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Abstract—The memory wall has motivated many enhancements to 
cache management policies aimed at reducing misses. Cache 
compression has been proposed to increase effective cache 
capacity, which potentially reduces capacity and conflict misses. 
However, complexity in cache compression implementations could 
increase cache power and access latency. On the other hand, 
advanced cache replacement mechanisms use heuristics to reduce 
misses, leading to significant performance gains. Both cache 
compression and replacement policies should collaborate to 
improve performance.  

In this paper, we demonstrate that cache compression and 
replacement policies can interact negatively. In many workloads, 
performance gains from replacement policies are lost due to the 
need to alter the replacement policy to accommodate compression. 
This leads to sub-optimal replacement policies that could lose 
performance compared to an uncompressed cache. We introduce 
a novel, opportunistic cache compression mechanism, Base-
Victim, based on an efficient cache design. Our compression 
architecture improves performance on top of advanced cache 
replacement policies, and guarantees a hit rate at least as high as 
that of an uncompressed cache. For cache-sensitive applications, 
Base-Victim achieves an average 7.3% performance gain for 
single-threaded workloads, and 8.7% gain for four-thread multi-
program workload mixes.  
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I.    INTRODUCTION 

Advances in process technology have significantly 
improved CPU performance over the last few decades. 
Unfortunately, commodity memory technology has not 
improved at the same pace. This creates a significant overhead 
whenever a CPU load request has to be fulfilled from memory. 
This “memory wall” motivated innovation and enhancements 
in cache architecture to reduce the performance penalty of 
memory accesses. Cache management mechanisms aim at 
reducing memory misses through timely prefetching, more 
accurate replacement policies ([7], [13], [14], [19], [20], [21], 
[31], [38], [39]), and larger effective cache capacity with 
compression ([1], [3], [9], [11], [16], [28], [32], [33]).   

Ideally, different cache management mechanisms should 
collaborate to reduce misses and improve performance. Prior 
work has shown, for example, that last-level cache (LLC) 
compression and prefetching interact positively [2], leading to 
greater performance improvements than achieved by either 
mechanism alone. Unfortunately, this ideal relationship does 
not hold for all cache management policies. Some 
optimizations to improve one mechanism could negatively 
impact the performance of another mechanism. 

In this paper, we focus on efficient last-level cache 
compression to improve performance with low overheads. We 
show that there are negative interactions between cache 

replacement and compression mechanisms that lead to worse 
performance when both are implemented together. In many 
cases, optimizing cache capacity increases from compression 
leads to sub-optimal replacement decisions, which hurt 
performance gains from state-of-the-art replacement policies. 
Prior work has addressed compressed-cache replacement 
policies ([4], [29]), but not in the context of negative 
interactions with compression.  

Another significant implementation bottleneck for cache 
compression is due to the complexity of implementing 
decoupled variable-sector caches which result in significant 
performance and power overheads. Energy-efficient and area-
efficient caches implement various mechanisms to reduce 
cache power, such as sub-banking ([15], [37]). Such 
mechanisms partition the cache into sub-banks, where only 
the bank that contains the requested data is activated. A 
similar mechanism is implemented in commercial products 
[6]. However, compressed cache architectures require 
activating segments from multiple ways to read a single cache 
line, which increases the power and area of the tightly-packed 
data array. This places a significant roadblock for any 
practical cache compression implementation. 

We propose a cache compression architecture that avoids 
both major drawbacks for prior compression work. To avoid 
negative interactions with replacement policies, we guarantee 
that all lines that would have existed in an uncompressed 
cache at any point in the program’s execution would remain 
in the compressed cache. To avoid power and area overhead 
of compressed cache architectures, we ensure the data array is 
unmodified by enforcing the association of two tags with one 
physical way. In our compressed cache (Base-Victim) 
architecture, each physical way can include data from at most 
two logical cache lines. The first (base) line is the line that 
would exist without compression. The second (victim) line is 
opportunistically kept in place if it can be compressed to fit 
with an existing base line. Our architecture sacrifices the 
flexibility of general variable-sector cache architectures to 
achieve a more efficient design while still maintaining the 
performance gains of advanced replacement policies.  

In this paper, we make the following main contributions: 
1) We show how compression can interact negatively with 

advanced cache replacement policies, leading to 
significant performance losses. 

2) We highlight some overlooked overheads of general 
compression architectures. 

3) We propose an opportunistic (Base-Victim) compression 
architecture that avoids the negative interactions with 
replacement policies and the overheads of prior 
compression work. By design, our architecture 
guarantees equal or higher cache hit rates for any program 
vs. an uncompressed cache.  



4) We show that our proposal achieves significant 
performance improvements for both single-thread and 
multi-program workloads. Opportunistic compression 
adds 8.5% LLC area overhead by doubling tags, but gains 
an average performance equivalent to a 50% increase in 
cache capacity. This performance is achieved without 
reducing the hit rate on any workload relative to an 
uncompressed cache. 

In the remainder of this paper, we present some 
background on cache compression architectures in Section II. 
We discuss negative interactions between cache compression 
and replacement policies in Section III. We propose our Base-
Victim Compression Architecture in Section IV. We explain 
our evaluation methodology in Section V, and present results 
in Section VI. We highlight some related work in Section VII, 
and conclude in Section VIII.  

II.  BACKGROUND 

Cache design has recently focused on two main aspects: 
performance improvement and energy efficiency. Both are 
essential for modern general-purpose CPU caches that have 
to operate across many market segments.  

Energy efficiency is an essential design requirement for 
caches to reduce overall system power. Caches constitute a 
significant fraction of die area, which motivates mechanisms 
to reduce static (idle) power. Caches are also frequently 
accessed since a large percentage of instructions are loads and 
stores, which increases dynamic power. To avoid incurring 
significant dynamic power in caches, many mechanisms have 
been proposed to reduce the fraction of cache cells powered 
up on each access. Cache sub-banking [37] has been 
proposed to fetch the requested sub-line instead of the whole 
logical line. Chang et al. [6] show how this is implemented in 
a commercial processor. For a 16-way set associative cache, 
each cache access requires accessing only one of the 16 sub-
arrays in each group, and one of the eight blocks in the 
accessed sub-array is powered up. This means that the 
fraction of blocks that need to be powered up for each cache 
access is very small [6].  

Performance improvements in caches come from better 
architectures and better cache management policies. For 
example, prefetching reduces cache misses by predicting 
future accesses. Replacement and insertion policies attempt 
to keep more useful blocks in the cache. Cache compression 
(our focus in this paper) can also reduce cache misses.  

Cache compression has been proposed to increase the 
effective cache capacity, thereby reducing misses, without 
significantly increasing the cache area. Due to the sensitivity 
of many workloads to cache hit latency, prior work has 
focused on compression algorithms with fast decompression 
latency, and architectures that don’t significantly increase 
cache overhead.  

Cache compression algorithms have focused on 
achieving the highest compression ratio at a low 
decompression overhead. Examples of these compression 
algorithms include Frequent Pattern Compression [1], Cache 

Packer (C-PACK) [9], and Base-Delta-Immediate (BDI) 
compression [28]. We describe these and other algorithms in 
Section VII. In our work, we use BDI as the baseline 
compression algorithm due to its fast decompression latency.  

Another important aspect of prior cache compression 
work is implementing a cache architecture that supports 
storing compressed lines. Such an architecture needs to allow 
for more logical lines to be stored than physical lines without 
sacrificing cache complexity or area. Many of these proposals 
decoupled the tag and data arrays based on the decoupled 
sectored cache [34], allowing data lines of variable sizes to 
be stored in the data array. One proposal is the Decoupled 
Variable-Sector Cache (VSC) [1] which supports twice as 
many tags as physical data lines, but allows data lines to be 
compacted within a set. In this architecture, a compressed 
cache line can start at any 8-byte segment boundary within a 
set, and can potentially span more than one physical line.  

Unfortunately, VSC suffers from three drawbacks. First, 
it requires re-compaction of the set whenever a compressed 
line size increases, which incurs a significant read-modify-
write overhead. Second, it requires significant changes to the 
SRAM data array since a hit to a compressed line could 
require activating more than one physical line. This negates 
energy savings of sub-banked caches [37] which are used to 
reduce energy in commercial processor caches [6]. Third, 
cache replacement becomes quite complicated since VSC 
goes through logical lines in LRU order, and evicts as many 
lines as needed to fit the incoming line. To illustrate this third 
drawback, an incoming 64B line that is uncompressed (i.e., 
has a size of eight 8B segments) might need to evict two or 
more lines from the LRU stack. For example, if the LRU lines 
have sizes of 2, 3, 2, and 5 segments, consecutively, all four 
lines at the bottom of the LRU stack need to be evicted and 
(potentially) written back to memory.  

A more recent proposal, the Decoupled Compressed 
Cache (DCC) [32] addresses the first drawback of VSC by 
eliminating the need to re-compact compressed lines 
whenever a line changes its compressed size. By adding a 
level of indirection, DCC saves a significant amount of 
overhead that would be incurred due to re-compaction. DCC 
achieves significant energy savings compared to VSC [32]. 
A more efficient version, the Skewed Compressed Cache 
(SCC) was proposed by Sardashti et al. [33]. SCC eliminates 
many overheads of DCC by avoiding DCC’s backward 
pointers, and reduces the latency of tag-data indirection. 

However, both DCC and SCC still suffer from VSC’s 
second and third drawbacks. Both require making changes to 
the data array to enable multiple segment access, and both 
require complex replacement mechanisms that could evict 
multiple logical lines on a cache fill (though SCC simplifies 
the replacement policy path).  A hit to a compressed line 
might require activating more than one 16B segment that 
span multiple physical lines. To avoid significant energy 
increases, DCC proposes accessing the cache at 16B sub-
bank granularity, which would require more logic circuits for 
control signals and sense-amps for each sub-bank. DCC 



would suffer from additional latency due to either (a) the need 
to re-compact segments from different physical lines before 
the line is sent to the CPU (if segments are all activated and 
read at the same time); or (b) more stages/cycles in the 
pipeline if segments are activated one at a time.  

To avoid such drawbacks that would substantially 
increase cache area, we chose to implement a simpler two-
tags-per-way architecture that we explain in the next two 
sections. Our simple architecture enforces the association of 
each physical cache line with two logical tags to avoid 
making changes to the data array design.   

III.   INTERACTIONS BETWEEN CACHE 

COMPRESSION AND REPLACEMENT 

To avoid the negative power and complexity 
implications of compressed caches, we choose to implement 
a simple architecture that associates two tags with each 
physical way in the data array. Figure 1 presents a high-level 
architecture that implements this association on a simple two-
way set-associative baseline. 

 
Figure 1. Two-Tag Architecture for a 2-way cache. Each physical way has 

two tags associated with it, and can store up to two logical lines (striped 
part represents second compressed line). The blue tags 0 and 1 are always 

associated with way 0, while the red tags 0 and 1 are associated with way 1.  

This architecture does not require any changes to the 
physical data array. On a cache access, all tags that 
correspond to the correct set are compared, and only one data 
way is identified on a hit. That physical data line would 
include either one or two (compressed) logical lines. 
However, the whole data line is accessed from the data array 
using the same steps as an uncompressed cache. When the 
data is read out of the data array, it can then be decompressed, 
and the appropriate line is sent to the CPU and lower-level 
caches. The only additional overheads required for this 
architecture are (a) the extra tag area, access latency and 
power; and (b) compression and decompression latencies and 
power. However, the main advantage is that it doesn’t require 
any additional area or floorplan changes to the data array. 

Unfortunately, this simple architecture introduces some 
negative interactions with cache replacement policies, which 
could lead to losing the performance gains we achieve from 
advanced cache replacement mechanisms. In the following 
example, we show two different scenarios where 
compression negatively impacts LRU replacement. 
Example. Figure 2 shows a 4-way cache (8-way with 
compression) where the most recently used (MRU) line is 
partnered with the least recently used (LRU) line. In this 
example, physical way 0 has two logical lines allocated to it: 

the MRU line (LRU stack position 0) and the LRU line (LRU 
stack position 6 since one line is uncompressed). The MRU 
line size is 6 segments and the LRU line size is 2 segments, 
where each physical 64B line can store eight 8B segments.  

 
Figure 2. Example for MRU and LRU lines sharing the same physical way. 

If an incoming fill line of size 6 segments needs to be 
allocated, LRU replacement indicates it should replace the 
LRU line (corresponding to tag 1 of way 0). However, since 
the partner of the victim line has six segments, the incoming 
line cannot fit with the other line in way 0, which happens to 
be the MRU line. There are two options for replacement in 
this case: 

(1) Evict all logical lines in the physical way associated with 
the LRU logical line to allow room for the incoming fill 
line. We call this policy partner line victimization. In 
this example, the MRU line is evicted, which could cause 
significant losses in many workloads where the MRU 
line is the most frequently hit.  

(2) Go through all logical lines in LRU stack order to 
identify a victim of appropriate size to be evicted. For 
this example, the first line that would fit the incoming 
line is at LRU stack position 2 (corresponding to tag 0 of 
way 2). Choosing this line for eviction means that LRU 
replacement is no longer maintained, since this line 
would remain in an uncompressed cache. Breaking LRU 
replacement (or other advanced replacement policies) 
can lead to significant glass jaws in some applications.  

In Section VI, we show that many workloads suffer from 
large losses due to these negative interactions that offset any 
gains from a compressed cache. It should be noted that VSC 
avoids these negative interactions by replacing as many lines 
from the bottom of the LRU stack as possible (in this 
example, both LRU positions 6 and 5) to allow enough room 
for the incoming line. However, this requires re-compaction 
(i.e., defragmentation) of the cache lines in the set before the 
incoming line can be inserted. This incurs power overheads, 
latency increases and higher logic complexity for the 
replacement policy.  

While this example focuses on LRU to provide a clear 
explanation, the performance losses are even more significant 
for advanced replacement policies as compression may 
require changing the replacement stack order. In the next 
section, we present an opportunistic cache compression 
architecture, Base-Victim, which retains the performance 
gains for advanced cache replacement policies, and 
opportunistically provides performance gains when cache 
lines can be efficiently compressed.  



IV.   BASE-VICTIM CACHE COMPRESSION ARCHITECTURE 

A. High-Level Architecture 

To avoid the negative interactions that occur between 
compression and cache replacement policies, we propose an 
opportunistic cache compression policy where the non-
compressed cache state is maintained, and victim lines are 
only opportunistically kept if they fit. We ensure that the 
baseline replacement policy performance is maintained by 
logically partitioning the cache into a Baseline (B) Cache and 
a Victim (V) Cache. Figure 3 shows how we treat tag 1 in 
each way of a set as belonging to the Victim Cache. The 
Victim Cache only holds lines that would have been evicted 
from the baseline uncompressed cache, but are only kept 
around because they could be compressed.  

 
Figure 3. Logical Partitioning of LLC set into a Baseline (B) set and a 

Victim (V) set. This is an example for a 4-way (uncompressed) cache that 
becomes an 8-way cache with compression.  

In the Baseline Cache, we strictly enforce the baseline 
insertion and replacement policy on all tag 0’s of each set. By 
design, this architecture cannot have a higher miss rate than 
an uncompressed cache with the same replacement policy. 
Whenever a modified line is replaced from the Baseline 
Cache, its data is written back to memory to make it a clean 
line. This operation could include sending back-invalidates to 
the L1 and L2 caches. We then attempt to opportunistically 
insert the clean replaced line into the Victim Cache.  

By only allowing clean lines in the Victim Cache, we can 
silently evict these lines on subsequent modifications to their 
partner Baseline Cache line with no additional memory 
traffic. This ensures that we only do (at most) one writeback 
for every cache fill operation. We show how this simplifies 
our implementation in the next sub-section. However, this 
comes at the expense of not saving writeback traffic to 
memory. Our architecture only saves memory read miss 
traffic, but we incur the same number of memory writebacks 
compared to an uncompressed cache.  

B. Baseline and Victim Cache Implementation 

In this section, we address different scenarios for hits and 
misses to compressed cache lines. To simplify our 
explanation, we use LRU replacement in the Baseline Cache, 
and random replacement in the Victim Cache. We ensure all 
Victim Cache lines are clean. The following sub-sections 
highlight how our Base-Victim opportunistic compression 
architecture handles various scenarios of hits and misses.   

1) Compressed LLC Miss 

On a miss to the compressed LLC, a replacement victim 
is identified from the Baseline Cache based on the baseline 
replacement policy. If the replaced line is modified, its data 

is written back to memory to make it a clean line. The 
incoming line occupies the same location as the chosen 
replacement victim. If the incoming line can be compressed 
to fit with the existing line in the same way from the Victim 
Cache, the Victim Cache line is retained; otherwise, the 
Victim Cache line is silently evicted (since it is a clean line). 
The replaced line from the Baseline Cache is then 
opportunistically stored to any way that would fit it in the 
Victim Cache, or evicted if it cannot fit in any victim way.  

For our Victim Cache implementation, we use a 
replacement policy inspired by ECM [4]. We first search for 
the way that can fit the victim line. Then among all the 
candidates, we select the way with the largest size of the base 
partner line. However, for examples in this section, we 
assume random replacement in the Victim Cache. We study 
variations of Victim Cache policies in Section VI.B.4. 
Compressed LLC Miss Example. Figure 4 shows an 
example scenario where the processor requests a line Z that 
misses the compressed LLC. We assume LRU replacement 
in the Baseline Cache, and random replacement in the Victim 
Cache to simplify the explanation of these scenarios. 
However, this could be handled using any other replacement 
policy.  

In this example, neither the Baseline (B) nor the Victim 
(V) sets contain line Z, so we do the following steps: 

(1) We identify the LRU victim B from way 3 of the 
Baseline Cache.  

(2) If B is modified, its data is written back to memory. For 
inclusive caches, back invalidations are issued to the L1 
and L2 caches to ensure the most recent data is written 
back.   

(3) Since Z requires 6 segments of space, the partner line Y 
sharing physical way 3 has to be victimized as well. Y is 
silently evicted since all Victim Cache lines are clean.  

(4) Z is inserted into way 3 of the Baseline Cache.  
(5) We randomly pick a victim in the Victim Cache section 

(V) that can accommodate the victim from the Baseline 
Cache – E, in this case, from way 1. Note that X (from 
way 2) could not have been picked since it frees up only 
2 segments whereas B needs 3 free segments. The only 
other possible victim is F (Way 0).  

(6) E is evicted (with no writeback since it is clean), and B 
is stored in way 1 of the Victim Cache.  

Note that next time the processor makes a request to line 
B, it will be installed back in the Baseline Cache, i.e., gets 
treated as a fill into the Baseline Cache which could trigger 
either the eviction of the baseline LRU way or its insertion in 
the Victim Cache, as shown in the next sub-section. Hence, 
the Victim cache behaves as a cache of victim blocks that 
would have been evicted without compression. We ensure 
that the victim cache is always clean with respect to memory. 
If the cache is inclusive, we send appropriate back-
invalidations to the L1 and L2 caches, and write back any 
modified data to memory. Therefore, we only need to 
perform (at most) one writeback for each cache fill, which 



simplifies the replacement logic. This is less complex than 
current proposals (e.g., VSC) that may require multiple 
evictions to fill in one line. 

 

 
Figure 4. Compressed LLC Miss Example. The LRU order is 0 (MRU), 1, 
2, and 3 (LRU). The compressed size of a block (in 8B segments) is shown 
after the comma. The left side shows the state before inserting Z, and the 

right side shows the state after inserting Z. Note that B could be inserted in 
ways 0 or 1 in the victim cache (depending on the replacement policy of 
the victim cache). Here with random replacement, B replaces E in way 1. 

 
Figure 5. Compressed LLC Hit Into a Victim Cache Line. The left side 
represents the state before accessing E, and the right side represents the 

state after accessing E.  

2) Read Hit to the Victim Cache 

On a read that hits in the Victim Cache, we need to 
promote that line to the Baseline Cache. We therefore choose 
a replacement victim in the Baseline Cache using the baseline 
replacement policy. The promoted victim line occupies the 
replaced line’s place. The Victim Cache partner line for the 
replaced way is only kept if it fits with the promoted line. The 
replaced line from the Baseline Cache is then 
opportunistically stored in any way that would fit it in the 
Victim Cache, or evicted if it does not fit.   
Compressed LLC Victim Read Hit Example. Figure 5 
shows an example scenario where the processor requests a 
line E which hits in the Victim Cache (V). E is a line that 
would not be in the cache without compression. However, we 
still need to maintain the baseline replacement policy to avoid 
losing performance. In this case: 

(1) The LRU victim B is chosen from way 3 of the Baseline 
Cache.  

(2) If B is modified, its data is written back to memory. For 
inclusive caches, back invalidations are issued to the L1 
and L2 caches to ensure the most recent data is written 
back.  

(3) E is de-allocated from the Victim Cache and installed in 
the Baseline Cache.  

(4) B is then inserted in the Victim Cache in way 3 (which 
becomes the MRU way) by silently evicting its partner 
line Y since both B and E fit in the same physical line. 
To simplify implementation, we do not attempt to 
relocate the victim line Y in the Victim Cache.   

By always moving lines that hit in the Victim Cache into 
the Baseline Cache, we ensure that the Baseline Cache (B) of 
the Compressed LLC always mirrors the state of an 
Uncompressed LLC. 

3) Write Hit to the Victim Cache 

This case will not occur for inclusive caches. In our 
architecture, the Victim Cache lines are always clean. Before 
we insert a Baseline Cache replacement victim into the 
Victim Cache, we send appropriate back-invalidations to the 
L1 and L2 caches, and write any modified data to memory. 
As a consequence, we do not reduce writebacks to memory, 
and subsequent writes to those victim lines will need to 
acquire the appropriate (exclusive) permissions.  

However, our architecture can be implemented for non-
inclusive caches where we do not enforce the restriction that 
Victim Cache lines are clean. In that case, the Victim Cache 
write hit is handled in exactly the same way as a Victim 
Cache read hit. The only exception is that the newly written 
line in the Victim Cache needs to be compressed, potentially 
to a different size. It is then promoted to the Baseline Cache, 
and the replaced line from the Baseline Cache is 
opportunistically stored in the Victim Cache if it fits in any 
of the victim ways, or evicted otherwise.  

4) Read Hit to the Baseline Cache 

This case is handled in exactly the same way as a read 
hit in an uncompressed cache, except that the line is 
decompressed before being sent back to the CPU and lower 
level caches. The replacement bits in the metadata of the 
Baseline Cache are modified as they would be in an 
uncompressed cache. Line sizes do not change on a read, so 
no data movement occurs in the Baseline and Victim caches. 

5) Write Hit to the Baseline Cache 

This case is handled in exactly the same way as a write 
hit in an uncompressed cache, except that the victim partner 
line sharing the same physical way is evicted if the Baseline 
Cache line grows so the new size would not fit the existing 
victim. To simplify our implementation, we evict the Victim 
Cache line right away even if it was the MRU line in the 
Victim Cache set. Since our victim cache is always clean with 
respect to memory, this silent eviction only requires changing 
the state of the Victim Cache line to “Invalid”. However, it is 



possible to implement a more complex policy where the 
victim line can be moved to a different way.  

C. Area Overheads  

For a 2MB 16-way uncompressed cache, each way 
requires 64B of data, 31 bits for the address tag (assuming 48 
bit addresses that include 6 offset bits and 11 index bits), and 
an additional byte for metadata including replacement, 
coherence state and tracking bits. The opportunistic 
compressed cache adds an additional address tag for the 
Victim Cache. The Victim Cache is always clean and uses 
random replacement, so it only needs one “valid” bit of 
metadata (no other coherence or replacement bits are 
needed). However, to simplify our implementation, we need 
to add size information to both the Baseline Cache and 
Victim Cache to simplify victim selection and partner line 
victimization. This adds 4 bits of metadata to each tag to align 
compressed lines at 4-byte boundaries (i.e., to support 16 
different sizes for compressed lines). It should be noted that 
our evaluation is based on 4B segments (not 8B as in 
examples in this section). Overall, we add an additional 31-
bit address tag and 9 extra bits of metadata (4x2 for size, and 
1 valid bit) for each original way. The area overhead for this 
is 40b/(39b+512b) = 7.3% of the original (tag + data) array 
size. We use the compression and decompression logic area 
estimates from [32] where that logic accounts for 1.2% 
additional area. With these estimates, the overall area 
overhead (as a fraction of cache area) is 8.5% for a 2MB 
cache.  

V.   EVALUATION METHODOLOGY 

We evaluated our proposed architecture using a cycle-
accurate execution-driven x86 simulator. We model a 4 GHz 
4-way dynamically scheduled out-of-order issue core, similar 
to the state-of-the-art Intel® CoreTM processor [17]. Each core 
has its own private L1 and L2 caches. We model a 32KB L1 
instruction cache, a 32 KB 8-way L1 data cache, and a unified 
256 KB 8-way L2 cache. For single-thread studies, we model 
a 2 MB 16-way last-level cache (LLC). For multi-program 
simulations, we model a 4MB 16-way LLC. All caches in the 
hierarchy use a 64B line size. The LLC is inclusive of the 
core caches and uses 1-bit Not Recently Used (NRU) [14] as 
the replacement policy. The load-to-use latencies for L1, L2 
and L3 are 3 cycles, 10 cycles, and 24 cycles respectively. 
For all simulations, we model the main memory as two 
channels of DDR3-1600. The DRAM has timing parameters 
of 15-15-15-34 (tCL-tRCD-tRP-tRAS). We model per-core 
aggressive multi-stream instruction and data prefetchers for 
the L1, L2 and LLC.  

Our single-threaded traces are drawn from four workload 
categories as outlined in Table I. We use 100 traces 
representing different execution phases of benchmarks in 
these categories. Each trace is run for 200 million 
instructions. We report performance in terms of instructions 
per cycle (IPC). Out of these 100 traces, we found 60 traces 
to be sensitive to cache performance. All analysis and results 

will be presented for these 60 traces. In Section VI.B.5, we 
will show the performance impact on the remaining 40 traces. 
We use the geometric mean to present average normalized 
IPC and miss rate ratios across traces.  

We also present results for 20 4-way multi-programmed 
workloads prepared by mixing four representative single-
threaded traces from the workload categories. Within a mix, 
each thread executes 100 million instructions. If a thread 
finishes its performance simulation phase early, it continues 
executing so that we can model the shared LLC contention 
properly. The mix terminates when every thread has finished 
its performance simulation phase. Hence, a minimum of 400 
million instructions are retired. We report performance as the 
weighted speedup of all threads.   

TABLE I:     WORKLOADS 

Category Total 
Traces 

Benchmarks 

SPECCPU 2006 
FP (FSPEC) [35] 

30 CactusADM, Milc, LBM, Wrf, 
Sphinx3, GemsFDTD, Soplex, 
Calculix, Bwaves 

SPECCPU 2006 
Integer (ISPEC) 
[35] 

29 Xalancbmk, Sjeng, Gobmk, 
Omnetpp, Astar, Gcc, Libquantum, 
Mcf 

Productivity 14 Sysmark[5] , Winrar, Win-
compression 

Client 27 Octane Browser Benchmarks [27], 
Speech Recognition, Cinebench [10], 
3DMark [12] 

 

We use Base Delta Immediate (BDI) as our LLC 
compression algorithm [28]. We align the compressed data to 
a 32-bit (i.e., 4 byte) boundary. We added two cycles for the 
decompression latency and an additional cycle for tag lookup 
(since tags have been doubled). Uncompressed and Zero lines 
do not suffer any decompression latency since we add the size 
information to the tag metadata: Zero blocks and 
uncompressed blocks can be detected from the data size field 
when we read the tag and metadata, and therefore we do not 
need to decompress the data read from the LLC data array for 
these block types.  

For the majority of our results, we use the Not-Recently-
Used replacement policy in the Baseline Cache. We also use 
a replacement policy inspired by ECM [4] for the Victim 
Cache. However, we discuss sensitivity to Baseline Cache 
and Victim Cache replacement policies in Section VI.B. 

Earlier proposals like VSC-2X [1] and DCC [32] rely on 
distributing compressed cache lines across ways in a given 
set. When simulated on functional cache models, these 
policies come close to an 80% increase in cache capacity. 
This is significantly higher than our opportunistic Base-
Victim architecture. Unfortunately, as discussed in Section II, 
these architectures require significant changes to the SRAM 
data array layout, potentially needing deeper cache pipelines 
that will add more latency for all cache lookups. This makes 
it difficult to compare these policies to our opportunistic 
Base-Victim architecture. We therefore do not compare the 
IPC from such policies to our proposal. The two-tag 
architecture does not require any changes to SRAM data 



array (it only changes the controller), so comparing it to an 
uncompressed cache is more straightforward.   

 

VI.   RESULTS 

A. Single-Core Performance 

We split the single-threaded benchmarks into two 
categories depending on their compression ratios. Of the 60 
cache-sensitive traces, 10 traces have an average compressed 
block size higher than 75% of the uncompressed size. These 
10 traces are not expected to gain much performance from 
compression. For the remaining 50 traces, the average block 
size after compression is 50% of the uncompressed size, so 
we classify them as compression-friendly. On average across 
all 60 traces, the compressed block size is 55% of the 
uncompressed size. 

We first show the performance of the simple two-tag 
architecture where we always victimize partner lines that 
don’t fit with the fill line. Figure 6 shows a line graph for this 
scheme. The graph shows the normalized performance (IPC 
Ratio) and normalized read miss rate (Memory Read Ratio) 
compared to an uncompressed cache baseline. For workloads 
that have significantly higher miss rate, normalized IPC is 
much lower than the baseline. The opposite is true for 
workloads that have significantly lower miss rates. As 
discussed earlier in Section III, there are significant negative 
outliers because of partner line victimization. Despite the 
capacity increases due to compression, this scheme loses 12% 
performance, on average, over an uncompressed baseline. 37 
out of the 60 traces have a lower IPC (IPC ratio less than 1) 
compared to the uncompressed cache. 

To reduce the partner line victimization problem, we use 
a replacement policy similar to ECM [4] tailored to our 
baseline two tag architecture. We search for a tag (based on 
NRU) which does not need to evict its partner. Among all 
such victim candidates, we chose the one with the largest 
compressed size. Figure 7 shows the performance of the 
modified two-tag architecture. On average, this scheme gives 
4.7% performance gain for compression-friendly 
benchmarks. However it causes a 3.8% performance loss for 
workloads that don’t compress well. There are significant 
negative outliers (up to 14%), which also correlates with 
more DRAM traffic. Nearly half the traces (27 out of 60) lose 
performance compared to an uncompressed cache. Moreover, 
this scheme causes more back-invalidations than the baseline. 
This is because, in an inclusive cache hierarchy, partner lines 
that have been victimized could still be present in the L1/L2 
caches and hence need to be back-invalidated.  

We also tried out other variants of the replacement and 
insertion policies that were found to be inferior to the 
modified policy shown in Figure 7, and are hence not shown 
in this paper. As discussed in Section III, pairing and 
replacement policies are difficult to maintain since LRU and 
compressibility may not correlate. As a result, all variants that 
we tried out had significant negative outliers.  

 

 
Figure 6. Normalized IPC and DRAM Read Ratios compared to a 2MB 
uncompressed baseline for the two-tag architecture. The left side shows 

gains for compression friendly traces, and right side shows traces that have 
low compression. Higher DRAM read ratios usually correspond to lower 

performance (IPC). 

 
Figure 7. Normalized IPC and DRAM Read Ratio compared to a 2MB 

LLC for the modified two-tag architecture.  

 
Figure 8. Normalized Performance and DRAM Read Ratio compared to a 
2MB Baseline for the Opportunistic Cache Compression. LLC misses are 

always less than or equal to baseline. 

Figure 8 shows the performance (IPC) improvement 
with our opportunistic Base-Victim compression architecture 
across all workloads. The graph shows that there is only one 
negative outlier out of 60 (that loses 0.01% IPC). We also 
show that reads from memory are always lower than or the 
same as baseline. The small losses are caused only by the 
additional latency due to decompression and tag lookup.  

For compression-friendly benchmarks, opportunistic 
compression gives an average (geometric mean) 
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improvement of 8.5% and reduces read misses by an average 
of 16%. Figure 9 shows the average performance 
improvement per workload category. We also show the gains 
from a 3MB uncompressed cache. We construct a 3MB cache 
by adding 8 ways to a 2MB, 16-way baseline. We add an 
extra cycle of latency because of the increase in tag and data 
array sizes.  On average, a 3MB uncompressed cache also 
gives a performance improvement of 8.5% and reduces read 
misses by 16.1% for compression-friendly traces. 
Opportunistic compression hence, gives a performance 
similar to a 50% larger (3MB) LLC. In other words, by 
adding 8.5% to LLC area, we gain performance equivalent to 
a 50% increase in cache capacity.  

For the 10 traces that are not compression-friendly, 
opportunistic compression gives an average IPC 
improvement of 1.45%. This is expected, since 
compressibility of these workloads limit their potential 
performance gain. Across all cache-sensitive workloads, 
opportunistic compression gives an average 7.3% 
performance gain over a 2MB uncompressed cache, whereas 
a 3MB uncompressed cache gains an average 8.1%.   

B. Sensitivity Analysis  

1) Effect of LLC Associativity 

In our opportunistic compression architecture, we use 32 
tags, instead of 16, in each set, and add an additional 1 cycle 
of latency for tag access. To analyze the sensitivity of our 
results to baseline associativity, we simulated a 16-tags-per-
set version of the opportunistic compressed cache. In that 
version, the baseline (uncompressed) associativity would be 
8-way, and compression adds 8 additional ways per set. 
Compared to a baseline 2MB 16-way set-associative cache, 
the 16-way opportunistic compression version gives an 
average performance gain of 6.2% (vs. 7.3% for the 32-way 
version). On the other hand, increasing the associativity of 
the baseline uncompressed cache from 16 to 32 yields 
insignificant (almost zero) performance gains.  

2) Effect of Base Replacement policy 

We used a 1-bit NRU replacement policy for this study. 
Significant prior work has been done to improve replacement 
policies for the LLC. In this section we study the impact of 
advanced replacement policies when applied to the Baseline 
Cache.  

We consider two recent replacement policies. The first is 
SRRIP [20] that uses 2 bits per cache line for managing ages. 
The second is CHAR [7] that uses set-dueling for learning 
workload cache behavior and then sends downgrade hints on 
L2 cache evictions. The CHAR replacement policy can 
manipulate the ages, not just on fill or hit, but also based on 
hints. We implement the CHAR replacement policy with 1 
bit ages and not on top of SRRIP, as was done in [7]. Since 
the Base-Victim architecture maintains the Baseline Cache 
behavior, advanced replacement policies can be seamlessly 
integrated. 

 
Figure 9. Performance Per category for Opportunistic compression as 

compared to a 2MB Uncompressed LLC. The left side shows performance 
for compressible workloads, and the right side shows overall performance 

for all cache-sensitive workloads. 

 
Figure 10. Impact of Baseline Cache replacement policy on opportunistic 

compression. 

Figure 10 shows the performance gains for our 
opportunistic compression architectures with these 
replacement policies as baseline. On top of a 1-bit NRU 
replacement policy, SRRIP gives a 2.9% gain in performance 
and CHAR gives a 3.2% performance gain. Opportunistic 
cache compression gives 6.4% gain on top of SRRIP-
managed baseline, and 7.2% gain on top of a CHAR-
managed baseline. We found that, as in the case of NRU 
replacement, the baseline hit rate is not decreased and there 
are no negative outliers. This illustrates that our opportunistic 
(Base-Victim) compression architecture is synergistic with 
advanced replacement policies. We maintain performance 
improvements of replacement, and gain more performance 
because of compression.  
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Figure 11. Sensitivity to LLC Size. We show IPC gains over a 2MB 

uncompressed cache for a 4MB uncompressed cache, a 6MB 
uncompressed cache, and 4MB compressed cache. The left side shows 

workloads with good compression, and the right shows all cache-sensitive 
workloads. 

 
Figure 12. Normalized IPC and DRAM Read Ratio as compared to a 2MB 

uncompressed Baseline for all 100 traces. 

3) Effect of increasing LLC Size 

Figure 11 shows the performance gains for Opportunistic 
compression for a 4MB cache. A 4MB uncompressed cache 
gains 15.8% over a 2MB uncompressed cache. Opportunistic 
compression provides an additional 6.8% performance gain 
on top of it. A 50% larger (6MB) cache achieves 9% average 
performance gain. 

4) Effect of Victim Cache Replacement Policy  

We observe that for compression-friendly benchmarks, 
the average compressed size is close to 50% of uncompressed 
size (i.e., 2X compression ratio), but effective cache capacity 
only increases by 50% (i.e., 1.5X). This suggests that the 
Victim Cache needs to be managed better. 

We tried various other variations of Victim Cache 
replacement, including LRU and a mix of LRU and size-
based replacement. Unfortunately, none of these variants 
showed any significant improvement over the current policy. 

We leave the exploration of better Victim Cache replacement 
policies for future work.  

5) Results on full trace list 

In the previous sub-sections, we only considered the 
traces that were sensitive to LLC performance. Figure 12 
shows a line graph for all 100 traces including cache-
insensitive workloads. There are no significant negative 
outliers for opportunistic cache compression. Overall, our 
opportunistic compressed cache architecture gains an average 
4.3% performance over an uncompressed cache baseline; 
whereas a 50% larger (3MB) uncompressed cache gains an 
average performance of 4.9%.   

C. Multi-Core Performance 

The results for 4-way multi-program (MP) workloads are 
summarized in Figure 13. We use normalized weighted 

speedup ∑ ቀூ௉஼೙೐ೢூ௉஼್ೌೞ೐ቁ௡ିଵ௜ୀ଴ as the metric for reporting multi-

program workload performance. Compared to a 4MB 
baseline, opportunistic compression gains 8.7% performance, 
on average, whereas a 6MB (50% larger) cache gains 9%. 
Compared to an 8MB baseline, it gains 11.2% performance, 
on average, whereas a 12MB (50% larger) cache gains 
15.7%. As we observed in single-core results, there are no 
negative outliers for our opportunistic compression 
architecture. The hit rate for all the multi-program mixes is at 
least as high as the hit rate of an uncompressed cache.   

D. Power Analysis 

Cache compression saves power by reducing the number 
of requests that go to memory. However, it also adds power 
because of the compression and decompression logic, as well 
as leakage and active power needed for the extra tags and 
metadata. Furthermore, our opportunistic cache compression 
mechanism needs to migrate compressed cache lines from the 
Baseline Cache to the Victim Cache and vice-versa. Since the 
base way and victim way may be physically distinct ways, 
data should be read out from the Baseline Cache and written 
into the Victim Cache. Similarly, on a Victim Cache hit, data 
should be read out and moved to the Baseline Cache. Both 
operations require additional power. On a cache fill or write-
back, compressed data will be written to the cache without 
overwriting an existing partner line.   

Most SRAM implementations have byte or word enable 
controls. If that is the case, these word enables need to be 
enabled for only the specified number of words that are being 
written to save power. However, if word enables are not 
available, then a read modify write operation needs to be done 
every time a fill or a writeback happens to ensure the integrity 
of the compressed partner line.  

For 2MB single-thread simulations, opportunistic 
compression saves 16% of all reads to memory, but does not 
save any writes to memory (as the victim cache is clean).  
This results in a 12% average reduction in memory 
bandwidth, since write bandwidth is not affected. On the 
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other hand, it adds about 31% additional accesses to LLC, 
primarily because of the additional hits and necessary data 
movement between the Baseline Cache and Victim Cache.  

To estimate the power impact of opportunistic 
compression, we use the Micron power calculator [25] for 
estimating the DRAM array energy in the main memory.  We 
use CACTI [26] to estimate the dynamic and leakage energy 
expended by the tag/state SRAM of the LLC, assuming a 22-
nm process. The compression/decompression power numbers 
for BDI are scaled to a 22nm process based on [23]. 

Overall, opportunistic cache compression saves 6.5% 
energy in the memory + cache subsystem. However if word 
enables are not present, the energy savings drop to 2.2%, 
primarily because of read modify write operations on fills and 
writebacks. Figure 14 shows the energy ratio as compared to 
baseline, for all 100 traces. Also plotted for correlation is the 
DRAM read ratio for each trace. Power savings are highest 
when DRAM bandwidth reduction (i.e., reduction in read 
miss traffic) is substantial. There are a few traces where we 
increase power as compared to the baseline (by up to 2.3%). 
For such traces, the reduction in DRAM bandwidth is not 
sufficient to offset power loss because of compression and 
migration. Without word enables, there are even more 
outliers and we see up to 6% higher power on some traces. 

VII.   RELATED WORK 

A. Cache Compression Architectures and Algorithms  

Prior work has explored a number of hardware 
compression algorithms to compress cache data. These 
algorithms are orthogonal to our opportunistic compressed 
cache architecture, since we can use any of the previously 
proposed compression algorithms. The only difference would 
be in the compressibility, area and latency overheads of the 
chosen compression algorithm. 

Many compression architectures are motivated by the 
concept of value locality introduced by Lipasti, et al. [24], 
which indicates the likelihood that a previously-seen value 
will be re-observed for the same storage location. Yang and 

Gupta [40] propose augmenting the data array of the L1 cache 
with a frequent value cache (FVC) that stores the most 
frequent data values, therefore saving the energy needed for 
accessing the L1 data array. Islam and Stenstrom [18] apply 
a similar concept to speed up loads of zero values through 
their Zero-Value Cache (ZVC). At the block level, Dusser, et 
al. [11] propose augmenting the data cache with a zero-
content cache that stores the addresses of null (zero) blocks, 
therefore increasing effective cache capacity. Tian et al. [36] 
propose cache line de-duplication, where duplicate cache 
blocks are detected, and a level of indirection is used to allow 
multiple addresses to access the same data block.  

Several compressed cache architecture proposals 
decouple tags and data to allow variable-sized lines to co-
exist in the cache. Hallnor and Reinhardt [16] extend their 
indirect index cache proposal to support compression by 
allocating variable amounts of storage to different cache 
blocks. Pekhimenko et al. [29] explore extending the V-Way 
cache [30] to support multiple line sizes. We discussed the 
Decoupled Variable-Segment Cache (VSC) [1], the 
Decoupled Compressed Cache (DCC) [32] and the Skewed 
Compressed Cache (SCC) [33] proposals in Section II. 

 

 
Figure 14. Energy Reduction for Opportunistic Compression compared to 
uncompressed baseline. Having word enables in the cache, helps reduce 

read modify writes and saves substantial power. 
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Alameldeen and Wood [1] propose Frequent Pattern 
Compression (FPC), a significance-based algorithm that 
detects frequent patterns in each 32-bit word of a cache line, 
and compresses the line if it can save enough bits. Chen, et 
al. [9] propose the Cache Packer (C-Pack) algorithm that 
augments frequent pattern detection with a dynamic 
dictionary to detect redundancy within a cache line. 
Pekhimenko, et al. [28] propose the Base-Delta-Immediate 
(BDI) compression algorithm that detects whether all words 
in a cache line are within a short delta from a base word, and 
compresses cache lines with enough redundancy. Arelakis 
and Stenstrom [3] propose a statistical compression 
algorithm (SC2) based on Huffman encoding that takes 
advantage of the low variability of data values over time and 
across applications. We chose BDI as the compression 
algorithm in our opportunistic compressed cache 
implementation since it has a fast decompression latency and 
a high compression ratio.  

Our Base-Victim compressed cache architecture 
opportunistically keeps replacement victims from the base 
cache without sacrificing performance gains from advanced 
replacement policies. Kim, et al. [22] compress two lines if 
corresponding words can be sign-compressed to half their 
size. Chen, et al. [8] combine two lines if their combined 
compressed sizes can fit in one physical line, similar to this 
paper. However, cache insertion policy for both proposals 
does not preserve performance from advanced cache 
replacement policies, since lines that would exist in the 
baseline uncompressed cache could be evicted in many cases. 

B. Cache Management and Replacement Policies 

Prior work has investigated many cache replacement and 
management policies that target reducing cache miss rate. 
These policies are orthogonal to our opportunistic 
compressed cache architecture, since we always maintain the 
same cache insertion/replacement policy in the Baseline 
Cache. The key feature of our opportunistic Base-Victim 
compressed cache architecture is that we guarantee that all 
hits in an uncompressed cache would still be hits in our 
compressed cache, regardless of the underlying baseline 
replacement and/or insertion policy.  

Prior proposals have focused on detecting blocks that are 
unlikely to be used in the future and picking those blocks as 
replacement victims. This could be achieved through 
insertion policies ([14], [19], [20], [31], [38], [39]) that insert 
blocks that are likely to be reused in a location that is unlikely 
to be evicted quickly. Many replacement policies detect dead 
blocks that are unlikely to be reused before eviction, and 
either completely bypass those blocks, or insert them in a 
vulnerable position ([7], [13], [20], [21], [39]). More 
advanced replacement/insertion policies use more 
information to predict future reuse, such as SHiP [38] which 
uses the data block’s program counter (PC) value. However, 
most replacement policies do not depend on having the PC 
available at the last-level cache.  

C.  Interactions between Compression and Cache 
Management Policies 

In much of the earlier work on cache compression, the 
interactions between compression and cache management 
policies were not considered. Prior proposals [1] assumed 
LRU as the underlying replacement policy, and allowed more 
than one block to be evicted on a cache fill, as we explained 
in more detail in Section II.  

Two recent proposals consider tailoring cache 
management and replacement policies for a compressed 
cache. Baek, et al. [4] propose the Effective Capacity 
Maximizer (ECM) that attempts to maximize the compressed 
cache capacity by optimizing the replacement policy. In this 
paper, we use a replacement policy in our Victim Cache that 
is inspired by ECM since we also try to maximize the 
capacity of the Victim Cache. Pekhimenko, et al. [29] 
propose novel Compression-Aware Management Policies 
(CAMP) for compressed caches that use compressed size as 
an indicator to predict future reuse. They propose eviction 
and insertion policies to keep lines with the highest reuse 
probability in the cache. CAMP is evaluated on top of a V-
Way cache [30] where tags and data are decoupled through a 
level of indirection, which is more complex than our two-tag 
baseline architecture. Our opportunistic compressed cache 
architecture can be adopted to implement CAMP in the 
Baseline Cache, which could be addressed in future work.  
 

VIII.   CONCLUSIONS 

In this paper, we demonstrate that cache compression 
and replacement policies can interact negatively. Many 
workloads suffer performance losses due to the need to alter 
the replacement policy to accommodate compression, 
leading to sub-optimal replacement policies. We introduce a 
novel, opportunistic cache compression mechanism, Base-
Victim, based on an efficient cache design. Our compression 
implementation retains the performance gains due to 
advanced cache replacement policies, while still increasing 
effective cache capacity. We guarantee that the cache hit rate 
will be at least as high as an uncompressed cache for all 
workloads. For cache-sensitive applications, Base-Victim 
achieves an average 7.3% performance gain for single-
threaded workloads and an average 8.7% gain for four-thread 
multi-program workload mixes.  
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