CMPT 379 Compilers

Anoop Sarkar http://www.cs.sfu.ca/~anoop

Parsing CFGs

- Consider the problem of parsing with arbitrary CFGs
- For any input string, the parser has to produce a parse tree
- The simpler problem: print **yes** if the input string is generated by the grammar, print **no** otherwise
- This problem is called *recognition*

CKY Recognition Algorithm

- The Cocke-Kasami-Younger algorithm
- As we shall see it runs in time that is polynomial in the size of the input
- It takes space polynomial in the size of the input
- **Remarkable fact:** it can find all possible parse trees (exponentially many) in polynomial time

Chomsky Normal Form

- Before we can see how CKY works, we need to convert the input CFG into Chomsky Normal Form
- CNF means that the input CFG G is converted to a new CFG G' in which all rules are of the form:

 $A \rightarrow B C$ $A \rightarrow a$

Epsilon Removal

- First step, remove epsilon rules
 A → B C
 - $C \rightarrow \varepsilon \mid C \mid D \mid a$
 - $D \rightarrow b \quad B \rightarrow b$
- After ε-removal:

 $C \rightarrow D \mid C \mid D \mid a \mid D \mid C \mid D \mid a$

 $D \rightarrow b \quad B \rightarrow b$

Removal of Chain Rules

- Second step, remove chain rules $A \rightarrow B C | C D C$
 - $C \rightarrow D \mid a$
 - $D \rightarrow d \quad B \rightarrow b$
- After removal of chain rules: $A \rightarrow B a | B D | a D a | a D D | D D a | D D D$ $D \rightarrow d \quad B \rightarrow b$

Eliminate terminals from RHS

• Third step, remove terminals from the rhs of rules

 $A \rightarrow B a C d$

• After removal of terminals from the rhs: $A \rightarrow B N_1 C N_2$ $N_1 \rightarrow a$ $N_2 \rightarrow d$

Binarize RHS with Nonterminals

• Fourth step, convert the rhs of each rule to have two non-terminals

$$A \rightarrow B N_1 C N_2$$
$$N_1 \rightarrow a$$
$$N_2 \rightarrow d$$

• After converting to binary form:

$$A \rightarrow B N_3 \qquad N_1 \rightarrow a$$
$$N_3 \rightarrow N_1 N_4 \qquad N_2 \rightarrow d$$
$$N_4 \rightarrow C N_2$$

CKY algorithm

- We will consider the working of the algorithm on an example CFG and input string
- Example CFG:
 - $S \rightarrow A X \mid Y B$
 - $X \rightarrow A B \mid B A \qquad Y \rightarrow B A$
 - $A \rightarrow a \quad B \rightarrow a$
- Example input string: *aaa*

CKY Algorithm				
	0	1	2	3
0		$ \begin{array}{c} A, B\\ A \rightarrow a\\ B \rightarrow a \end{array} $	$ \begin{array}{c} X, Y \\ X \rightarrow A B \mid B A \\ Y \rightarrow B A \end{array} $	S $S \rightarrow A_{(0,1)} X_{(1,3)}$ $S \rightarrow Y_{(0,2)} B_{(2,3)}$
1			$ \begin{array}{c} A, B\\ A \rightarrow a\\ B \rightarrow a \end{array} $	X, Y $X \rightarrow A B \mid B A$ $Y \rightarrow B A$
2				A, B $A \rightarrow a$ $B \rightarrow a$
		a	a	a 10

Parse trees

CKY Algorithm

```
Input string input of size n
Create a 2D table chart of size n^2
for i=0 to n-1
    chart[i][i+1] = A if there is a rule A \rightarrow a and input[i]=a
for j=2 to N
    for i=j-2 downto 0
       for k=i+1 to j-1
          chart[i][j] = A if there is a rule A \rightarrow B C and
            chart[i][k] = B and chart[k][j] = C
return yes if chart[0][n] has the start symbol
else return no
```

CKY algorithm summary

- Parsing arbitrary CFGs
- For the CKY algorithm, the time complexity is $O(|G|^2 n^3)$
- The space requirement is $O(n^2)$
- The CKY algorithm handles arbitrary ambiguous CFGs
- All ambiguous choices are stored in the chart
- For compilers we consider parsing algorithms for CFGs that do not handle ambiguous grammars

GLR – Generalized LR Parsing

- Works for any CFG (just like CKY algorithm)
 - Masaru Tomita [1986]
- If you have shift/reduce conflict, just clone your stack and shift in one clone, reduce in the other clone
 - proceed in lockstep
 - parser that get into error states die
 - merge parsers that lead to identical reductions (graph structured stack)
- Careful implementation can provide $O(n^3)$ bound
- However for some grammars, parser will be exponential in grammar size

Parsing - Summary

- Parsing arbitrary CFGs using the CKY algorithm: $O(n^3)$ time complexity
- Chomsky Normal Form (CNF) provides the *n*³ time bound
- LR parsers can be extended to Generalized LR parsers to deal with arbitrary CFGs, complexity is still $O(n^3)$

Parsing - Additional Results

- $O(n^2)$ time complexity for linear grammars
 - All rules are of the form $S \rightarrow aSb$ or $S \rightarrow a$
 - Reason for $O(n^2)$ bound is the linear grammar normal form: $A \rightarrow aB, A \rightarrow Ba, A \rightarrow B, A \rightarrow a$
- Left corner parsers
 - extension of top-down parsing to arbitrary CFGs
- Earley's parsing algorithm
 - $O(n^3)$ worst case time for arbitrary CFGs just like CKY
 - $O(n^2)$ worst case time for unambiguous CFGs
 - O(n) for specific unambiguous grammars (e.g. S \rightarrow aSa | bSb | ε)