
Homework #2: CMPT-379
Distributed on Mon, Sep 18; due on Mon, Sep 25

Anoop Sarkar – anoop@cs.sfu.ca

(1) This assignment will use DFA recognition to build an engine for lexical analysis. It will accept the
definition of the tokens as a set of datafiles. In this assignment you will test your code on some simple but
instructive token definitions that will help test the correctness of the lexical analysis engine.
Section 3.8 of the Dragon book lays out the architecture of a lexical analysis engine. The engine takes a
specification of the tokens and uses a finite-state machine simulator to convert the input buffer into a
series of tokens. Rather than specify a single large finite-state machine for all the tokens (like we assumed
in our previous assignment), it is easier to specify a pattern (or a regular expression, or a finite-state
machine) for each token.
In abstract terms, we can define a set of tokens (T A, T B, T C) for each pattern pi:

T A p1
T B p2
T C p3

One particular way to define such a specification is with the use of regular expressions (we will use this
specification from the Dragon book, Example 3.18, as a running example):

T A a
T B abb
T C a∗b+

The lexical analysis engine should always pick the longest match possible, and in case of two patterns
matching a prefix of the input of equal length, we break the tie by picking the pattern that was listed first
in the specification (e.g. the token T B is preferred over T C for the input string abb, and for the same
input string, token T A followed by T C would be incorrect).
Approach 1: We can take the specification in terms of regular expressions for each token, convert each
regexp into an NFA using Thompson’s construction, then take the union of these NFAs, then convert it
into a DFA (making sure to remember the mapping between the DFA final states and the original NFA
final states and the order of token definitions). Then we can use the DFA simulation algorithm to convert
an input file into a sequence of tokens. In this approach, the specification of the lexical analyzer can
directly use regular expressions as shown above.
Approach 2: It is generally much harder to write down a DFA for all the tokens simultaneously with a
specified final state for each token. However, we can exploit the fact that it is easy to write a DFA for each
token in isolation and use a hybrid NFA/DFA matching algorithm. Figure 1 contains the DFAs for the
three regular expressions above. Once we have these DFAs we can combine them using ideas from the
NFA simulation algorithm (see Algorithm 3.4 in the Dragon book). In fact, instead of using set of states,
we can simplify NFA simulation in this case by simply keeping track of the length of a single pattern
match for each DFA and select the next token in the sequence by picking the longest match that appears
first in the token specification list. In this approach, the specification of the lexical analyzer can be defined
as follows:

1

0 1
a

0 1
a

2
b

3
b

0

a

1
b

b

Figure 1: DFA equivalents for the regular expressions a (dfa1), abb (dfa2), and a∗b+ (dfa3)

T_A dfa1.txt

T_B dfa2.txt

T_C dfa3.txt

where, dfa1.txt is the file containing the DFA for regexp a, dfa2.txt is the file with the DFA for
regexp abb and dfa3.txt for a∗b+ (see Figure 1 for a graphical depiction of what the files would
contain).
You can also choose to implement an approach which would convert from a regular expression to a DFA
and then use the hybrid NFA/DFA matching algorithm of Approach 2.
There is no difference in marks between Approach 1 and 2. Approach 2 involves writing much less code
but involves encoding all the patterns as DFAs and then writing them into files by hand. Approach 1, on
the other hand, is more flexible, allowing the use of regular expressions to write patterns. And since it can
determinize and minimize one single DFA for the entire specification, it can be substantially faster as well.
What is required: Choose one of the two approaches above and submit a program that implements the
approach which can be run as follows:

lexan lex.txt lex-input.txt

The file lex.txt contains the specification for all the tokens for the lexical analyzer. Please indicate in
your submission (in a README file) whether your implementation uses regular expressions in this file
(approach 1), or DFA filenames (approach 2).
The file lex-input.txt contains the text that is passed through the lexical analyzer that uses the
specification in lex.txt to convert this text into a stream of tokens.
Let us assume that lex.txt contains the specification shown in the example above. If the input text file
contains aaba, the program should produce the following output token types and their values (lexemes):

T_C aab

T_A a

If the input text file contains aabaaabbbbabba, the program should produce the following output token
types and their values (lexemes):

T_C aab

2

T_C aaabbbb

T_B abb

T_A a

If the input text file contains aabaaabbbbsbba which includes an illegal input character s, the program
should produce the following output token types and their values (lexemes):

T_C aab

T_C aaabbbb

illegal token

You can add more elaborate error reporting if you wish.
Here is another example of a lexical specification file (using Approach 1) for some keywords. This is
closer to the actual patterns used in a working compiler:

KW_INT int

KW_DOUBLE double

KW_STRING string

KW_VOID void

KW_WHILE while

KW_WS (’ ’|’\t’|’\n’)(’ ’|’\t’|’\n’)*

With the above specification, an input file containing while int string voidwhile should produce the
tokenization:

KW_WHILE while

KW_WS

KW_INT int

KW_WS

KW_STRING string

KW_WS

KW_VOID void

KW_WHILE while

KW_WS \n

In order to make testing your code possible, provide a makefile that produces an executable called lexan.
Running make test should produce output exactly as shown. You must include (at least) the two
example lexical specifications shown above.

3

