
CMPT 379
Compilers

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

2

Code Generation

• Instruction selection
• Register allocation
• Stack frame allocation √
• Static or global allocation √
• Basic blocks and Flow graphs
• Transformations on Basic blocks

3

Code Generation

• Produce code that is correct
• Produce code that is of high quality (size

and speed)
• The problem of generating optimal code is

undecidable
• In practice, we need heuristics that generate

good, but perhaps not optimal, code

4

Instruction Costs

• Since optimal code generation is not possible a
useful way to think about the problem is as an
optimization problem

• Each instruction can be assigned a cost
– For complex instruction sets some instructions can be

more preferable than others
• Using registers have zero cost, while using

memory locations is costlier
• If each instruction is equally expensive, this will

minimize the number of instructions as well

5

Register Allocation

• Code generation either directly to assembly or
from 3-address code (TAC)

• For each location, we have to find a register to
store values or temporary values
– Problem: limited number of registers

• Compiler has to find optimal assignment of
locations to registers
– Register use can involve stacked temporaries or other

ways to reuse registers
• If no more registers available, we spill a location

into memory

6

Register Allocation

• Bind locations to registers for all or part of a
function

• Dynamic Optimization Problem
– Not compile-time, but run-time frequency is what

counts
• Heuristics

– Allocate registers for variables likely to be used
frequently

– Keep temporaries in registers minimize their number
• Register Allocation using Liveness Analysis

7

Basic Blocks

• Functions transfer control from one place (the
caller) to another (the called function)

• Other examples include any place where there are
branch instructions

• A basic block is a sequence of statements that
enters at the start and ends with a branch at the
end

• Remaining task of code generation is to create
code for basic blocks and branch them together

8

Blocks
main()
{

int a = 0; int b = 0;
{

int b = 1;
{

int a = 2; printf(“%d %d\n”, a, b);
}
{

int b = 3; printf(“%d %d\n”, a, b);
}
printf(“%d %d\n”, a, b);

}
printf(“%d %d\n”, a, b);

}

9

Partition into Basic Blocks

• Input: sequence of TAC instructions
1. Determine set of leaders, the 1st statement of

each basic block
a) The 1st statement is a leader
b) Any statement that is the target of a conditional

jump or goto is a leader
c) Any statement immediately following a

conditional jump or goto is a leader
2. For each leader, the basic block contains all

statements upto the next leader

10

Control Flow Graph (CFG)

int main() {
 extern int f(int);
 int i;
 int *a;
 for (i = 0;

 i < 10;
i = i + 1)

{ a[i] = f(i); }
}

i = 0

i < 10

a[i] = f(i);
i = i+1;

Entry

Exit

Basic
Blocks

11

Control Flow Graph in TAC
main:
 BeginFunc 72 ;
 i = 0 ;
L0:
 tmp1 = 10 ;
 tmp2 = i < tmp1 ;
 IfZ tmp2 Goto L1 ;
 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
 goto L0 ;
L1:
 EndFunc ;

i = 0

L0:
 tmp1 = 10 ;
 tmp2 = i < tmp1 ;
 ifz tmp2 goto L1 ;

 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
 goto L0 ;

Entry

Exit

12

Dataflow Analysis

• Compute Dataflow Equations over Control Flow
Graph

• in = all variables coming into basic block
– def = variable is defined, e.g. x := 0
– use = variable is used, e.g. y := x + 1

• out = all variables going out of basic block
• Liveness Analysis:

in[BB] := use[BB] ∪ (out[BB] – def[BB])
out[BB] := ∪ in[s] : forall s ∈ succ[BB]

• Computation by fixed-point analysis

13

Liveness Analysis

 a := 0

L1: b := a + 1

 c := c + b

 a := b * 2

 if a < N goto L1

 return c

1, a := 0

3, c := c + b

2, b := a + 1

4, a := b * 2

5, a < N

6, return c

build a
control
flow graph

14

Liveness Analysis

• Liveness Analysis:
in[BB] := use[BB] ∪ (out[BB] – def[BB])
out[BB] := ∪ in[s] : forall s ∈ succ[BB]

• Fixed point computation:
for each n: in[n] := {}; out[n] := {}
repeat

for each n:
in’[n] := in[n]; out’[n] := out[n]
in[n] := use[n] ∪ (out[n] - def[n])
out[n] := ∪ in[s] : forall s ∈ succ[n]

until in’[n] == in[n] && out’[n] == out[n] for all n

15

Liveness Analysis
1, a := 0

3, c := c + b

2, b := a + 1

4, a := b * 2

5, a < N

6, return c

 a
a b
bc c
b a
a
c

1
2
3
4
5
6

use/def

a
bc
b
a a
c

in/out

1st

c ac
ac bc
bc bc
bc ac
ac ac
c

in/out

7th

 a
a bc
bc b
b a
a ac
c

in/out

2nd

c ac
ac bc
bc bc
bc ac
ac ac
c

in/out

6th

c ac
ac bc
bc b
bc ac
ac ac
c

in/out

5th

 ac
ac bc
bc b
b ac
ac ac
c

in/out

4th

 a
ac bc
bc b
b a
ac ac
c

in/out

3rd

can we do this faster? try going from 6 downto 1 instead

in[BB] := use[BB] ∪ (out[BB] – def[BB])
out[BB] := ∪ in[s] : forall s ∈ succ[BB]

16

Liveness Analysis

i = 0

L0:
 tmp1 = 10 ;
 tmp2 = i < tmp1 ;
 ifz tmp2 goto L1 ;

 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
 goto L0 ;

Entry

Exit

IN = {a, i}

OUT = {a, i}

OUT = {i}
IN = {a, i}

OUT = {a, i}

IN = {}

IN = {}

17

Register Allocation

• Do liveness analysis on Control Flow Graph
– Straightforward (iteration-less) computation

within basic block
– Compute live ranges for each location

• Build interference graph
– Two locations are connected if their live ranges

overlap

18

Register Allocation

 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
 goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7

19

Register Allocation

 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
 goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7

20

Register Allocation

 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
 goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7

21

Register Allocation

 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
 goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7

22

Register Allocation

 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
 goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7

23

Register Allocation

 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
 goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7

24

Register Allocation

 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
 goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7

25

Register Allocation

 tmp3 = 4 ;
 tmp4 = tmp3 * i ;
 tmp5 = a + tmp4 ;
 param i #0 ;
 tmp6 = call f ;
 pop 4 ;
 *(tmp5) = tmp6 ;
 tmp7 = 1 ;
 i = i + tmp7 ;
 goto L0 ;

a i tmp3 tmp4 tmp5 tmp6 tmp7

26

Interference Graph

i

tmp1

tmp2

a

tmp3

tmp4

tmp5

tmp6
tmp7

27

Interference Graph

• Assume we have four registers: 1, 2, 3, 4
• By register allocation we mean: assign each

register to a node in the interference graph
• However, we cannot assign the same

register to two nodes connected by an edge
• If we have an algorithm that can color a

graph with 4 colors, we have a register
allocation algorithm!

28

Colored Interference Graph

i

tmp1

tmp2

a

tmp3

tmp4

tmp5

tmp6
tmp7

29

Register Allocation as Graph Coloring

• First pass: use as many symbolic registers
as needed including registers for stack
pointers, frame pointers, etc.

• Register Interference Graph
– Two nodes in the graph are connected if their

live ranges overlap
• Color interference graph

– Result is register assignment -- k colors for k
registers

30

Register Allocation as Graph
Coloring

• Second pass: assign physical registers to
symbolic ones
– Construct a register interference graph (nodes

are symbolic registers and edge denotes that
they cannot be assigned to the same physical
register)

– Attempt to k-color the interference graph,
where k is the number of available registers

– k-coloring a graph is NP-complete

31

Register Allocation as Graph Coloring

• Algorithm for solving whether a graph G is k-
colorable:

• Pick any node n with fewer than k neighbours
• Remove n and adjacent edges to create a new

graph G’
• k-coloring of G’ can be extended to k-coloring to

G by assigning to n a color that is not assigned to
any of n’s neighbours

• If we cannot extend G’ to G, then k-coloring of G
is not possible

32

Register Allocation as Graph
Coloring

• If every node in G has more than k neighbours, k-
coloring of G is not possible

• Take some node n and spill into memory, remove
it from the graph and continue k-coloring

• Spilling = generating code to store contents of
register to memory and when location is used
generate code to load from memory into an
available register (by spilling another location)

33

Register Allocation as Graph
Coloring

• Many different heuristics for picking a node n to
spill

• E.g. avoid introducing spilling symbolic registers
that are inside loops or heavily visited regions of
code

• C allows a register and a volatile keyword to
direct the compiler whether a variable contains a
value that is heavily used.

• Special case: Register Allocation for Expression
Trees (Maximal Munch suffices for this task)

34

Summary

• Code generation: from Intermediate
Representation (IR) to Assembly

• Three Address Code (TAC) can be easily
converted to a control flow graph

• The control flow graph allows sophisticated
dataflow analysis

• The liveness of each location can be used for
register allocation

• Register Allocation as heuristic graph coloring.

