
CMPT 379

Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

9/7/05 2

Compilers

• Analysis of the source (front-end)

• Synthesis of the target (back-end)

• The translation from user intention into
intended meaning

• The requirements from a Compiler and a
Programming Language are:

– Ease of use (high-level programming)

– Speed

9/7/05 3

Cousins of the compiler

• “Smart” editors for structured languages

– static checkers; pretty printers

• Structured or semi-structured data

– Trees as data: s-expressions; XML

– query languages for databases: SQL

• Interpreters (for PLs like lisp or scheme)

– Scripting languages: perl, python, tcl/tk

– Special scripting languages for applications

– “Little” languages: awk, eqn, troff, TeX

• Compiling to Bytecode (virtual machines)

9/7/05 4

Context for the Compiler

• Preprocessor

• Compiler

• Assembler

• Linker (loader)

9/7/05 5

What we understand

#include <stdio.h>

int main (int argc, char *argv[]) {

int i;

int sum = 0;

for (i = 0; i <= 100; i++)

sum = sum + i * i;

printf (”Sum from 0..100 = %d\n", sum);

}

9/7/05 6

Conversion into

instructions for

the Machine

MIPS

machine language

code

9/7/05 7

Assembly language

 .text

 .globl main

main:

 ori $8, $0, 2

 ori $9, $0, 3

 addu $10, $8, $9

A one-one translation from machine code to assembly

(assuming a single file of assembly with no dependencies)

9/7/05 8

9/7/05 9

Linker
 .data

str:

 .asciiz "the answer = "

.text

main:

 li $v0, 4

 la $a0, str

 syscall

 li $v0, 1

 li $a0, 42

 syscall

Local vs. Global labels

2-pass assembler and Linker

9/7/05 10

The UNIX toolchain

(as, ar, ranlib, ld, …)

9/7/05 11

Historical Background

• Machine language/Assembly language

• 1957: First FORTRAN compiler

– 18 man years of effort

• Today’s techniques were created in

response to the difficulties of implementing

early compilers

9/7/05 12

Programming Language Design

• Ease of use (difficult: depends on the zeitgeist)

• Simplicity

• Visualize the dynamic process of the programs
runtime by examining the static program code

• Code reuse: polymorphic functions, objects

• Checking for correctness: strong vs. weak typing,
side-effects, formal models

• The less typing the better: syntactic “sugar”

• Automatic memory management

• Community acceptance: extensions and libraries

9/7/05 13

Programming Language Design

• Speed (closely linked to the compiler tools)

• Defining tokens

• Defining the syntax

• Defining the “semantics” (typing,
polymorphism, coercion, etc.)

• Core language vs. the standard library

• Hooks for code optimization (iterative
idioms vs. pure functional languages)

9/7/05 14

Building a compiler

• The cost of compiling and executing should

be managed

• No program that violates the definition of

the language should escape

• No program that is valid should be rejected

9/7/05 15

Building a compiler

• Requirements for building a compiler:

– Symbol-table management

– Error detection and reporting

• Stages of a compiler:

– Analysis (front-end)

– Synthesis (back-end)

9/7/05 16

Stages of a Compiler

• Analysis (Front-end)

– Lexical analysis

– Syntax analysis (parsing)

– Semantic analysis (type-checking)

• Synthesis (Back-end)

– Intermediate code generation

– Code optimization

– Code generation

9/7/05 17

Lexical Analysis

• Also called scanning, take input program

string and convert into tokens

• Example: T_DOUBLE (“double”)
T_IDENT (“f”)
T_OP (“=“)
T_IDENT (“sqrt”)
T_LPAREN (“(“)

T_OP (“-”)
T_INTCONSTANT (“1”)
T_RPAREN (“)”)
T_SEP (“;”)

double f = sqrt(-1);

9/7/05 18

Syntax Analysis

• Also called parsing

• Describe the set of strings that are programs using
a grammar

• Pick the simplest grammar formalism possible
(but not too simple)

– Finite-state machines (Regular grammars)

– Deterministic Context-free grammars

– Context-free grammars

• Structural validation

• Creates parse tree or derivation

9/7/05 19

Derivation of sqrt(-1)

Expression

-> FuncCall

-> T_IDENT T_LPAREN Expression T_RPAREN

-> T_IDENT T_LPAREN UnaryExpression T_RPAREN

-> T_IDENT T_LPAREN T_OP Expression T_RPAREN

-> T_IDENT T_LPAREN T_OP T_INTCONSTANT T_RPAREN

Expression -> UnaryExpression
Expression -> FuncCall
Expression -> T_INTCONSTANT
UnaryExpression -> T_OP Expression
FuncCall -> T_IDENT T_LPAREN Expression T_RPAREN

9/7/05 20

Parse Trees
Expression

FuncCall

T_IDENT T_LPAREN Expression T_RPAREN

UnaryExpression

ExpressionT_OP

T_INTCONSTANT

sqrt

-

()

1

9/7/05 21

Semantic analysis

• “does it make sense”?

• Checking semantic rules, such as

– Is there a main function?

– Is variable declared?

– Are operand types compatible? (coercion)

– Do function arguments match function declarations?

• Static vs. run-time semantic checks

– Array bounds, return values do not match definition

9/7/05 22

Intermediate Code Generation

• Three-address code (TAC)

j = 2 * i + 1;
if (j >= n)
 j = 2 * i + 3;
return a[j];

_t1 = 2 * i
_t2 = _t1 + 1
j = _t2
_t3 = j < n
if _t3 goto L0
_t4 = 2 * i
_t5 = _t4 + 3
j = _t5

L0: _t6 = a[j]
return _t6

9/7/05 23

Code Optimization

• Example

_t1 = 2 * i
_t2 = _t1 + 1
j = _t2
_t3 = j < n
if _t3 goto L0
_t4 = 2 * i
_t5 = _t4 + 3
j = _t5

L0: _t6 = a[j]
return _t6

_t1 = 2 * i

j = _t1 + 1
_t3 = j < n
if _t3 goto L0

j = _t1 + 3

L0: _t6 = a[j]
return _t6

9/7/05 24

Object code generation

• Example: a in $a0, i in $a1, n in $a2

_t1 = 2 * i

j = _t1 + 1
_t3 = j < n
if _t3 goto L0

j = _t1 + 3

mulo $t1, $a0, 2

add $s0, $t1, 2
seq $t2, $s0, $a2
beq $t2, 1, L0

add $s0, $t1, 3

9/7/05 25

Bootstrapping a Compiler

• Machine code at the beginning

• Make a simple subset of the language,
write a compiler for it, and then use that
subset for the rest of the language definition

• Bootstrap from a simpler language

– C++ (“C with classes”)

• Interpreters

• Cross compilation

9/7/05 26

Wrap Up

• Analysis/Synthesis

– Translation from string to executable

• Divide and conquer

– Build one component at a time

– Theoretical analysis will ensure we keep things

simple and correct

– Create a complex piece of software

