CMPT 379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop



Parsing CFGs

Consider the problem of parsing with
arbitrary CFGs

For any input string, the parser has to
produce a parse tree

The simpler problem: print yes if the input
string 1s generated by the grammar, print no
otherwise

This problem 1s called recognition



CKY Recognition Algorithm

The Cocke-Kasami-Younger algorithm

As we shall see 1t runs 1n time that 1s
polynomial 1n the size of the input

It takes space polynomial in the size of the
input
Remarkable fact: it can find all possible

parse trees (exponentially many) in
polynomial time



Chomsky Normal Form

e Before we can see how CKY works, we
need to convert the input CFG 1nto
Chomsky Normal Form

 CNF means that the input CFG G 1s
converted to a new CFG G’ 1in which all
rules are of the form:

A—BC
A — a



Epsilon Removal

* First step, remove epsilon rules
A—=BC
C—¢lCDla
D—=b B—b

o After e-removal:
A—BIBCDIBalBC
C—DICDDIlaDICDIla
D—=b B—b



Removal of Chain Rules

e Second step, remove chain rules
A—-=BCICDC
C—Dla
D—d B—b

e After removal of chain rules:
A—BalBDlaDalaDDIDDalDDD
D—d B—b



Eliminate terminals from RHS

e Third step, remove terminals from the rhs of
rules

A—BacCd
e After removal of terminals from the rhs:
A—=BN, CN,
N, —a
N, —d



Binarize RHS with Nonterminals

Fourth step, convert the rhs of each rule to have
two non-terminals
A—-BN,CN,
N, —a
N, —d
e After converting to binary form:
A — BN, N, —a
N,—-N,N, N,—d
N, - CN,



CKY algorithm

* We will consider the working of the
algorithm on an example CFG and input
string

 Example CFG:
S—AXIYB

X—ABIBA Y—BA
A—a B—a

e Example input string: aaa



CKY Algorithm

0 1 2 3
A, B X, Y S
0 A—a X—=ABIBA S — Ao X
B—a Y—=BA S— Y, By
A, B X, Y
1 A—a X—=ABIBA
B—a Y—=BA
A, B
2 A—a
B —a

d d d

10



Parse trees

/\

A X
T
A B

11



CKY Algorithm

Input string input of size n
Create a 2D table chart of size n?
for 1=0 to n-1

chart[i][i+1] = A if there 1s arule A — a and input[i]=a
for ;=2 to N

for 1=;-2 downto O

for k=1+1 to j-1
chart[i][j] = A if there is arule A — B C and
chart[i][k] = B and chart[k][j] =C

return yes if chart[0][n] has the start symbol
else return no

12



CKY algorithm summary

Parsing arbitrary CFGs

For the CKY algorithm, the time complexity 1s
O(IGF n?)

T'he space requirement is O(n?)

T'he CKY algorithm handles arbitrary ambiguous
CFGs

All ambiguous choices are stored 1n the chart

For compilers we consider parsing algorithms for
CFGs that do not handle ambiguous grammars

13



GLR — Generalized LR Parsing

Works for any CFG (just like CKY algorithm)
— Masaru Tomita [1986]

If you have shift/reduce conflict, just clone your stack and
shift in one clone, reduce in the other clone

— proceed 1n lockstep
— parser that get into error states die

— merge parsers that lead to 1dentical reductions (graph
structured stack)

Careful implementation can provide O(n’) bound

However for some grammars, parser will be exponential in
grammar size

14



Parsing - Summary

e Parsing arbitrary CFGs using the CKY
algorithm: O(n’) time complexity

 Chomsky Normal Form (CNF) provides the
n’ time bound

* LR parsers can be extended to Generalized
LR parsers to deal with arbitrary CFGs,
complexity is still O(n”)

15



Parsing - Additional Results

e O(n?) time complexity for linear grammars
— All rules are of the form S —= aSbor S — a
— Reason for O(n?) bound is the linear grammar normal
form: A—aB,A—=Ba,A—B,A—a
e Left corner parsers
— extension of top-down parsing to arbitrary CFGs
e Earley’s parsing algorithm
— O(n’) worst case time for arbitrary CFGs just like CKY
— O(n?) worst case time for unambiguous CFGs

— O(n) for specific unambiguous grammars
(e.g. S — aSalbSb | ¢) 16



