
CMPT-379

Compilers

Anoop Sarkar

http://www.cs.sfu.ca/˜anoop

1

Programming Languages and
Formal Language Theory

• We ask the question: Does a particular formal language describe some
key aspect of a programming language

• Then we find out if that language isn’t in a particular language class

2

Programming Languages and
Formal Language Theory

• For example, if we abstract some aspect of the programming language
structure to the formal language:
{wwR | where w ∈ {a, b}∗,wR is the reverse of w} we can then ask if this
language is a regular language

• If this is false, i.e. the language is not regular, then we have to go beyond
regular languages

3

Recursion in Regular Languages

• Consider a regular expression for arithmetic expressions:
2 + 3 ∗ 4
8 ∗ 10 + −24
2 + 3 ∗ −2 + 8 + 10

ˆ\s*-?\s*\d+\s*((\+|*)\s*-?\s*\d+\s*)*$

• Can we compute the meaning of these expressions?

4

Recursion in Regular Languages

• Construct the finite state automata and associate the meaning with the
state sequence

• However, this solution is missing something crucial about arithmetic
expressions – what is it?

5

Do Programming Languages belong to
Regular Languages

• Consider the following arithmetic expressions

– (((2) + (3)) ∗ (4))

– ((8) ∗ ((10) + (−24)))

• Map (→ a and)→ b. Map everything else to ε (keep only the tree structure)

• This results in strings like aaababbabb and aabaababbb

• What is a good description of this language? Let’s call it L

6

Pumping Lemma proofs

• Is L a regular language?

• To show something is not a regular language, we use the pumping
lemma

• For any infinite set of strings generated by a finite-state machine if you
consider a string that is long enough from this set, there has to be a loop
which visits the same state at least twice (from the pigeonhole principle)

• Thus, in a regular language L, there are strings x, y, z such that xyiz ∈ L
for i ≥ 0 where y , ε

7

Pumping Lemma

• Pumping Lemma formal statement:

– For all A that is in the set of regular languages,

– there exists a p (p is called the pumping length)

– such that for all s ∈ A, |s| ≥ p,

– there exists strings x, y, z such that s = xyz and |y| > 0 and |xy| ≤ p,

– such that for all i ≥ 0, xyiz ∈ A.

• Try it on regular languages: L(ab∗a) and L((aa)∗). Construct minimal DFA
for each one to find the value of p that is appropriate.

8

Pumping Lemma proofs

• Let L′ be the intersection of L with the language L1 defined by the regular
expression a∗b∗

• Intersect the set L = {ε, ab, abab, aabb, . . .} with
L1 = {ε, a, b, aa, ab, aab, abb, bb, . . .}

• Recall that RLs are closed under intersection, so L′ must also be a RL. In
fact, we can describe L′ as the language anbn for n ≥ 0

9

Pumping Lemma proofs

• For any choice of y (consider ai or aib or bi) if we multiply yn for n ≥ 0 we
get strings that are not in L′

• For example, for a string aaabbb if we pick y = ab and pick n = 2 we get a
string aaababbb which is not in L′

• Hence, the pumping lemma leads to the conclusion that L′ is not regular

• This implies that L is not regular since RLs are closed under intersection

• What lies beyond the set of regular languages?

10

The Chomsky Hierarchy

• unrestricted or type-0 grammars, generate the recursively enumerable
languages, automata equals Turing machines

• context-sensitive or type-1 grammars, generate the context-sensitive
languages, automata equals Linear Bounded Automata

• context-free or type-2 grammars, generate the context-free languages,
automata equals Pushdown Automata

• regular or type-3 grammars, generate the regular languages, automata
equals Finite-State Automata

11

The Chomsky Hierarchy
A system of grammars G = (N,T, P, S)

• T is a set of symbols called terminal symbols.
Also called the alphabet Σ

• N is a set of non-terminals, where N ∩ T = ∅
Some notation: α, β, γ ∈ (N ∪ T)∗
N is sometimes called the set of variables V

• P is a set of production rules that provide a finite description of an infinite
set of strings (a language)

• S is the start non-terminal symbol (similar to the start state in a FSA)

12

Languages

• Language defined by G: L(G)

– L(G): set of strings w ∈ T ∗ derived from S

– S ⇒+ w (derives in 1 or more steps using rules in P)

– w is a sentence of G

– Sentential form: S ⇒+ α and α contains a mix of terminals and
non-terminals

• Two grammars G1 and G2 are equivalent if L(G1) = L(G2)

13

The Chomsky Hierarchy:
G = (N,T, P, S) where, α, β, γ ∈ (N ∪ T)∗

• unrestricted or type-0 grammars: α→ γ, such that α , ε

• context-sensitive or type-1 grammars: α→ γ, where |γ| ≥ |α|
CSG Normal Form: αAβ→ αγβ, such that γ , ε and S → ε if ε ∈ L(G)

• context-free or type-2 grammars: A→ γ

• regular or type-3 grammars: A→ a B or A→ a

14

Regular grammars: right-linear CFG: L(G) = L(a∗b∗)
A → a A (1)

A → ε (2)

A → b B (3)

B → b B (4)

B → ε (5)

• Input: bb

• Derivation using sentential forms: A⇒ bB⇒ bbB⇒ bbε = bb

15

Context-free grammars: L(G) = {anbn | n ≥ 0}
S → a S b

S → ε

• Input: aabb

• Derivation using sentential forms:
S ⇒ aS b⇒ aaS bb⇒ aaεbb = aabb

16

Context-free grammars: L(G) = {an | n ≥ 0}
S → S S
S → a

• Input: aaaa

• Derivation using sentential forms:
S ⇒ S S ⇒ aS ⇒ aS S ⇒ aaS ⇒ aaS S ⇒ aaaS ⇒ aaaa

• But what about another derivation:
S ⇒ S S ⇒ S S S ⇒ S S S S ⇒ aS S S ⇒ . . .⇒ aaaa

• Key problem with CFGs: ambiguity

17

Context-sensitive grammars: L(G) = {anbn | n ≥ 1}
S → S B C

S → a C

a B → a a

C B → B C

B a → a a

C → b

18

Context-sensitive grammars: L(G) = {anbn | n ≥ 1}
S 1

S 2 B1 C1
S 3 B2 C2 B1 C1

a3 C3 B2 C2 B1 C1
a3 B2 C3 C2 B1 C1
a3 a2 C3 C2 B1 C1
a3 a2 C3 B1 C2 C1
a3 a2 B1 C3 C2 C1
a3 a2 a1 C3 C2 C1

a3 a2 a1 b3 b2 b1

19

Unrestricted grammars: L(G) = {a2i | i ≥ 1}
S → A C a B

C a → a a C

C B → D B

C B → E
a D → D a

A D → A C

a E → E a

A E → ε

20

Unrestricted grammars: L(G) = {a2i | i ≥ 1}
S

A C a B
A a a C B

A a a E
A a E a
A E a a

a a

21

Unrestricted grammars: L(G) = {a2i | i ≥ 1}

• A and B serve as left and right end-markers for sentential forms
(derivation of each string)

• C is a marker that moves through the string of a’s between A and B,
doubling their number using C a→ a a C

• When C hits right end-marker B, it becomes a D or E by C B→ D B or
C B→ E

• If a D is chosen, that D migrates left using a D→ D a until left
end-marker A is reached

22

Unrestricted grammars: L(G) = {a2i | i ≥ 1}

• At that point D becomes C using A D→ A C and the process starts over

• Finally, E migrates left until it hits left end-marker A using a E → E a

• Note that L(G) = {a2i | i ≥ 1} can also be written as a context-sensitive
grammar

23

Examples of Languages in the Chomsky Hierarchy

• context-sensitive grammars: 0i, i is not a prime number and i > 0

• indexed grammars: 0n1n2n . . .mn, for any fixed m and n ≥ 0

• context-free grammars: 0n1n for n ≥ 0

• deterministic context-free grammars: S ′ → S c, S → S A | A,
A→ a S b | ab: the language of ”balanced parentheses”

• regular grammars: (0|1)∗00(0|1)∗

24

25

Complexity of Parsing Algorithms

• Given grammar G and input x, provide algorithm for: Is x ∈ L(G)?

– unrestricted: undecidable

– context-sensitive: NSPACE(n) – linear non-deterministic space

– indexed grammars: NP-Complete

– context-free: O(n3)

– deterministic context-free: O(n)

– regular grammars: O(n)

26

Verifying that L = L(G)

• Let’s say we have a context-free grammar G and a description of a
language L

• How can we say for sure that L = L(G)?

• By verifying the statement in two directions:
⇒ All strings generated by G are in L
⇐ All strings w ∈ L can be generated by G

27

Verifying that L = L(G)

• Example: T = {a, b}. Consider language L to be “all strings with same
number of as and bs”

• Consider G to be a CFG: S → ε | a S b S | b S a S

• To verify that L = L(G), prove that
⇒ All strings generated by G are in L
⇐ All strings w ∈ L can be generated by G

28

Proof (⇒): All strings generated by G are in L

• Proof by induction:

– Base case: ε is in L (trivial)

– Inductive hypothesis: Assume u ∈ L and v ∈ L. Let w be generated
by G with |u| < |w| and |v| < |w|

∗ Because w is generated by G then either w⇒ a u b v or
w⇒ b u a v, where u and v are generated by G

∗ Since |u| < |w| and |v| < |w| and u, v ∈ L then since we only added a
single matching a, b pair, we can conclude that w is in L

29

Proof (⇐): All strings w ∈ L can be generated by G

• Proof by induction (show that S ⇒+ w):

– Base case: w = ε (trivial: S → ε)

– Inductive hypothesis: For a given w ∈ L, assume that for all u, v ∈ L
where |u| < |w| and |v| < |w| we have S ⇒+ u and S ⇒+ v

∗ Case 1 – w starts with a: Find the first b from the right so that
w = a u b v and v has the same number of as and bs
Because w ∈ L it has to be true that u, v ∈ L and by the inductive
hypothesis S ⇒+ u and S ⇒+ v
Using rule S → a S b S and the above step we get S ⇒+ w

∗ Case 2 – w starts with b: (analogous to Case 1)

30

CFG Ambiguity: Number of derivations grows
exponentially

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

lo
g(

D
er

iv
at

io
ns

)

Length

’logplot’

L(G) = a+ using CFG rules { S → S S , S → a }

31

CFG Ambiguity

• Algebraic character of parse derivations

• Power Series for grammar for the (simplified) arithmetic expression CFG:
E → digit | E binop E

• Write it down as an equation with coefficients equal to number of different
analyses possible:

E = digit + digit binop digit
+ 2(digit binop digit binop digit)
+ 5(digit binop digit binop digit binop digit)
+ 14 . . .

32

CFG Ambiguity

• Coefficients in previous equation equal the number of parses for each
string derived from E

• These ambiguity coefficients are Catalan numbers:

Cat(n) =
1

n + 1

(
2n
n

)

•

(
a
b

)
is the binomial coefficient(

a
b

)
=

a!
(b!(a − b)!)

33

Catalan numbers

• Why Catalan numbers? Cat(n) is the number of ways to parenthesize an
expression of length n with following conditions:

1. there must be equal numbers of open and close parens

2. they must be properly nested so that an open precedes a close

3. the parentheses are used to encode groupings and spurious
parenthesis groupings are not counted, e.g. a(bc) is counted but not
(a)(bc)

34

Catalan numbers

• For an expression of with n operators there are a total of 2n choose n

parenthesis pairs, e.g. for 2 ops,
(

4
2

)
= 6:

a(bc), a)bc(,)a(bc, (ab)c,)ab(c, ab)c(

• But for each valid parenthesis pair, additional n pairs are created that
have the right parenthesis to the left of its matching left parenthesis, from
e.g. above: a)bc(,)a(bc,)ab(c, ab)c(

• So we divide 2n choose n by n + 1:

Cat(n) =

(
2n
n

)
n + 1

35

Catalan numbers

n catalan(n)
1 1
2 2
3 5
4 14
5 42
6 132
7 429
8 1430
9 4862

10 16796

36

Catalan numbers

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7

37

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 2 4 6 8 10 12 14 16
 0

 1e+16

 2e+16

 3e+16

 4e+16

 5e+16

 6e+16

 0 5 10 15 20 25 30 35

 0

 5e+34

 1e+35

 1.5e+35

 2e+35

 2.5e+35

 3e+35

 3.5e+35

 4e+35

 0 10 20 30 40 50 60 70
 0

 2e+47

 4e+47

 6e+47

 8e+47

 1e+48

 1.2e+48

 0 10 20 30 40 50 60 70 80 90

38

Summary

• Aspects of PL structure cannot be represented by FSAs

• Pumping lemma proofs for proving a language is not regular

• Chomsky hierarchy: from FSAs to Turing machines

• Verifying that a particular language is generated by a grammar G

• Context-free grammars (seems sufficient for PLs) but problems with
ambiguity

39

