passing
parameters on the stack frame for procedure calls in MIPS, and a tutorial on how to use spim. It assumes
some familiarity with assembly language. Ask for background reading if you are not familiar with any of
the terms used in the MIPS documentation.

You have to manage the register names used in the output assembly code. For this homework, you can
ignore some of the complexities of code generation by assuming that we have a sufficient number of
temporary registers at hand. Use the idea of using stacked temporary registers explained in Section 8.3
(page 480) of the Dragon book. A few facts that might be useful: in MIPS assembly, upto four arguments
can be passed directly to a subroutine in the registers $a®-$a3, and $s0-$s7 are temporary registers that
retain values during a function call, while temporary registers $t0-$t7 do not retain their values. The
standard input-output library is provided through the syscall interface (compiled into spim).

] I/O library service | syscall code \ Arguments Result ‘

print_int 1 $a0 = integer
print_string 4 $a0 = string
read_int 5 integer in $vO
read_string 8 $a0 = buffer, $al = length
exit 10

Below is an example in MIPS that uses the syscall interface above to read an integer from standard
input using read_int, and then prints it out to standard output using print_int, and then prints out a
newline using print_string:

.data

nl:
.asciiz "\n"
.text

main:
1i $vO, 5
syscall
move $a®, $vO
1i $vo, 1
syscall
1i $vo, 4
la $a0®, nl
syscall

I/O should be done only using the syscall service. Do not use the jal printf idiom used in some
examples in the MIPS/spim documentation. Below is a simple Decaf program that computes a simple
expression and the corresponding MIPS translation (it shows how to use temporary registers and how to
store and use a global string constant).

class Expr { .data
void main() { str0:
int x; .asciiz "\n"
X = 2%3+5; B
callout("print_int", x); .text
callout("print_string"”, "\n"); .globl main
} main:
} 1i $t0, 2
1i $t1, 3
mul $t2, $t0, $tl
1li $t0, 5

addu $t1, $t0, $t2
move $a®, $tl

1i $vo, 1

syscall

1li $voO, 4

la $a0®, stro®
syscall

