CMPT-379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Programming Languages and Formal Language Theory

- We ask the question: Does a particular formal language describe some key aspect of a programming language
- Then we find out if that language isn't in a particular language class

Programming Languages and Formal Language Theory

- For example, if we abstract some aspect of the programming language structure to the formal language: $\{ww^R \mid \text{ where } w \in \{a,b\}^*, w^R \text{ is the reverse of } w\}$ we can then ask if this language is a regular language
- If this is false, i.e. the language is not regular, then we have to go beyond regular languages

3

Recursion in Regular Languages

• Consider a regular expression for arithmetic expressions:

$$2 + 3 * 4$$

 $8 * 10 + -24$
 $2 + 3 * -2 + 8 + 10$

$$^s*-?\s^d+\s^((\+|*)\s^*-?\s^d+\s^)*$$

• Can we compute the meaning of these expressions?

Recursion in Regular Languages

- Construct the finite state automata and associate the meaning with the state sequence
- However, this solution is missing something crucial about arithmetic expressions what is it?

ı

Do Programming Languages belong to Regular Languages

- Consider the following arithmetic expressions
 - -(((2)+(3))*(4))
 - -((8)*((10)+(-24)))
- Map ($\rightarrow a$ and) $\rightarrow b$. Map everything else to ϵ (keep only the tree structure)
- This results in strings like aaababbabb and aabaababbb
- What is a good description of this language? Let's call it L

Pumping Lemma proofs

- Is L a regular language?
- To show something is not a regular language, we use the pumping lemma
- For any infinite set of strings generated by a finite-state machine if you consider a string that is long enough from this set, there has to be a loop which visits the same state at least twice (from the pigeonhole principle)
- Thus, in a regular language L, there are strings x,y,z such that $xy^iz\in L$ for $i\geq 0$ where $y\neq \epsilon$

7

Pumping Lemma

- Pumping Lemma formal statement:
 - For all A that is in the set of regular languages,
 - there exists a p (p is called the pumping length)
 - such that for all $s \in A, |s| \ge p$,
 - there exists strings x, y, z such that s = xyz and |y| > 0 and $|xy| \le p$,
 - such that for all $i \ge 0$, $xy^i z \in A$.
- Try it on regular languages: $L(ab^*a)$ and $L((aa)^*)$. Construct minimal DFA for each one to find the value of p that is appropriate.

Pumping Lemma proofs

- Let L' be the intersection of L with the language L_1 defined by the regular expression a^*b^*
- Intersect the set $L = \{\epsilon, ab, abab, aabb, ...\}$ with $L_1 = \{\epsilon, a, b, aa, ab, aab, abb, bb, ...\}$
- Recall that RLs are closed under intersection, so L' must also be a RL. In fact, we can describe L' as the language a^nb^n for $n \ge 0$

9

Pumping Lemma proofs

- For any choice of y (consider a^i or a^ib or b^i) if we multiply y^n for $n \ge 0$ we get strings that are not in L'
- For example, for a string aaabbb if we pick y = ab and pick n = 2 we get a string aaababbb which is not in L'
- Hence, the pumping lemma leads to the conclusion that L' is **not** regular
- This implies that *L* is not regular since RLs are closed under intersection
- What lies beyond the set of regular languages?

The Chomsky Hierarchy

- **unrestricted** or **type-0** grammars, generate the *recursively enumerable* languages, automata equals *Turing machines*
- context-sensitive or type-1 grammars, generate the context-sensitive languages, automata equals Linear Bounded Automata
- **context-free** or **type-2** grammars, generate the *context-free* languages, automata equals *Pushdown Automata*
- regular or type-3 grammars, generate the regular languages, automata equals Finite-State Automata

11

The Chomsky Hierarchy A system of grammars G = (N, T, P, S)

- T is a set of symbols called terminal symbols.
 Also called the alphabet Σ
- N is a set of non-terminals, where N ∩ T = ∅
 Some notation: α,β,γ ∈ (N ∪ T)*
 N is sometimes called the set of variables V
- *P* is a set of production rules that provide a finite description of an infinite set of strings (a language)
- *S* is the start non-terminal symbol (similar to the start state in a FSA)

Languages

• Language defined by G: L(G)

- L(G): set of strings $w \in T^*$ derived from S

- S ⇒ $^+$ w (derives in 1 or more steps using rules in P)

- w is a sentence of G

– Sentential form: $S \Rightarrow^+ \alpha$ and α contains a mix of terminals and non-terminals

• Two grammars G_1 and G_2 are equivalent if $L(G_1) = L(G_2)$

13

The Chomsky Hierarchy:
$$G = (N, T, P, S)$$
 where, $\alpha, \beta, \gamma \in (N \cup T)^*$

- unrestricted or type-0 grammars: $\alpha \rightarrow \gamma$, such that $\alpha \neq \epsilon$
- **context-sensitive** or **type-1** grammars: $\alpha \to \gamma$, where $|\gamma| \ge |\alpha|$ CSG Normal Form: $\alpha A \beta \to \alpha \gamma \beta$, such that $\gamma \ne \epsilon$ and $S \to \epsilon$ if $\epsilon \in L(G)$
- context-free or type-2 grammars: $A \rightarrow \gamma$
- regular or type-3 grammars: $A \rightarrow a B$ or $A \rightarrow a$

Regular grammars: **right-linear CFG**: $L(G) = L(a^*b^*)$

$$A \rightarrow a A$$
 (1)

$$A \rightarrow \epsilon$$
 (2)

$$A \rightarrow b B \tag{3}$$

$$B \rightarrow b B$$
 (4)

$$B \rightarrow \epsilon$$
 (5)

- Input: bb
- Derivation using sentential forms: $A \Rightarrow bB \Rightarrow bbB \Rightarrow bb\epsilon = bb$

Context-free grammars: $L(G) = \{a^n b^n \mid n \ge 0\}$

$$S \rightarrow aSb$$

$$S \rightarrow \epsilon$$

- Input: *aabb*
- Derivation using sentential forms:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aa\epsilon bb = aabb$$

14

Context-free grammars: $L(G) = \{a^n \mid n \ge 0\}$

$$S \rightarrow S S$$

$$S \rightarrow a$$

- Input: aaaa
- Derivation using sentential forms:
 S ⇒ SS ⇒ aS ⇒ aSS ⇒ aaS ⇒ aaSS ⇒ aaaS ⇒ aaaa
- But what about another derivation:
 S ⇒ SS ⇒ SSS ⇒ SSSS ⇒ aSSS ⇒ ... ⇒ aaaa
- Key problem with CFGs: ambiguity

17

Context-sensitive grammars: $L(G) = \{a^n b^n \mid n \ge 1\}$

$$S \rightarrow SBC$$

$$S \rightarrow aC$$

$$aB \rightarrow aa$$

$$CB \rightarrow BC$$

$$Ba \rightarrow aa$$

$$C \rightarrow b$$

Context-sensitive grammars: $L(G) = \{a^n b^n \mid n \ge 1\}$

$$\begin{array}{c} S_1 \\ S_2 \, B_1 \, C_1 \\ S_3 \, B_2 \, C_2 \, B_1 \, C_1 \\ a_3 \, C_3 \, B_2 \, C_2 \, B_1 \, C_1 \\ a_3 \, B_2 \, C_3 \, C_2 \, B_1 \, C_1 \\ a_3 \, a_2 \, C_3 \, C_2 \, B_1 \, C_1 \\ a_3 \, a_2 \, C_3 \, B_1 \, C_2 \, C_1 \\ a_3 \, a_2 \, B_1 \, C_3 \, C_2 \, C_1 \\ a_3 \, a_2 \, a_1 \, C_3 \, C_2 \, C_1 \\ a_3 \, a_2 \, a_1 \, C_3 \, C_2 \, C_1 \\ a_3 \, a_2 \, a_1 \, b_3 \, b_2 \, b_1 \end{array}$$

19

Unrestricted grammars: $L(G) = \{a^{2i} \mid i \ge 1\}$

$$S \rightarrow ACaB$$

$$Ca \rightarrow aaC$$

$$CB \rightarrow DB$$

$$CB \rightarrow E$$

$$aD \rightarrow Da$$

$$AD \rightarrow AC$$

$$aE \rightarrow Ea$$

$$AE \rightarrow \epsilon$$

Unrestricted grammars: $L(G) = \{a^{2i} \mid i \ge 1\}$

21

Unrestricted grammars: $L(G) = \{a^{2i} \mid i \ge 1\}$

- A and B serve as left and right end-markers for sentential forms (derivation of each string)
- C is a marker that moves through the string of a's between A and B, doubling their number using $C \ a \rightarrow a \ a \ C$
- When C hits right end-marker B, it becomes a D or E by $C \ B \to D \ B$ or $C \ B \to E$
- If a D is chosen, that D migrates left using $a \ D \to D \ a$ until left end-marker A is reached

Unrestricted grammars: $L(G) = \{a^{2i} \mid i \ge 1\}$

- At that point D becomes C using $A D \rightarrow A C$ and the process starts over
- Finally, E migrates left until it hits left end-marker A using $a \to E a$
- Note that $L(G) = \{a^{2i} \mid i \ge 1\}$ can also be written as a context-sensitive grammar

Examples of Languages in the Chomsky Hierarchy

- context-sensitive grammars: 0^i , i is not a prime number and i > 0
- **indexed** grammars: $0^n 1^n 2^n \dots m^n$, for any fixed m and $n \ge 0$
- **context-free** grammars: $0^n 1^n$ for $n \ge 0$
- **deterministic context-free** grammars: $S' \to S$ c, $S \to S$ $A \mid A$, $A \to a$ S $b \mid ab$: the language of "balanced parentheses"
- regular grammars: (0|1)*00(0|1)*

22

24

Language	Automaton	Grammar	Recognition	Dependency
Recursively Enumerable Languages	Turing Machine	Unrestricted Baa → A	Undecidable	Arbitrary
Context- Sensitive Languages	Linear-Bounded	Context- Sensitive At → aA	NP-Complete	Crossing
Context- Free Languages	Pushdown (stack)	Context-Free S → gSc	Polynomial	Nested
Regular Languages	Finite-State Machine	Regular A → cA	Linear	Strictly Local

Verifying that L = L(G)

- $\bullet\,$ Let's say we have a context-free grammar G and a description of a language L
- How can we say for sure that L = L(G)?
- By verifying the statement in two directions:
 - \Rightarrow All strings generated by G are in L
 - \Leftarrow All strings $w \in L$ can be generated by G

25

Complexity of Parsing Algorithms

- Given grammar G and input x, provide algorithm for: Is $x \in L(G)$?
 - unrestricted: undecidable
 - context-sensitive: NSPACE(n) linear non-deterministic space
 - indexed grammars: NP-Complete
 - context-free: $O(n^3)$
 - deterministic context-free: O(n)
 - regular grammars: O(n)

Verifying that L = L(G)

- Example: T = {a, b}. Consider language L to be "all strings with same number of as and bs"
- Consider G to be a CFG: $S \rightarrow \epsilon \mid a S \mid b S \mid b S \mid a S$
- To verify that L = L(G), prove that
 - \Rightarrow All strings generated by G are in L
 - \Leftarrow All strings $w \in L$ can be generated by G

26 28

Proof (\Rightarrow): All strings generated by G are in L

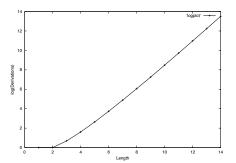
- Proof by induction:
 - Base case: ϵ is in L (trivial)
 - Inductive hypothesis: Assume $u \in L$ and $v \in L$. Let w be generated by G with |u| < |w| and |v| < |w|
 - * Because w is generated by G then either $w \Rightarrow a \ u \ b \ v$ or $w \Rightarrow b \ u \ a \ v$, where u and v are generated by G
 - * Since |u| < |w| and |v| < |w| and $u, v \in L$ then since we only added a single matching a, b pair, we can conclude that w is in L

29

Proof (\Leftarrow): All strings $w \in L$ can be generated by G

- Proof by induction (show that $S \Rightarrow^+ w$):
 - **Base case**: $w = \epsilon$ (trivial: $S \rightarrow \epsilon$)
 - **Inductive hypothesis**: For a given $w \in L$, assume that for all $u, v \in L$ where |u| < |w| and |v| < |w| we have $S \Rightarrow^+ u$ and $S \Rightarrow^+ v$
 - * **Case 1** w **starts with** a: Find the first b from the right so that $w = a \ u \ b \ v$ and v has the same number of as and bs Because $w \in L$ it has to be true that $u, v \in L$ and by the inductive hypothesis $S \Rightarrow^+ u$ and $S \Rightarrow^+ v$ Using rule $S \to a \ S \ b \ S$ and the above step we get $S \Rightarrow^+ w$
 - * Case 2 w starts with b: (analogous to Case 1)

CFG Ambiguity: Number of derivations grows exponentially



$$L(G) = a + using CFG rules \{ S \rightarrow S S, S \rightarrow a \}$$

31

CFG Ambiguity

- Algebraic character of parse derivations
- Power Series for grammar for the (simplified) arithmetic expression CFG:
 E → digit | E binop E
- Write it down as an equation with coefficients equal to number of different analyses possible:

E = digit + digit binop digit

+ 2(digit binop digit binop digit)

+ 5(digit binop digit binop digit binop digit)

+ 14...

CFG Ambiguity

- Coefficients in previous equation equal the number of parses for each string derived from E
- These ambiguity coefficients are Catalan numbers:

$$Cat(n) = \frac{1}{n+1} \binom{2n}{n}$$

• $\begin{pmatrix} a \\ b \end{pmatrix}$ is the binomial coefficient

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{a!}{(b!(a-b)!)}$$

33

Catalan numbers

- Why Catalan numbers? Cat(n) is the number of ways to parenthesize an expression of length *n* with following conditions:
 - 1. there must be equal numbers of open and close parens
 - 2. they must be properly nested so that an open precedes a close
 - the parentheses are used to encode groupings and spurious parenthesis groupings are not counted, e.g. a(bc) is counted but not (a) (bc)

Catalan numbers

- For an expression of length n there are a total of 2n choose n parenthesis pairs, e.g. for 2 ops, $\binom{4}{2} = 6$: a(bc),)a(bc, a)bc(, (ab)c,)ab(c, ab)c(
- But for each valid parenthesis pair, additional n pairs are created that
 have the right parenthesis to the left of its matching left parenthesis, from
 e.g. above:)a(bc, a)bc(, ab)c(
- So we divide 2n choose n by n + 1:

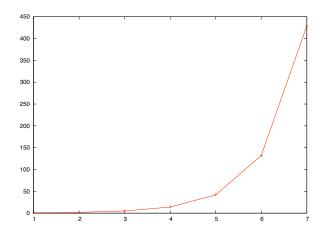
$$Cat(n) = \frac{\binom{2n}{n}}{n+1}$$

35

Catalan numbers

n	catalan(n)	
1	1	
2	2	
3	5	
4	14	
5	42	
6	132	
7	429	
8	1430	
9	4862	
10	16796	

Catalan numbers



- Aspects of PL structure cannot be represented by FSAs
- Pumping lemma proofs for proving a language is not regular

Summary

- Chomsky hierarchy: from FSAs to Turing machines
- Verifying that a particular language is generated by a grammar G
- Context-free grammars (seems sufficient for PLs) but problems with ambiguity

39

40-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0-07
3-0