
Homework #3: CMPT-379
Distributed on Mon, Sep 25; due on Fri, Oct 6

Anoop Sarkar – anoop@cs.sfu.ca

You will need to refer to the Decaf language definition for this homework.

(1) Write a Decaf program that computes the Catalan number catalan(n) for any fixed integer n and prints
the value using the print int library function. Submit the program as the file catalan.decaf

(2) Implement the tokenizer for Decaf using the your code from previous homeworks. Submit a program that
implements the approach which can be run as follows:

lexan decafTokens.txt program.decaf

where decafTokens.txt is a specification of tokens in Decaf using finite-state machines based on your
implementation from Homework #2 and program.decaf is a filename which contains a Decaf program.
The token names should be the terminal symbols in the CFG of Question 3 below. Follow the usual
conditions for submission of your code that were necessary in previous homeworks. Make sure that all
supplementary files are included in your submission and that they are in the right location for your
program to work.
For questions about the token definitions refer to the Decaf language definition. For questions about the
output format of your tokenizer, refer to the sample Decaf program and the sample output of the
tokenizer provided to you in the location mentioned on the course web page.

(3) Write down a context-free grammar for the structure of Decaf programs based on the reference grammar
in the Decaf language definition (make sure that the non-terminal and terminal symbols used in the CFG
correspond as much as possible to the symbols used in the reference grammar). Submit a file called
decafGrammar.txt which contains the CFG in the following text format: For the CFG:
〈start〉 → A 〈start〉 B | ε the text format you should use is:

start A start B

start

Follow the convention that the non-terminals in this text format are written in the same format as
identifiers in Decaf but are in lowercase (e.g. start, and for hyphenated non-terminals like
method-name replace the hyphen with an underscore, e.g. method name) and write the terminal symbols
in the same format as identifiers but entirely in uppercase (e.g. A).
You should verify the correctness of your CFG either by examining it closely or you can verify aspects of
the CFG by writing some simple code for checking whether non-terminals are used in the right-hand side
of rules but not defined on the left-hand side anywhere else in the CFG, whether the terminal symbols are
valid tokens, etc. You do not need to submit this testing code.

1


