
Homework #4: CMPT-379
Distributed on Mon, Oct 9; Due on Mon, Oct 23

Anoop Sarkar – anoop@cs.sfu.ca

(1) LR Parsing: Implement the LR parsing algorithm (see Section 4.7 of the Dragon book). Your program
should read in a text file containing a context-free grammar (the textual format of CFGs was described in
a previous homework). In addition the LR parser should read in two text files, one containing the action
table, the other containing the goto table. The output of the LR parser should be the parse tree
corresponding to the input string. Examples of the action and goto tables as text files are provided in the
usual location.
For this homework, instead of starting with the full Decaf grammar, your LR parser should be tested with
the example grammar shown in Example 4.33 of the Dragon book. For this assignment, do not create the
parsing table using a program: you can directly use the parsing table for the grammar provided in the
Dragon book in Fig 4.31.
Your program should run as follows:

cat tokens | parser exprGrammar.txt action.txt goto.txt

For the following token input:

ID x

PLUS +

ID y

TIMES *

LPAREN (

ID z

RPAREN )

and given the expression grammar from Example 4.33 in the Dragon book, written in the usual text
format below:

e e PLUS t

e t

t t TIMES f

t f

f LPAREN e RPAREN

f ID

the LR parser output should be the parse tree in the format shown below. Note the backslash preceding
each instance of a literal parenthesis to avoid confusion with the parentheses used to denote the tree
structure.

(e (e (t (f (ID x))))

(PLUS +)

(t (t (f (ID y)))

1



(TIMES *)

(f (LPAREN \()

(e (t (f (ID z))))

(RPAREN \)))))

For simplicity, your output parse tree can be printed out as one parse tree per line, rather than the indented
form shown above. In a graphical view, the above parse tree will be as shown below:

x

ID

f

t

e

+

PLUS

y

ID

f

t

*

TIMES

\(

LPAREN

z

ID

f

t

e

\)

RPAREN

f

t

e

Hints on code design:

• Your first step should be to implement a data structure for CFGs. You will need to read in files
containing CFGs in the text format.

• When designing the data structure for CFGs you should pay attention to the future use of this data
structure. In particular, consider the efficient implementation of the closure operation described in
Figure 4.33 in the Dragon book.

• When designing the data structure for the goto table, notice that the goto table is identical to the
definition of DFAs.

• When designing the data structure for the action table, notice that the action table is only a slight
variation from the definition of DFAs. Assume a standard indexing scheme for the CFG rules for the
reduce action when defining the text file for the action table.

2



(2) Grammar Conversion: Consider the following fragment of a Decaf program:

class foo {

int bar

Note that we could continue the above fragment with a field declaration, or a method declaration. This
issue will not be a problem for a LR parser if the CFG for Decaf can be written as an LR(0) or SLR(1)
grammar.
Convert the following CFG, which represents a small fragment of Decaf syntax, into an LR(0) or SLR(1)
grammar. As a result, the LR parsing table for such a grammar will have no shift/reduce or reduce/reduce
conflicts.

program → CLASS ID LCB field decl list method decl list RCB

field decl list → field decl field decl list

field decl list → ε

method decl list → method decl method decl list

method decl list → ε

field decl → type ID ASSIGN INTCONSTANT SEMICOLON

method decl → return type ID LPAREN RPAREN

return type → type

return type → VOID

type → INT

type → BOOL

3


