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Code Generation

• Instruction selection
• Register allocation
• Stack frame allocation √
• Static or global allocation √
• Basic blocks and Flow graphs
• Transformations on Basic blocks
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Code Generation

• Produce code that is correct
• Produce code that is of high quality (size

and speed)
• The problem of generating optimal code is

undecidable
• In practice, we need heuristics that generate

good, but perhaps not optimal, code
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Instruction Costs

• Since optimal code generation is not possible a
useful way to think about the problem is as an
optimization problem

• Each instruction can be assigned a cost
– For complex instruction sets some instructions can be

more preferable than others
• Using registers have zero cost, while using

memory locations is costlier
• If each instruction is equally expensive, this will

minimize the number of instructions as well
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Register Allocation

• Code generation either directly to assembly or
from 3-address code (TAC)

• For each location, we have to find a register to
store values or temporary values
– Problem: limited number of registers

• Compiler has to find optimal assignment of
locations to registers
– Register use can involve stacked temporaries or other

ways to reuse registers
• If no more registers available, we spill a location

into memory
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Register Allocation

• Bind locations to registers for all or part of a
function

• Dynamic Optimization Problem
– Not compile-time, but run-time frequency is what

counts
• Heuristics

– Allocate registers for variables likely to be used
frequently

– Keep temporaries in registers  minimize their number
• Register Allocation using Liveness Analysis
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Basic Blocks

• Functions transfer control from one place (the
caller) to another (the called function)

• Other examples include any place where there are
branch instructions

• A basic block is a sequence of statements that
enters at the start and ends with a branch at the
end

• Remaining task of code generation is to create
code for basic blocks and branch them together
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Blocks
main()
{

int a = 0; int b = 0;
{

int b = 1;
{

int a = 2; printf(“%d %d\n”, a, b);
}
{

int b = 3; printf(“%d %d\n”, a, b);
}
printf(“%d %d\n”, a, b);

}
printf(“%d %d\n”, a, b);

}
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Partition into Basic Blocks

• Input: sequence of TAC instructions
1. Determine set of leaders, the 1st statement of

each basic block
a) The 1st statement is a leader
b) Any statement that is the target of a conditional

jump or goto is a leader
c) Any statement immediately following a

conditional jump or goto is a leader
2. For each leader, the basic block contains all

statements upto the next leader
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Control Flow Graph (CFG)

int main() {
 extern int f(int);
 int i;
 int *a;
 for (i = 0;

    i < 10;
i = i + 1)

{ a[i] = f(i); }
}

i = 0

i < 10

a[i] = f(i);
i = i+1;

Entry

Exit

Basic
Blocks
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Control Flow Graph in TAC
main:
    BeginFunc 72 ;
    i = 0 ;
L0:
    tmp1 = 10 ;
    tmp2 = i < tmp1 ;
    IfZ tmp2 Goto L1 ;
    tmp3 = 4 ;
    tmp4 = tmp3 * i ;
    tmp5 = a + tmp4 ;
    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
    tmp7 = 1 ;
    i = i + tmp7 ;
    goto L0 ;
L1:
    EndFunc ;

i = 0

L0:
    tmp1 = 10 ;
    tmp2 = i < tmp1 ;
    ifz tmp2 goto L1 ;

    tmp3 = 4 ;
    tmp4 = tmp3 * i ;
    tmp5 = a + tmp4 ;
    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
    tmp7 = 1 ;
    i = i + tmp7 ;
    goto L0 ;

Entry

Exit
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Dataflow Analysis

• Compute Dataflow Equations over Control Flow
Graph

• in = all variables coming into basic block
– def = variable is defined, e.g. x := 0
– use = variable is used, e.g. y := x + 1

• out = all variables going out of basic block
• Liveness Analysis:

in[BB] := use[BB] ∪ (out[BB] – def[BB])
out[BB] := ∪ in[s] : forall s ∈ succ[BB]

• Computation by fixed-point analysis
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Liveness Analysis

      a := 0

L1: b := a + 1

       c := c + b

       a := b * 2

       if a < N goto L1

       return c

1, a := 0

3, c := c + b

2, b := a + 1

4, a := b * 2

5, a < N

6, return c

build a
control
flow graph
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Liveness Analysis

• Liveness Analysis:
in[BB] := use[BB] ∪ (out[BB] – def[BB])
out[BB] := ∪ in[s] : forall s ∈ succ[BB]

• Fixed point computation:
for each n: in[n] := {}; out[n] := {}
repeat

for each n:
in’[n] := in[n];   out’[n] := out[n]
in[n] := use[n] ∪ (out[n] - def[n])
out[n] := ∪ in[s] : forall s ∈ succ[n]

until in’[n] == in[n] && out’[n] == out[n] for all n
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Liveness Analysis
1, a := 0

3, c := c + b

2, b := a + 1

4, a := b * 2

5, a < N

6, return c

      a
a    b
bc  c
b    a
a
c

1
2
3
4
5
6

use/def

a
bc
b
a   a
c

in/out

1st

c   ac
ac bc
bc bc
bc ac
ac ac
c

in/out

7th

     a
a   bc
bc  b
b    a
a    ac
c

in/out

2nd

c   ac
ac bc
bc bc
bc ac
ac ac
c

in/out

6th

c   ac
ac  bc
bc  b
bc  ac
ac  ac
c

in/out

5th

     ac
ac  bc
bc  b
b   ac
ac  ac
c

in/out

4th

     a
ac  bc
bc  b
b    a
ac  ac
c

in/out

3rd

can we do this faster? try going from 6 downto 1 instead

in[BB] := use[BB] ∪ (out[BB] – def[BB])
out[BB] := ∪ in[s] : forall s ∈ succ[BB]
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Liveness Analysis

i = 0

L0:
    tmp1 = 10 ;
    tmp2 = i < tmp1 ;
    ifz tmp2 goto L1 ;

    tmp3 = 4 ;
    tmp4 = tmp3 * i ;
    tmp5 = a + tmp4 ;
    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
    tmp7 = 1 ;
    i = i + tmp7 ;
    goto L0 ;

Entry

Exit

IN = {a, i}

OUT = {a, i}

OUT = {i}
IN = {a, i}

OUT = {a, i}

IN = {}

IN = {}
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Register Allocation

• Do liveness analysis on Control Flow Graph
– Straightforward (iteration-less) computation

within basic block
– Compute live ranges for each location

• Build interference graph
– Two locations are connected if their live ranges

overlap
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Register Allocation

    tmp3 = 4 ;
    tmp4 = tmp3 * i ;
    tmp5 = a + tmp4 ;
    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
    tmp7 = 1 ;
    i = i + tmp7 ;
    goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7
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Register Allocation

    tmp3 = 4 ;
    tmp4 = tmp3 * i ;
    tmp5 = a + tmp4 ;
    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
    tmp7 = 1 ;
    i = i + tmp7 ;
    goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7
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Register Allocation

    tmp3 = 4 ;
    tmp4 = tmp3 * i ;
    tmp5 = a + tmp4 ;
    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
    tmp7 = 1 ;
    i = i + tmp7 ;
    goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7
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Register Allocation

    tmp3 = 4 ;
    tmp4 = tmp3 * i ;
    tmp5 = a + tmp4 ;
    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
    tmp7 = 1 ;
    i = i + tmp7 ;
    goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7
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Register Allocation
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    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
    tmp7 = 1 ;
    i = i + tmp7 ;
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a i tmp3 tmp4 tmp5 tmp6 tmp7
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Register Allocation
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    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
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Register Allocation

    tmp3 = 4 ;
    tmp4 = tmp3 * i ;
    tmp5 = a + tmp4 ;
    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
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Register Allocation

    tmp3 = 4 ;
    tmp4 = tmp3 * i ;
    tmp5 = a + tmp4 ;
    param i #0 ;
    tmp6 = call f ;
    pop 4 ;
    *(tmp5) = tmp6 ;
    tmp7 = 1 ;
    i = i + tmp7 ;
    goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7
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Interference Graph

i

tmp1

tmp2

a

tmp3

tmp4

tmp5

tmp6
tmp7
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Interference Graph

• Assume we have four registers: 1, 2, 3, 4
• By register allocation we mean: assign each

register to a node in the interference graph
• However, we cannot assign the same

register to two nodes connected by an edge
• If we have an algorithm that can color a

graph with 4 colors, we have a register
allocation algorithm!
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Colored Interference Graph

i

tmp1

tmp2

a

tmp3

tmp4

tmp5

tmp6
tmp7



29

Register Allocation as Graph Coloring

• First pass: use as many symbolic registers
as needed including registers for stack
pointers, frame pointers, etc.

• Register Interference Graph
– Two nodes in the graph are connected if their

live ranges overlap
• Color interference graph

– Result is register assignment -- k colors for k
registers
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Register Allocation as Graph
Coloring

• Second pass: assign physical registers to
symbolic ones
– Construct a register interference graph (nodes

are symbolic registers and edge denotes that
they cannot be assigned to the same physical
register)

– Attempt to k-color the interference graph,
where k is the number of available registers

– k-coloring a graph is NP-complete
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Register Allocation as Graph Coloring

• Algorithm for solving whether a graph G is k-
colorable:

• Pick any node n with fewer than k neighbours
• Remove n and adjacent edges to create a new

graph G’
• k-coloring of G’ can be extended to k-coloring to

G by assigning to n a color that is not assigned to
any of n’s neighbours

• If we cannot extend G’ to G, then k-coloring of G
is not possible
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Register Allocation as Graph
Coloring

• If every node in G has more than k neighbours, k-
coloring of G is not possible

• Take some node n and spill into memory, remove
it from the graph and continue k-coloring

• Spilling = generating code to store contents of
register to memory and when location is used
generate code to load from memory into an
available register (by spilling another location)
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Register Allocation as Graph
Coloring

• Many different heuristics for picking a node n to
spill

• E.g. avoid introducing spilling symbolic registers
that are inside loops or heavily visited regions of
code

• C allows a register and a volatile keyword to
direct the compiler whether a variable contains a
value that is heavily used.

• Special case: Register Allocation for Expression
Trees (Maximal Munch suffices for this task)
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Summary

• Code generation: from Intermediate
Representation (IR) to Assembly

• Three Address Code (TAC) can be easily
converted to a control flow graph

• The control flow graph allows sophisticated
dataflow analysis

• The liveness of each location can be used for
register allocation

• Register Allocation as heuristic graph coloring.


