
CMPT 379
Compilers

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

2

Parse trees

• Given an input program, we convert the text
into a parse tree

• Moving to the backend of the compiler: we
will produce intermediate code from the
parse tree

• This process is called syntax directed
translation because we are using a CFG

• Parser output is a concrete syntax tree

3

Intermediate Representations

• A parse tree is an example of a very high
level intermediate representation

• We can reconstruct the original source code
from the concrete syntax tree

• Typically we want to check some semantic
rules on the parse tree and report any errors

• The next step: semantic processing and code
generation

4

Abstract Syntax Trees

• Take the concrete syntax tree and simplify it
to the essential nodes

• For example, if the parser used an LL(1)
grammar then the concrete syntax tree will
have extra non-terminals

• Elimination of left-recursion, changing the
grammar to remove shift/reduce conflicts

5

Abstract Syntax Trees

• Assume we have a top-down parser, e.g. an LL(1)
parser.

• We have to eliminate left-recursion to use the
parser
E → E + T | T
Becomes
E → T E1 and E1 → + T E1 | ε

• For future steps, the AST might convert back into
a tree that is compatible with the original grammar
(before left-recursion elimination)

6

Abstract Syntax Trees
• Another example is the use of built-in functions, user-

defined functions and operators
• In each case we have to call some code with a number of

parameters
• Each case might have a separate syntax with different

punctuation marks, e.g. () ;
• Punctuation marks are useful in language design but not

useful when presenting a uniform tree for future analysis
and code generation

• In an AST, all of these cases can be converted to a single
tree format

7

Abstract Syntax Trees

• Other examples include lists of various kinds that
involves recursion in CFGs:
Program → Function-List
Function-List → Function-Defn Function_List
 | Function-Defn

• The extra nodes created due to these grammar
changes are not useful

• The extra nodes might make things non-local
(inconvenient) for the semantic processing and
code generation

8

Abstract Syntax Trees

• Process the concrete syntax tree and convert
into a tree that is useful for semantic
processing and code generation

• Note that ambiguity is no longer a problem:
we already have the parse tree

• Abstract syntax trees will typically have
pointers to children and pointers to parent
nodes

9

Example

• Consider the following fragment of a
programming language grammar:
Program → Function-List
Function-List → Function-Defn Function-List
 | Function-Defn
Function-Defn → fun id (Param-List) Body
Body → ‘{‘ Statement-List ‘}’

10

Example (cont’d)

• Consider an example program:
fun main ()
{

statement

}
fun foo (int n)
{

n = n + 1

}

11

Concrete Parse Tree

Function-List

Function-List

Function-Defn

Function-Defn

fun id () Bodyparams

ε
main fun id () Bodyparams

int

foo

id

n

param

Program

n expr

n

assign

1op

{ }

{ }

=

12

Abstract Parse Tree
Function-List

Function Id: main Function Id: foo

Subtree for params
Subtree for body

Subtree for body

Other
functions

Function Id: +

Subtree for params

Subtree for assign

13

Code generation as Translation

• Code generation can be viewed as
translation from the parse tree

• In other words, an alignment between the
source code and the assembly code

• Typically we go to an intermediate
representation and then to assembly

• Let’s consider a simple case where the IR
step can be skipped

14

Expr concrete syntax tree
Expr

ExprExpr B-op

+Var

a Var

c

ExprExpr B-op

*Var

b

15

Expr abstract parse tree

+

a *

b c

16

Code generation

• GenerateCode(tree t, int resultRegister)
• Recursively traverse the abstract syntax tree
• At each node produce the code needed for

that binary operation based on the results
from the recursive call results

17

Trace of code generation
GenerateCode(+, 0)

GenerateCode(a, 0)
Write “LOAD a, R0”

GenerateCode(*, 1)
GenerateCode(b, 1)

Write “LOAD b, R1”
GenerateCode(c, 2)

Write “LOAD c, R2”
Write “MUL R1, R2”

Write “ADD R0, R1”

18

Result of code generation

• The resulting assembly code:
LOAD a, R0
LOAD b, R1
LOAD c, R2
MUL R1, R2
ADD R0, R1

• Note that using the tree structure means that the
registers do not conflict

• Later we will consider the optimal assignment of
values to registers

19

Case Study: Lisp

• The term abstract syntax was coined by
John McCarthy

• McCarthy designed Lisp which directly
used an abstract syntax bypassing the
concrete syntax step

• Structure of Lisp: (function arg-list)
• Directly represents the parse tree in syntax
• Lisp: Lots of Irritating Silly Parentheses

20

Directed Acyclic Graphs
Expr

ExprB-op

+

Var

c

ExprExpr B-op

*Var

b

Expr

Var

c

ExprExpr B-op

*Var

b

b*c+b*c

21

Directed Acyclic Graphs
Expr

B-op

+

Expr

Var

c

ExprExpr B-op

*Var

b

22

Summary

• The parser produces concrete syntax trees
• Abstract syntax trees: abstract away from any

grammar transformations or remove unnecessary
punctuation

• Tree is input for code generation
• Ad-hoc code generation from ASTs
• As before, we would like to formally specify

translation from AST to assembly/machine code
• ASTs can also be the basis for semantic analysis

