CMPT 379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Parse trees

Given an input program, we convert the text
into a parse tree

Moving to the backend of the compiler: we
will produce intermediate code from the
parse tree

This process 1s called syntax directed
translation because we are using a CFG

Parser output i1s a concrete syntax tree

Intermediate Representations

A parse tree 1s an example of a very high
level intermediate representation

We can reconstruct the original source code
from the concrete syntax tree

Typically we want to check some semantic
rules on the parse tree and report any errors

The next step: semantic processing and code
generation

Abstract Syntax Trees

* Take the concrete syntax tree and simplify it
to the essential nodes

* For example, 1f the parser used an LL(1)
grammar then the concrete syntax tree will
have extra non-terminals

 Elimination of left-recursion, changing the
grammar to remove shift/reduce conflicts

Abstract Syntax Trees

* Assume we have a top-down parser, e.g. an LL(1)
parser.

e We have to eliminate left-recursion to use the
parser

E—E+TIT
Becomes
E—TE, andE, =+TE, ¢

e For future steps, the AST might convert back into
a tree that 1s compatible with the original grammar
(before left-recursion elimination)

Abstract Syntax Trees

Another example 1s the use of built-in functions, user-
defined functions and operators

In each case we have to call some code with a number of
parameters

Each case might have a separate syntax with different
punctuation marks, e.g. () ;

Punctuation marks are useful in language design but not
useful when presenting a uniform tree for future analysis
and code generation

In an AST, all of these cases can be converted to a single
tree format

Abstract Syntax Trees

e Other examples include lists of various kinds that
involves recursion in CFGs:
Program — Function-List
Function-List — Function-Defn Function_ List
| Function-Defn

e The extra nodes created due to these grammar
changes are not useful

* The extra nodes might make things non-local
(inconvenient) for the semantic processing and
code generation

Abstract Syntax Trees

* Process the concrete syntax tree and convert
into a tree that 1s useful for semantic
processing and code generation

* Note that ambiguity 1s no longer a problem:
we already have the parse tree

e Abstract syntax trees will typically have
pointers to children and pointers to parent
nodes

Example

e Consider the following fragment of a
programming language grammar:
Program — Function-List
Function-List — Function-Defn Function-List
| Function-Defn
Function-Defn — fun id (Param-List) Body
Body — ‘{* Statement-List ‘}’

Example (cont’d)

e Consider an example program:

fun main ()

{

statement

¥

fun foo (int n)

{

n=n+1

¥

10

Concrete Parse Tree

Program
|

Function-List

///\

Function-Defn Function-List

[
%\ Function-Defn

fun 1d (params) Body

/ 1)
main l fun id (params) Body
/ | S
f00 param 1 assign }
T —
int id " = P
\ /\\

n n op

1

Abstract Parse Tree

Other
functions

Code generation as Translation

Code generation can be viewed as
translation from the parse tree

In other words, an alignment between the
source code and the assembly code

Typically we go to an intermediate
representation and then to assembly

Let’s consider a simple case where the IR
step can be skipped

13

Expr concrete syntax tree

Expr
%\
Expr B-op Expr
AN
Var T Expr B-op Expr
]
a Var * Var

\ l

b C

14

Expr abstract parse tree

e

15

Code generation

* GenerateCode(tree t, int resultRegister)
* Recursively traverse the abstract syntax tree

* At each node produce the code needed for
that binary operation based on the results
from the recursive call results

16

Trace of code generation

GenerateCode(+, 0)
GenerateCode(a, 0)
Write “LOAD a, R0O”
GenerateCode(*, 1)
GenerateCode(b, 1)
Write “LOAD b, R1”
GenerateCode(c, 2)
Write “LOAD c, R2”
Write “MUL R1, R2”
Write “ADD RO, R1”

17

Result of code generation

The resulting assembly code:
LOAD a, RO
LOAD b, R1
LOAD ¢, R2
MUL R1, R2
ADD RO, R1

Note that using the tree structure means that the
registers do not conflict

Later we will consider the optimal assignment of
values to registers

18

Case Study: Lisp

The term abstract syntax was coined by
John McCarthy

McCarthy designed Lisp which directly
used an abstract syntax bypassing the
concrete syntax step

Structure of Lisp: (function arg-list)
Directly represents the parse tree 1n syntax
Lisp: Lots of Irritating Silly Parentheses

19

Directed Acyclic Graphs

Expr b*c+b*c

T

Expr B-op Expr

Expr B-op Expr Expr ~ B-op Expr

I *

Var * Var Var Var

20

Directed Acyclic Graphs

Expr
\

B-op
/ /
+
Expr
N T

Expr B-op Expr
|

Var ¥ Var

21

Summary

The parser produces concrete syntax trees

Abstract syntax trees: abstract away from any
grammar transformations or remove unnecessary
punctuation

Tree 1s input for code generation
Ad-hoc code generation from ASTs

As betfore, we would like to formally specity
translation from AST to assembly/machine code

ASTs can also be the basis for semantic analysis

22

