CMPT 379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Source
—»

program

Parsing

token
Lexical >
Analyzer |next0
Lexical

Errors

Parser

parse

|

Syntax
Errors

free

Later
Stages

Context-free Grammars

Set of rules by which valid sentences can be
constructed.

Example:
Sentence — Noun Verb Object
Noun — frees | compilers
Verb — are | grow
Object — on Noun | Adjective
Adjective — slowly | interesting

What strings can Sentence derive’
Syntax only — no semantic checking

Derivations of a CFG

compilers grow on trees
compilers grow on Noun
compilers grow Object
compilers Verb Object

Noun Verb Object
Sentence

Derivations and parse trees

Sentence
Moun Verb Object
compilers grow on Noun

rees

Why use grammars for PL?

Precise, yet easy-to-understand specification
of language

Construct parser automatically

— Detect potential problems

Structure and simplify remaining compiler
phases

Allow for evolution

CFG Notation

* A reference grammar 1s a COncise
description of a context-free grammar

* For example, a reference grammar can use

regular expressions on the right hand sides
of CFG rules

e Can even use 1deas like comma-separated
lists to simplify the reference language
definition

Writing a CFG for a PL

First write (or read) a reference grammar of what
you want to be valid programs

For now, we only worry about the structure, so the
reference grammar might choose to over-generate
n certain cases (e.g. bool x = 20;)

Convert the reference grammar to a CFG

Certain CFGs might be easier to work with than
others (this 1s the essence of the study of CFGs
and their parsing algorithms for compilers)

CFG Notation

e Normal CFG notation
E—=E*E
E—=E+E

e Backus Naur notation
E:=E*EIE+E
(an or-list of right hand sides)

Parse Trees for programs

method decl

return_type I LPHM param_comma_list RFRN block
type id_def LAB

10

Arithmetic Expressions

E—-E+E
E—-E*E
E—(E)
E—-E
E —id

11

[eftmost derivations for

id + id * id
e E=E+E
= id + E E
—id+E*E I
= id +id * E E

+ E
— id +id * id RN
E * E

id
| |

id id

12

[eftmost derivations for

id + id * id
e E=FE*E
= E+E*E E
=id+ E * E /’\
E * E
=id+id * E /’\ |
= id +id * id E . E id

13

Ambiguity

e Grammar 1s ambiguous if more than one
parse tree 1s possible for some sentences
 Examples in English:

— Two sisters reunited after 18 years in checkout
counter

 Ambiguity is not acceptable in PL

— Unfortunately, 1t’s undecidable to check
whether a grammar 1s ambiguous

14

Ambiguity

e Alternatives
— Massage grammar to make it unambiguous
— Rely on “default” parser behavior
— Augment parser

e Consider the original ambiguous grammar:
E—=E+E E—E*E
E—(E) E—-E
E—id
 How can we change the grammar to get only one
tree for the input id + id * id

15

Ambiguity

e Original ambiguous grammar: /EN
~-E—-E+E E—E*E E + T
- E—=(E) E—-E 7\
~E—id T T *F

e Unambiguous grammar: . i<|i
~E—-E+T T-—>T*F E
—E—=T T—F id

_F—=(E) [F=-E] d
_F—id 4\

e Input: id + id * id Warning! Is this unambiguous?

16

Dangling else ambiguity

e Original Grammar (ambiguous)
Stmt — if Expr then Stmt else Stmt
Stmt — if Expr then Stmt
Stmt — Other

e Modified Grammar (unambiguous?)
Stmt — if Expr then Stmt

Stmt — MatchedStmt
MatchedStmt — if Expr then MatchedStmt else Stmt

MatchedStmt — Other

17

St

i Expr then Simit

MatchedSumt

then MatchedStmt

Expr

Other MatchedStmt

Expr then MatchedStmt Stmit

Cther MatchedStmt

Other

Stmit
MatchedStmt
..___4_.___4___._._//—-—-—'—’_/’

ir_Txpr/E//l MatchédStmt else Trmt
i Expr then MatchedSimt Stmit MatchedStmt

Other i Expr then Stmit Other

MatchedStmt

Other

Dangling else ambiguity

* Original Grammar (ambiguous)
Stmt — if Expr then Stmt else Stmt
Stmt — if Expr then Stmt
Stmt — Other

e Unambiguous grammar
Stmt — MatchedStmt
Stmt — UnmatchedStmt
MatchedStmt — if Expr then MatchedStmt else MatchedStmt
MatchedStmt — Other
UnmatchedStmt — if Expr then Stmt
UnmatchedStmt — if Expr then MatchedStmt else UnmatchedStmt

19

Dangling else ambiguity

* Check unambiguous dangling-else
grammar with the following inputs:

—1f Expr then if Expr then Other else Other

— 11 Expr then 1if Expr then Other else Other
else Other

—1f Expr then if Expr then Other else if
Expr then Other else Other

20

Other Ambiguous Grammars

Consider the grammar
R—R‘"RIRRIR“*[‘CR*)Ylalb
What does this grammar generate?
What’s the parse tree for alb*a

Is this grammar ambiguous?

21

Left Factoring

e Original Grammar (ambiguous)
Stmt — if Expr then Stmt else Stmt
Stmt — if Expr then Stmt
Stmt — Other

o Left-factored Grammar (still ambiguous):

Stmt — if Expr then Stmt OptElse
Stmt — Other
OptElse — else Stmt | €

22

Left Factoring

* In general, for rules

A—af|aBs|...|alB, |y

o Left factoring is achieved by the following
grammar transformation:

A— aA |y
A,Hﬁl‘ﬂZ‘lﬁn

23

Grammar Transformations

G 1s converted to G’ s.t. L(G’) = L(G)

Left Factoring
Removing cycles: A =+ A

Removing ¢-rules of the form A — ¢
Eliminating left recursion

Conversion to normal forms:

— Chomsky Normal Form, A =B Cand A — a
— Greibach Normal Form, A — a f3

24

Eliminating Left Recursion

 Simple case, for left-recursive pair of rules:

A— Ao |p

e Replace with the following rules:
A— BA
A" — aA' | e

e Elimination of immediate left recursion

25

Eliminating Left Recursion

e Example:
E—-E+T,E—=T
e Without left recursion:
E—-TE,E —-+TE, E, —¢
 Simple algorithm doesn’t work for 2-step
recursion:
S—Aa,S—b
A—Ac,A—=Sd,A—c¢

26

Eliminating Left Recursion

e Problem CFG:
S—Aa,S—b
A—Ac,A—=Sd,A—c¢

* Expand possibly left-recursive rules:
S—Aa,S—b
A—Ac,A—Aad,A—Dbd,A—c¢

e Eliminate immediate left-recursion
S—Aa,S—b
A—=bdA , A=A, ,A —cA A —adA, A —¢

27

Eliminating Left Recursion

* We cannot use the algorithm if the non-
terminal also derives epsilon. Let’s see why:

A — AAalble

e Using the standard Irec removal algorithm:
A —DbA, A,
A, — AaA, | ¢

28

Eliminating Left Recursion

* First we eliminate the epsilon rule:
A — AAalble

e Since A 1s the start symbol, create a new
start symbol to generate the empty string:

A, —Aleg A — AAalAalalb

 Now we can do the usual Irec algorithm:
A —Aleg A — aA, | bA,
A, — AaA,laA,le

29

Non-CF Languages

 The pumping lemma for CFLs [Bar-Hillel]
1s similar to the pumping lemma for RLs

e For a string wuxvy 1n a CFL for u,v = € and

the string 1s long enough then wuxv"y 1s
also in the CFL for n =0

e Not strong enough to work for every non-
CF language (cf. Ogden’s Lemma)

30

Non-CF Languages
Ly = A{wcw | w € (alb)*}

Ly ={a™b™c"d™ |n>1,m > 1}

Ly ={a™b"c" | n > 0}

31

CF Languages

Ly = {wew® | w € (alb)*}

S —aSa |bSb|c

Ls ={a"b™c™d" |[n>1,m > 1}
S — aSd | aAd

A — bAc | bc

Context-free languages and
Pushdown Automata

e Recall that for each regular language there
was an equivalent finite-state automaton

* The FSA was used as a recognizer of the
regular language

* For each context-free language there 1s also
an automaton that recognizes it: called a
pushdown automaton (pda)

33

Context-free languages and
Pushdown Automata

Similar to FSAs there are non-deterministic pda and
deterministic pda

Unlike 1n the case of FSAs we cannot always convert a
npda to a dpda

Our goal 1n compiler design will be to choose grammars
carefully so that we can always provide a dpda for it

Similar to the FSA case, a DFA construction provides us
with the algorithm for lexical analysis,

In this case the construction of a dpda will provide us with
the algorithm for parsing (take in strings and provide the
parse tree)

We will study later how to convert a given CFG 1nto a

parser by first converting into a PDA >

Pushdown Automata

* PDA has e.g. PDA for language
e an alphabet (terminals) and L={0"1":n>=0}
e stack symbols (like non-terminals),
e a finite-state automaton, and
e stack

— implies a push/pop
of stack symbol(s)

0,e = A
\ push stack symbol A

1, A —> £ ‘\
pop stack symbol A

check that stack is empty 35

Summary

CFGs can be used describe PL
Derivations correspond to parse trees
Parse trees represent structure of programs
Ambiguous CFGs exist

Some forms of ambiguity can be fixed by
changing the grammar

Grammars can be simplified by left-factoring
Left recursion in a CFG can be eliminated

CF languages can be recognized using Pushdown
Automata 6

