
CMPT 379
Compilers

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

2

Parsing

Lexical
Analyzer

Later
Stages

Parser
token

next()
source
program

parse
tree

Lexical
Errors

Syntax
Errors

3

Context-free Grammars

• Set of rules by which valid sentences can be
constructed.

• Example:
Sentence → Noun Verb Object
Noun → trees | compilers
Verb → are | grow
Object → on Noun | Adjective
Adjective → slowly | interesting

• What strings can Sentence derive?
• Syntax only – no semantic checking

4

Derivations of a CFG

• compilers grow on trees
• compilers grow on Noun
• compilers grow Object
• compilers Verb Object
• Noun Verb Object
• Sentence

5

Derivations and parse trees

6

Why use grammars for PL?

• Precise, yet easy-to-understand specification
of language

• Construct parser automatically
– Detect potential problems

• Structure and simplify remaining compiler
phases

• Allow for evolution

7

CFG Notation

• A reference grammar is a concise
description of a context-free grammar

• For example, a reference grammar can use
regular expressions on the right hand sides
of CFG rules

• Can even use ideas like comma-separated
lists to simplify the reference language
definition

8

Writing a CFG for a PL

• First write (or read) a reference grammar of what
you want to be valid programs

• For now, we only worry about the structure, so the
reference grammar might choose to over-generate
in certain cases (e.g. bool x = 20;)

• Convert the reference grammar to a CFG
• Certain CFGs might be easier to work with than

others (this is the essence of the study of CFGs
and their parsing algorithms for compilers)

9

CFG Notation

• Normal CFG notation
E → E * E
E → E + E

• Backus Naur notation
E ::= E * E | E + E
(an or-list of right hand sides)

10

Parse Trees for programs

11

Arithmetic Expressions

• E → E + E
• E → E * E
• E → (E)
• E → - E
• E → id

12

Leftmost derivations for
id + id * id

• E ⇒ E + E
⇒ id + E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

E

E E+

E E*id

id id

13

Leftmost derivations for
id + id * id

• E ⇒ E * E
⇒ E + E * E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

E

EE *

E E+ id

id id

14

Ambiguity

• Grammar is ambiguous if more than one
parse tree is possible for some sentences

• Examples in English:
– Two sisters reunited after 18 years in checkout

counter
• Ambiguity is not acceptable in PL

– Unfortunately, it’s undecidable to check
whether a grammar is ambiguous

15

Ambiguity

• Alternatives
– Massage grammar to make it unambiguous
– Rely on “default” parser behavior
– Augment parser

• Consider the original ambiguous grammar:
E → E + E E → E * E
E → (E) E → - E
E → id

• How can we change the grammar to get only one
tree for the input id + id * id

16

E

E + T

T

F

id

T F*

F

id

id

Ambiguity

• Original ambiguous grammar:
– E → E + E E → E * E
– E → (E) E → - E
– E → id

• Unambiguous grammar:
– E → E + T T → T * F
– E → T T → F
– F → (E) F → - E
– F → id

• Input: id + id * id Warning! Is this unambiguous?

17

Dangling else ambiguity

• Original Grammar (ambiguous)
Stmt → if Expr then Stmt else Stmt
Stmt → if Expr then Stmt
Stmt → Other

• Modified Grammar (unambiguous?)
Stmt → if Expr then Stmt
Stmt → MatchedStmt
MatchedStmt → if Expr then MatchedStmt else Stmt
MatchedStmt → Other

18

19

Dangling else ambiguity

• Original Grammar (ambiguous)
Stmt → if Expr then Stmt else Stmt
Stmt → if Expr then Stmt
Stmt → Other

• Unambiguous grammar
Stmt → MatchedStmt
Stmt → UnmatchedStmt
MatchedStmt → if Expr then MatchedStmt else MatchedStmt
MatchedStmt → Other
UnmatchedStmt → if Expr then Stmt
UnmatchedStmt → if Expr then MatchedStmt else UnmatchedStmt

20

Dangling else ambiguity

• Check unambiguous dangling-else
grammar with the following inputs:
– if Expr then if Expr then Other else Other
– if Expr then if Expr then Other else Other

else Other
– if Expr then if Expr then Other else if

Expr then Other else Other

21

Other Ambiguous Grammars

• Consider the grammar
R → R ‘|’ R | R R | R ‘*’ | ‘(‘ R ‘)’ | a | b

• What does this grammar generate?
• What’s the parse tree for a|b*a
• Is this grammar ambiguous?

22

Left Factoring

• Original Grammar (ambiguous)
Stmt → if Expr then Stmt else Stmt
Stmt → if Expr then Stmt
Stmt → Other

• Left-factored Grammar (still ambiguous):
Stmt → if Expr then Stmt OptElse
Stmt → Other
OptElse → else Stmt | ε

23

Left Factoring

• In general, for rules

• Left factoring is achieved by the following
grammar transformation:

24

Grammar Transformations

• G is converted to G’ s.t. L(G’) = L(G)
• Left Factoring
• Removing cycles: A ⇒+ A
• Removing ε-rules of the form A → ε
• Eliminating left recursion
• Conversion to normal forms:

– Chomsky Normal Form, A → B C and A → a
– Greibach Normal Form, A → a β

25

Eliminating Left Recursion

• Simple case, for left-recursive pair of rules:

• Replace with the following rules:

• Elimination of immediate left recursion

26

Eliminating Left Recursion

• Example:
E → E + T, E → T

• Without left recursion:
E → T E1, E1 → + T E1 , E1 → ε

• Simple algorithm doesn’t work for 2-step
recursion:
S → A a , S → b
A → A c , A → S d , A → ε

27

Eliminating Left Recursion

• Problem CFG:
S → A a , S → b
A → A c , A → S d , A → ε

• Expand possibly left-recursive rules:
S → A a , S → b
A → A c , A → A a d , A → b d , A → ε

• Eliminate immediate left-recursion
S → A a , S → b
A → b d A1 , A → A1 , A1 → c A1 , A1 → a d A1 , A1 → ε

28

Eliminating Left Recursion

• We cannot use the algorithm if the non-
terminal also derives epsilon. Let’s see why:
A → AAa | b | ε

• Using the standard lrec removal algorithm:
A → bA1 | A1

A1 → AaA1 | ε

29

Eliminating Left Recursion

• First we eliminate the epsilon rule:
A → AAa | b | ε

• Since A is the start symbol, create a new
start symbol to generate the empty string:
A1 → A | ε A → AAa | Aa | a | b

• Now we can do the usual lrec algorithm:
A1 → A | ε A → aA2 | bA2
A2 → AaA2 | aA2 | ε

30

Non-CF Languages

• The pumping lemma for CFLs [Bar-Hillel]
is similar to the pumping lemma for RLs

• For a string wuxvy in a CFL for u,v ≠ ε and
the string is long enough then wunxvny is
also in the CFL for n ≥ 0

• Not strong enough to work for every non-
CF language (cf. Ogden’s Lemma)

31

Non-CF Languages

32

CF Languages

33

Context-free languages and
Pushdown Automata

• Recall that for each regular language there
was an equivalent finite-state automaton

• The FSA was used as a recognizer of the
regular language

• For each context-free language there is also
an automaton that recognizes it: called a
pushdown automaton (pda)

34

Context-free languages and
Pushdown Automata

• Similar to FSAs there are non-deterministic pda and
deterministic pda

• Unlike in the case of FSAs we cannot always convert a
npda to a dpda

• Our goal in compiler design will be to choose grammars
carefully so that we can always provide a dpda for it

• Similar to the FSA case, a DFA construction provides us
with the algorithm for lexical analysis,

• In this case the construction of a dpda will provide us with
the algorithm for parsing (take in strings and provide the
parse tree)

• We will study later how to convert a given CFG into a
parser by first converting into a PDA

35

Pushdown Automata

ε, ε → $
0, ε → A

1, A → ε

1, A → εε, $ → ε

push stack symbol A

pop stack symbol A

check that stack is empty

• PDA has
• an alphabet (terminals) and
• stack symbols (like non-terminals),
• a finite-state automaton, and
• stack

e.g. PDA for language
L = { 0n1n : n >= 0 }

→ implies a push/pop
of stack symbol(s)

36

Summary

• CFGs can be used describe PL
• Derivations correspond to parse trees
• Parse trees represent structure of programs
• Ambiguous CFGs exist
• Some forms of ambiguity can be fixed by

changing the grammar
• Grammars can be simplified by left-factoring
• Left recursion in a CFG can be eliminated
• CF languages can be recognized using Pushdown

Automata

