CMPT-379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/ anoop

Programming Languages and
Formal Language Theory

e We ask the question: Does a particular formal language describe some
key aspect of a programming language

e Then we find out if that language isn’t in a particular language class

Programming Languages and
Formal Language Theory

e For example, if we abstract some aspect of the programming language
structure to the formal language:
{wwR | where w € {a, b}*, wR is the reverse of w} we can then ask if this
language is a regular language

e [f this is false, i.e. the language is not regular, then we have to go beyond
regular languages

Recursion in Regular Languages

e Consider a regular expression for arithmetic expressions:
2+ 3%x4
8«10+ —24
2+3%x-2+8+10

A\S*—?\S*\d+\s*((\+|*)\S*—?\S*\d+\s*)*$

e Can we compute the meaning of these expressions?

Recursion in Regular Languages

e Construct the finite state automata and associate the meaning with the
state sequence

e However, this solution is missing something crucial about arithmetic
expressions — what is it?

Do Programming Languages belong to
Regular Languages

Consider the following arithmetic expressions
- (((2) +(3)) *(4))
— ((8) * ((10) + (=24)))

Map (— a and) — b. Map everything else to € (keep only the tree structure)
This results in strings like aaababbabb and aabaababbb

What is a good description of this language? Let’s call it L

Pumping Lemma proofs
Is L a regular language?

To show something is not a regular language, we use the pumping
lemma

For any infinite set of strings generated by a finite-state machine if you
consider a string that is long enough from this set, there has to be a loop
which visits the same state at least twice (from the pigeonhole principle)

Thus, in a regular language L, there are strings x, y, z such that xy'z € L
fori > 0wherey # €

Pumping Lemma

e Pumping Lemma formal statement:
— For all A that is in the set of regular languages,
— there exists a p (p is called the pumping length)
— such that for all s € A, |s| > p,
— there exists strings x, y, z such that s = xyz and |y| > 0 and |xy| < p,

— such that for all i > 0, xy'z € A.

e Try it on regular languages: L(ab*a) and L((aa)*). Construct minimal DFA
for each one to find the value of p that is appropriate.

Pumping Lemma proofs

e Let L’ be the intersection of L with the language L defined by the regular
expression a*b*

e Intersect the set L = {€,ab, abab, aabb, . ..} with
L1 ={e,a,b,aa,ab,aab,abb, bb, .. .}

e Recall that RLs are closed under intersection, so L’ must also be a RL. In
fact, we can describe L’ as the language a"b" forn > 0

Pumping Lemma proofs

For any choice of y (consider a' or a'b or b') if we multiply y” for n > 0 we
get strings that are not in L’

For example, for a string aaabbb if we pick y = ab and pick n = 2 we get a
string aaababbb which is not in L’

Hence, the pumping lemma leads to the conclusion that L’ is not regular
This implies that L is not regular since RLs are closed under intersection

What lies beyond the set of regular languages?

10

The Chomsky Hierarchy

unrestricted or type-0 grammars, generate the recursively enumerable
languages, automata equals Turing machines

context-sensitive or type-1 grammars, generate the context-sensitive
languages, automata equals Linear Bounded Automata

context-free or type-2 grammars, generate the context-free languages,
automata equals Pushdown Automata

regular or type-3 grammars, generate the regular languages, automata
equals Finite-State Automata

11

The Chomsky Hierarchy
A system of grammars G = (N, T,P,S)

T is a set of symbols called terminal symbols.
Also called the alphabet

N is a set of non-terminals, where NNT =0

Some notation: a,8,y € (NU T)*
N is sometimes called the set of variables V

P is a set of production rules that provide a finite description of an infinite
set of strings (a language)

S is the start non-terminal symbol (similar to the start state in a FSA)

12

Languages

e Language defined by G: L(G)
— L(G): set of strings w € T™ derived from S
— S =T w (derives in 1 or more steps using rules in P)
— wis a sentence of G
— Sentential form: S =™ @ and « contains a mix of terminals and

non-terminals

e Two grammars G| and G, are equivalent if L(G) = L(G»y)

13

The Chomsky Hierarchy:
G=(N,T,P,S)where,a,B,ye (NUT)*

unrestricted or type-0 grammars: @ — vy, such that a # €

context-sensitive or type-1 grammars: a — y, where |y| > ||
CSG Normal Form: aAB — ayB, suchthaty #eand § — €if € € L(G)

context-free or type-2 grammars: A — y

regular or type-3 grammars: A > a BorA — a

14

Regular grammars: right-linear CFG: L(G) = L(a*b™)

A — aA
A — €
A — bB
B — bB
B — €

e |nput: bb

e Derivation using sentential forms: A = bB = bbB = bbe = bb

15

(1)
(2)
(3)
(4)
(9)

Context-free grammars: L(G) = {a"b" | n > 0}

S — aSb
S —> €

e |nput: aabb

e Derivation using sentential forms:
S = aSb = aaS bb = aaebb = aabb

16

Context-free grammars: L(G) = {a" | n > 0}
S - S5S

S — a

Input: aaaa

Derivation using sentential forms:
S =85 =>a8S =2a85S = aalS = aaSS = aaaS = aaaa

But what about another derivation:
S =259 =255 =555 =2a5S5S = ... = aaaa

Key problem with CFGs: ambiguity

17

Context-sensitive grammars: L(G) = {a"b" | n > 1}

S
S
aB
CB
Ba
C

Ll

S BC
aC
aa
BC

ad

b

18

Context-sensitive grammars: L(G) = {a"b" | n > 1}

S

Sy B1 Cy

S3 By Cp By C
a3 C3 By C By C4
a3 By C3 Cy B1 C
az ap C3 Cp By Cy
az ap C3 By C Cy
az ap By C3 C Cy
az ay aj C3 Co Cy
az ap ay by by by

19

Unrestricted grammars: L(G) = {a® | i > 1)

S
Ca
CB
CB
aD
AD
ak
AE

L T A A

ACaB
aaC
DB

E

D a
AC

E a

€

20

Unrestricted grammars: L(G) = {a® | i > 1)

S
ACaB
AaaCB
Aaa E
AaFE a
AFEaa
aa

21

Unrestricted grammars: L(G) = {a® | i > 1)

e A and B serve as left and right end-markers for sentential forms
(derivation of each string)

e C is a marker that moves through the string of a’s between A and B,
doubling their number usingCa —» aa C

e When C hits right end-marker B, it becomesaDorEby C B — D Bor
CB—-E

e |f a D is chosen, that D migrates left using a D — D a until left
end-marker A is reached

22

Unrestricted grammars: L(G) = (a®|i>1}
e At that point D becomes C using A D — A C and the process starts over
e Finally, E migrates left until it hits left end-marker Ausinga E — E a

e Note that L(G) = {azi | i > 1} can also be written as a context-sensitive
grammar

23

Examples of Languages in the Chomsky Hierarchy

context-sensitive grammars: 0', i is not a prime number and i > 0

indexed grammars: 012" .. .m", for any fixed m and n > 0

context-free grammars: 0"1" forn > 0

deterministic context-free grammars: S" > S ¢, S - S A | A,
A — a S b | ab: the language of "balanced parentheses”

regular grammars: (0[1)*00(0[1)*

24

Language Automaton | Grammar | Recognition | Dependency
Recursively Turing Machine Unrestricted Undecidable Arbitrary
Enumerable | _ETTTON .

Languages O—e D
antext_ Linear-Bounded Context- NP-Complete Crossing
Sensitive ETm | e m
Languages Q@ -
ante}(t_ FPushdown ! Context-Free Folynomial Nested
‘stack)
Free (S |_|
- A AN
Languages e—o 9 Iy oI
Regular Finite-State Regular Linear Strictly Local
Machine
Languages
o C—C—0) " AYAY.

25

Complexity of Parsing Algorithms

e Given grammar G and input x, provide algorithm for: Is x € L(G)?
— unrestricted: undecidable
— context-sensitive: NSPACE(n) — linear non-deterministic space
— indexed grammars: NP-Complete
— context-free: O(°)
— deterministic context-free: O(n)

— regular grammars: O(n)

26

Verifying that L = L(G)

e Let's say we have a context-free grammar G and a description of a
language L

e How can we say for sure that L = L(G)?

e By verifying the statement in two directions:
= All strings generated by G are in L
& All strings w € L can be generated by G

27

Verifying that L = L(G)

e Example: T = {a, b}. Consider language L to be “all strings with same
number of as and bs”

e ConsiderGtobea CFG:S - €|laSbS|bSalS

e To verify that L = L(G), prove that
= All strings generated by G are in L
& All strings w € L can be generated by G

28

Proof (=): All strings generated by G are in L

e Proof by induction:
— Base case: e is in L (trivial)

— Inductive hypothesis: Assume u € L and v € L. Let w be generated
by G with |u| < |[w| and |v| < |w|

x Because w is generated by G then eitherw = au b v or
w = b uav,where u and v are generated by G

% Since |u| < |w| and |v| < |w| and u, v € L then since we only added a
single matching a, b pair, we can conclude that wisin L

29

Proof («<): All strings w € L can be generated by G

e Proof by induction (show that § =% w):
— Base case: w = € (trivial: S — ¢€)

— Inductive hypothesis: For a given w € L, assume that for all u,v € L
where |u| < [w|and [v| < |[w|we have S =T uand S =T v

+ Case 1— w starts with a: Find the first b from the right so that
w = a u b v and v has the same number of as and bs
Because w € L it has to be true that u, v € L and by the inductive
hypothesis § =% wand § =% v
Using rule S — a S b S and the above stepwe get S =% w

« Case 2 — w starts with b: (analogous to Case 1)

30

CFG Ambiguity: Number of derivations grows
exponentially

14

L(G) = a+usingCFGrules{ S - S S,S —» a}

31

CFG Ambiguity

e Algebraic character of parse derivations

e Power Series for grammar for the (simplified) arithmetic expression CFG:
E — digit | E binop E

e Write it down as an equation with coefficients equal to number of different
analyses possible:

E = digit + digit binop digit

2(digit binop digit binop digit)

5(digit binop digit binop digit binop digit)
14...

+ + +

32

CFG Ambiguity

e Coefficients in previous equation equal the number of parses for each
string derived from E

e These ambiguity coefficients are Catalan numbers:

Cat(n) = : (2n)

n+1\ n

° (Z) is the binomial coefficient

(a) B a!
b | (bla-Db))

33

Catalan numbers
e Why Catalan numbers? Cat(n) is the number of ways to parenthesize an
expression of length »n with following conditions:
1. there must be equal numbers of open and close parens
2. they must be properly nested so that an open precedes a close

3. the parentheses are used to encode groupings and spurious
parenthesis groupings are not counted, e.g. a(bc) is counted but not
(a) (bc)

34

Catalan numbers

e For an expression of with n operators there are a total of 2n choose n

parenthesis pairs, e.g. for 2 ops, (;) = 6:

a(bc), a)bc(,)a(bc, (ab)c,)ab(c, ab)c(

e But for each valid parenthesis pair, additional n pairs are created that
have the right parenthesis to the left of its matching left parenthesis, from
e.g. above: a)bc(,)a(bc, Jab(c, ab)c(

e So we divide 2n choose n by n + 1:

2n
n

Cat(n) = —

35

Catalan numbers

catalan(n)
1
2
5
14
42
132
429
1430
4862
16796

O©OOoONOOOLPA,OWDN =S

—
o

450

400 ~

350 -

300 -

250 -

200 -

150 |

100 |

50 -

Catalan numbers

37

4e+07

3.5e+07 |

3e+07 |

2.5e+07 -

2e+07 |

1.5e+07

1e+07 |

5e+06 |-

10

12

14

4e+35

3.5e+35 -

3e+35 |

2.5e+35 -

2e+35

1.5e+35

le+35

5e+34

10

20

30

40

70

6e+16

5e+16 |

4e+16 -

3e+16

2e+16 |

le+16 [

1.2e+48

le+48

8e+47

6e+47

4e+47

2e+47

10

15

20

25

30

10

20

30

40

50

60

70

80

90

38

Summary
Aspects of PL structure cannot be represented by FSAs
Pumping lemma proofs for proving a language is not regular
Chomsky hierarchy: from FSAs to Turing machines
Verifying that a particular language is generated by a grammar G

Context-free grammars (seems sufficient for PLs) but problems with
ambiguity

39

