
Base-Victim Compression: An Opportunistic Cache Compression Architecture

Jayesh Gaur, Alaa R. Alameldeen, Sreenivas Subramoney
Intel Corporation

Email: jayesh.gaur@intel.com, alaa.r.alameldeen@intel.com, Sreenivas.subramoney@intel.com

Abstract—The memory wall has motivated many enhancements to
cache management policies aimed at reducing misses. Cache
compression has been proposed to increase effective cache
capacity, which potentially reduces capacity and conflict misses.
However, complexity in cache compression implementations could
increase cache power and access latency. On the other hand,
advanced cache replacement mechanisms use heuristics to reduce
misses, leading to significant performance gains. Both cache
compression and replacement policies should collaborate to
improve performance.

In this paper, we demonstrate that cache compression and
replacement policies can interact negatively. In many workloads,
performance gains from replacement policies are lost due to the
need to alter the replacement policy to accommodate compression.
This leads to sub-optimal replacement policies that could lose
performance compared to an uncompressed cache. We introduce
a novel, opportunistic cache compression mechanism, Base-
Victim, based on an efficient cache design. Our compression
architecture improves performance on top of advanced cache
replacement policies, and guarantees a hit rate at least as high as
that of an uncompressed cache. For cache-sensitive applications,
Base-Victim achieves an average 7.3% performance gain for
single-threaded workloads, and 8.7% gain for four-thread multi-
program workload mixes.

Keywords-cache compression; cache replacement policies

I. INTRODUCTION

Advances in process technology have significantly
improved CPU performance over the last few decades.
Unfortunately, commodity memory technology has not
improved at the same pace. This creates a significant overhead
whenever a CPU load request has to be fulfilled from memory.
This “memory wall” motivated innovation and enhancements
in cache architecture to reduce the performance penalty of
memory accesses. Cache management mechanisms aim at
reducing memory misses through timely prefetching, more
accurate replacement policies ([7], [13], [14], [19], [20], [21],
[31], [38], [39]), and larger effective cache capacity with
compression ([1], [3], [9], [11], [16], [28], [32], [33]).

Ideally, different cache management mechanisms should
collaborate to reduce misses and improve performance. Prior
work has shown, for example, that last-level cache (LLC)
compression and prefetching interact positively [2], leading to
greater performance improvements than achieved by either
mechanism alone. Unfortunately, this ideal relationship does
not hold for all cache management policies. Some
optimizations to improve one mechanism could negatively
impact the performance of another mechanism.

In this paper, we focus on efficient last-level cache
compression to improve performance with low overheads. We
show that there are negative interactions between cache

replacement and compression mechanisms that lead to worse
performance when both are implemented together. In many
cases, optimizing cache capacity increases from compression
leads to sub-optimal replacement decisions, which hurt
performance gains from state-of-the-art replacement policies.
Prior work has addressed compressed-cache replacement
policies ([4], [29]), but not in the context of negative
interactions with compression.

Another significant implementation bottleneck for cache
compression is due to the complexity of implementing
decoupled variable-sector caches which result in significant
performance and power overheads. Energy-efficient and area-
efficient caches implement various mechanisms to reduce
cache power, such as sub-banking ([15], [37]). Such
mechanisms partition the cache into sub-banks, where only
the bank that contains the requested data is activated. A
similar mechanism is implemented in commercial products
[6]. However, compressed cache architectures require
activating segments from multiple ways to read a single cache
line, which increases the power and area of the tightly-packed
data array. This places a significant roadblock for any
practical cache compression implementation.

We propose a cache compression architecture that avoids
both major drawbacks for prior compression work. To avoid
negative interactions with replacement policies, we guarantee
that all lines that would have existed in an uncompressed
cache at any point in the program’s execution would remain
in the compressed cache. To avoid power and area overhead
of compressed cache architectures, we ensure the data array is
unmodified by enforcing the association of two tags with one
physical way. In our compressed cache (Base-Victim)
architecture, each physical way can include data from at most
two logical cache lines. The first (base) line is the line that
would exist without compression. The second (victim) line is
opportunistically kept in place if it can be compressed to fit
with an existing base line. Our architecture sacrifices the
flexibility of general variable-sector cache architectures to
achieve a more efficient design while still maintaining the
performance gains of advanced replacement policies.

In this paper, we make the following main contributions:
1) We show how compression can interact negatively with

advanced cache replacement policies, leading to
significant performance losses.

2) We highlight some overlooked overheads of general
compression architectures.

3) We propose an opportunistic (Base-Victim) compression
architecture that avoids the negative interactions with
replacement policies and the overheads of prior
compression work. By design, our architecture
guarantees equal or higher cache hit rates for any program
vs. an uncompressed cache.

4) We show that our proposal achieves significant
performance improvements for both single-thread and
multi-program workloads. Opportunistic compression
adds 8.5% LLC area overhead by doubling tags, but gains
an average performance equivalent to a 50% increase in
cache capacity. This performance is achieved without
reducing the hit rate on any workload relative to an
uncompressed cache.

In the remainder of this paper, we present some
background on cache compression architectures in Section II.
We discuss negative interactions between cache compression
and replacement policies in Section III. We propose our Base-
Victim Compression Architecture in Section IV. We explain
our evaluation methodology in Section V, and present results
in Section VI. We highlight some related work in Section VII,
and conclude in Section VIII.

II. BACKGROUND

Cache design has recently focused on two main aspects:
performance improvement and energy efficiency. Both are
essential for modern general-purpose CPU caches that have
to operate across many market segments.

Energy efficiency is an essential design requirement for
caches to reduce overall system power. Caches constitute a
significant fraction of die area, which motivates mechanisms
to reduce static (idle) power. Caches are also frequently
accessed since a large percentage of instructions are loads and
stores, which increases dynamic power. To avoid incurring
significant dynamic power in caches, many mechanisms have
been proposed to reduce the fraction of cache cells powered
up on each access. Cache sub-banking [37] has been
proposed to fetch the requested sub-line instead of the whole
logical line. Chang et al. [6] show how this is implemented in
a commercial processor. For a 16-way set associative cache,
each cache access requires accessing only one of the 16 sub-
arrays in each group, and one of the eight blocks in the
accessed sub-array is powered up. This means that the
fraction of blocks that need to be powered up for each cache
access is very small [6].

Performance improvements in caches come from better
architectures and better cache management policies. For
example, prefetching reduces cache misses by predicting
future accesses. Replacement and insertion policies attempt
to keep more useful blocks in the cache. Cache compression
(our focus in this paper) can also reduce cache misses.

Cache compression has been proposed to increase the
effective cache capacity, thereby reducing misses, without
significantly increasing the cache area. Due to the sensitivity
of many workloads to cache hit latency, prior work has
focused on compression algorithms with fast decompression
latency, and architectures that don’t significantly increase
cache overhead.

Cache compression algorithms have focused on
achieving the highest compression ratio at a low
decompression overhead. Examples of these compression
algorithms include Frequent Pattern Compression [1], Cache

Packer (C-PACK) [9], and Base-Delta-Immediate (BDI)
compression [28]. We describe these and other algorithms in
Section VII. In our work, we use BDI as the baseline
compression algorithm due to its fast decompression latency.

Another important aspect of prior cache compression
work is implementing a cache architecture that supports
storing compressed lines. Such an architecture needs to allow
for more logical lines to be stored than physical lines without
sacrificing cache complexity or area. Many of these proposals
decoupled the tag and data arrays based on the decoupled
sectored cache [34], allowing data lines of variable sizes to
be stored in the data array. One proposal is the Decoupled
Variable-Sector Cache (VSC) [1] which supports twice as
many tags as physical data lines, but allows data lines to be
compacted within a set. In this architecture, a compressed
cache line can start at any 8-byte segment boundary within a
set, and can potentially span more than one physical line.

Unfortunately, VSC suffers from three drawbacks. First,
it requires re-compaction of the set whenever a compressed
line size increases, which incurs a significant read-modify-
write overhead. Second, it requires significant changes to the
SRAM data array since a hit to a compressed line could
require activating more than one physical line. This negates
energy savings of sub-banked caches [37] which are used to
reduce energy in commercial processor caches [6]. Third,
cache replacement becomes quite complicated since VSC
goes through logical lines in LRU order, and evicts as many
lines as needed to fit the incoming line. To illustrate this third
drawback, an incoming 64B line that is uncompressed (i.e.,
has a size of eight 8B segments) might need to evict two or
more lines from the LRU stack. For example, if the LRU lines
have sizes of 2, 3, 2, and 5 segments, consecutively, all four
lines at the bottom of the LRU stack need to be evicted and
(potentially) written back to memory.

A more recent proposal, the Decoupled Compressed
Cache (DCC) [32] addresses the first drawback of VSC by
eliminating the need to re-compact compressed lines
whenever a line changes its compressed size. By adding a
level of indirection, DCC saves a significant amount of
overhead that would be incurred due to re-compaction. DCC
achieves significant energy savings compared to VSC [32].
A more efficient version, the Skewed Compressed Cache
(SCC) was proposed by Sardashti et al. [33]. SCC eliminates
many overheads of DCC by avoiding DCC’s backward
pointers, and reduces the latency of tag-data indirection.

However, both DCC and SCC still suffer from VSC’s
second and third drawbacks. Both require making changes to
the data array to enable multiple segment access, and both
require complex replacement mechanisms that could evict
multiple logical lines on a cache fill (though SCC simplifies
the replacement policy path). A hit to a compressed line
might require activating more than one 16B segment that
span multiple physical lines. To avoid significant energy
increases, DCC proposes accessing the cache at 16B sub-
bank granularity, which would require more logic circuits for
control signals and sense-amps for each sub-bank. DCC

would suffer from additional latency due to either (a) the need
to re-compact segments from different physical lines before
the line is sent to the CPU (if segments are all activated and
read at the same time); or (b) more stages/cycles in the
pipeline if segments are activated one at a time.

To avoid such drawbacks that would substantially
increase cache area, we chose to implement a simpler two-
tags-per-way architecture that we explain in the next two
sections. Our simple architecture enforces the association of
each physical cache line with two logical tags to avoid
making changes to the data array design.

III. INTERACTIONS BETWEEN CACHE

COMPRESSION AND REPLACEMENT

To avoid the negative power and complexity
implications of compressed caches, we choose to implement
a simple architecture that associates two tags with each
physical way in the data array. Figure 1 presents a high-level
architecture that implements this association on a simple two-
way set-associative baseline.

Figure 1. Two-Tag Architecture for a 2-way cache. Each physical way has

two tags associated with it, and can store up to two logical lines (striped
part represents second compressed line). The blue tags 0 and 1 are always

associated with way 0, while the red tags 0 and 1 are associated with way 1.

This architecture does not require any changes to the
physical data array. On a cache access, all tags that
correspond to the correct set are compared, and only one data
way is identified on a hit. That physical data line would
include either one or two (compressed) logical lines.
However, the whole data line is accessed from the data array
using the same steps as an uncompressed cache. When the
data is read out of the data array, it can then be decompressed,
and the appropriate line is sent to the CPU and lower-level
caches. The only additional overheads required for this
architecture are (a) the extra tag area, access latency and
power; and (b) compression and decompression latencies and
power. However, the main advantage is that it doesn’t require
any additional area or floorplan changes to the data array.

Unfortunately, this simple architecture introduces some
negative interactions with cache replacement policies, which
could lead to losing the performance gains we achieve from
advanced cache replacement mechanisms. In the following
example, we show two different scenarios where
compression negatively impacts LRU replacement.
Example. Figure 2 shows a 4-way cache (8-way with
compression) where the most recently used (MRU) line is
partnered with the least recently used (LRU) line. In this
example, physical way 0 has two logical lines allocated to it:

the MRU line (LRU stack position 0) and the LRU line (LRU
stack position 6 since one line is uncompressed). The MRU
line size is 6 segments and the LRU line size is 2 segments,
where each physical 64B line can store eight 8B segments.

Figure 2. Example for MRU and LRU lines sharing the same physical way.

If an incoming fill line of size 6 segments needs to be
allocated, LRU replacement indicates it should replace the
LRU line (corresponding to tag 1 of way 0). However, since
the partner of the victim line has six segments, the incoming
line cannot fit with the other line in way 0, which happens to
be the MRU line. There are two options for replacement in
this case:

(1) Evict all logical lines in the physical way associated with
the LRU logical line to allow room for the incoming fill
line. We call this policy partner line victimization. In
this example, the MRU line is evicted, which could cause
significant losses in many workloads where the MRU
line is the most frequently hit.

(2) Go through all logical lines in LRU stack order to
identify a victim of appropriate size to be evicted. For
this example, the first line that would fit the incoming
line is at LRU stack position 2 (corresponding to tag 0 of
way 2). Choosing this line for eviction means that LRU
replacement is no longer maintained, since this line
would remain in an uncompressed cache. Breaking LRU
replacement (or other advanced replacement policies)
can lead to significant glass jaws in some applications.

In Section VI, we show that many workloads suffer from
large losses due to these negative interactions that offset any
gains from a compressed cache. It should be noted that VSC
avoids these negative interactions by replacing as many lines
from the bottom of the LRU stack as possible (in this
example, both LRU positions 6 and 5) to allow enough room
for the incoming line. However, this requires re-compaction
(i.e., defragmentation) of the cache lines in the set before the
incoming line can be inserted. This incurs power overheads,
latency increases and higher logic complexity for the
replacement policy.

While this example focuses on LRU to provide a clear
explanation, the performance losses are even more significant
for advanced replacement policies as compression may
require changing the replacement stack order. In the next
section, we present an opportunistic cache compression
architecture, Base-Victim, which retains the performance
gains for advanced cache replacement policies, and
opportunistically provides performance gains when cache
lines can be efficiently compressed.

IV. BASE-VICTIM CACHE COMPRESSION ARCHITECTURE

A. High-Level Architecture

To avoid the negative interactions that occur between
compression and cache replacement policies, we propose an
opportunistic cache compression policy where the non-
compressed cache state is maintained, and victim lines are
only opportunistically kept if they fit. We ensure that the
baseline replacement policy performance is maintained by
logically partitioning the cache into a Baseline (B) Cache and
a Victim (V) Cache. Figure 3 shows how we treat tag 1 in
each way of a set as belonging to the Victim Cache. The
Victim Cache only holds lines that would have been evicted
from the baseline uncompressed cache, but are only kept
around because they could be compressed.

Figure 3. Logical Partitioning of LLC set into a Baseline (B) set and a

Victim (V) set. This is an example for a 4-way (uncompressed) cache that
becomes an 8-way cache with compression.

In the Baseline Cache, we strictly enforce the baseline
insertion and replacement policy on all tag 0’s of each set. By
design, this architecture cannot have a higher miss rate than
an uncompressed cache with the same replacement policy.
Whenever a modified line is replaced from the Baseline
Cache, its data is written back to memory to make it a clean
line. This operation could include sending back-invalidates to
the L1 and L2 caches. We then attempt to opportunistically
insert the clean replaced line into the Victim Cache.

By only allowing clean lines in the Victim Cache, we can
silently evict these lines on subsequent modifications to their
partner Baseline Cache line with no additional memory
traffic. This ensures that we only do (at most) one writeback
for every cache fill operation. We show how this simplifies
our implementation in the next sub-section. However, this
comes at the expense of not saving writeback traffic to
memory. Our architecture only saves memory read miss
traffic, but we incur the same number of memory writebacks
compared to an uncompressed cache.

B. Baseline and Victim Cache Implementation

In this section, we address different scenarios for hits and
misses to compressed cache lines. To simplify our
explanation, we use LRU replacement in the Baseline Cache,
and random replacement in the Victim Cache. We ensure all
Victim Cache lines are clean. The following sub-sections
highlight how our Base-Victim opportunistic compression
architecture handles various scenarios of hits and misses.

1) Compressed LLC Miss

On a miss to the compressed LLC, a replacement victim
is identified from the Baseline Cache based on the baseline
replacement policy. If the replaced line is modified, its data

is written back to memory to make it a clean line. The
incoming line occupies the same location as the chosen
replacement victim. If the incoming line can be compressed
to fit with the existing line in the same way from the Victim
Cache, the Victim Cache line is retained; otherwise, the
Victim Cache line is silently evicted (since it is a clean line).
The replaced line from the Baseline Cache is then
opportunistically stored to any way that would fit it in the
Victim Cache, or evicted if it cannot fit in any victim way.

For our Victim Cache implementation, we use a
replacement policy inspired by ECM [4]. We first search for
the way that can fit the victim line. Then among all the
candidates, we select the way with the largest size of the base
partner line. However, for examples in this section, we
assume random replacement in the Victim Cache. We study
variations of Victim Cache policies in Section VI.B.4.
Compressed LLC Miss Example. Figure 4 shows an
example scenario where the processor requests a line Z that
misses the compressed LLC. We assume LRU replacement
in the Baseline Cache, and random replacement in the Victim
Cache to simplify the explanation of these scenarios.
However, this could be handled using any other replacement
policy.

In this example, neither the Baseline (B) nor the Victim
(V) sets contain line Z, so we do the following steps:

(1) We identify the LRU victim B from way 3 of the
Baseline Cache.

(2) If B is modified, its data is written back to memory. For
inclusive caches, back invalidations are issued to the L1
and L2 caches to ensure the most recent data is written
back.

(3) Since Z requires 6 segments of space, the partner line Y
sharing physical way 3 has to be victimized as well. Y is
silently evicted since all Victim Cache lines are clean.

(4) Z is inserted into way 3 of the Baseline Cache.
(5) We randomly pick a victim in the Victim Cache section

(V) that can accommodate the victim from the Baseline
Cache – E, in this case, from way 1. Note that X (from
way 2) could not have been picked since it frees up only
2 segments whereas B needs 3 free segments. The only
other possible victim is F (Way 0).

(6) E is evicted (with no writeback since it is clean), and B
is stored in way 1 of the Victim Cache.

Note that next time the processor makes a request to line
B, it will be installed back in the Baseline Cache, i.e., gets
treated as a fill into the Baseline Cache which could trigger
either the eviction of the baseline LRU way or its insertion in
the Victim Cache, as shown in the next sub-section. Hence,
the Victim cache behaves as a cache of victim blocks that
would have been evicted without compression. We ensure
that the victim cache is always clean with respect to memory.
If the cache is inclusive, we send appropriate back-
invalidations to the L1 and L2 caches, and write back any
modified data to memory. Therefore, we only need to
perform (at most) one writeback for each cache fill, which

simplifies the replacement logic. This is less complex than
current proposals (e.g., VSC) that may require multiple
evictions to fill in one line.

Figure 4. Compressed LLC Miss Example. The LRU order is 0 (MRU), 1,
2, and 3 (LRU). The compressed size of a block (in 8B segments) is shown
after the comma. The left side shows the state before inserting Z, and the

right side shows the state after inserting Z. Note that B could be inserted in
ways 0 or 1 in the victim cache (depending on the replacement policy of
the victim cache). Here with random replacement, B replaces E in way 1.

Figure 5. Compressed LLC Hit Into a Victim Cache Line. The left side
represents the state before accessing E, and the right side represents the

state after accessing E.

2) Read Hit to the Victim Cache

On a read that hits in the Victim Cache, we need to
promote that line to the Baseline Cache. We therefore choose
a replacement victim in the Baseline Cache using the baseline
replacement policy. The promoted victim line occupies the
replaced line’s place. The Victim Cache partner line for the
replaced way is only kept if it fits with the promoted line. The
replaced line from the Baseline Cache is then
opportunistically stored in any way that would fit it in the
Victim Cache, or evicted if it does not fit.
Compressed LLC Victim Read Hit Example. Figure 5
shows an example scenario where the processor requests a
line E which hits in the Victim Cache (V). E is a line that
would not be in the cache without compression. However, we
still need to maintain the baseline replacement policy to avoid
losing performance. In this case:

(1) The LRU victim B is chosen from way 3 of the Baseline
Cache.

(2) If B is modified, its data is written back to memory. For
inclusive caches, back invalidations are issued to the L1
and L2 caches to ensure the most recent data is written
back.

(3) E is de-allocated from the Victim Cache and installed in
the Baseline Cache.

(4) B is then inserted in the Victim Cache in way 3 (which
becomes the MRU way) by silently evicting its partner
line Y since both B and E fit in the same physical line.
To simplify implementation, we do not attempt to
relocate the victim line Y in the Victim Cache.

By always moving lines that hit in the Victim Cache into
the Baseline Cache, we ensure that the Baseline Cache (B) of
the Compressed LLC always mirrors the state of an
Uncompressed LLC.

3) Write Hit to the Victim Cache

This case will not occur for inclusive caches. In our
architecture, the Victim Cache lines are always clean. Before
we insert a Baseline Cache replacement victim into the
Victim Cache, we send appropriate back-invalidations to the
L1 and L2 caches, and write any modified data to memory.
As a consequence, we do not reduce writebacks to memory,
and subsequent writes to those victim lines will need to
acquire the appropriate (exclusive) permissions.

However, our architecture can be implemented for non-
inclusive caches where we do not enforce the restriction that
Victim Cache lines are clean. In that case, the Victim Cache
write hit is handled in exactly the same way as a Victim
Cache read hit. The only exception is that the newly written
line in the Victim Cache needs to be compressed, potentially
to a different size. It is then promoted to the Baseline Cache,
and the replaced line from the Baseline Cache is
opportunistically stored in the Victim Cache if it fits in any
of the victim ways, or evicted otherwise.

4) Read Hit to the Baseline Cache

This case is handled in exactly the same way as a read
hit in an uncompressed cache, except that the line is
decompressed before being sent back to the CPU and lower
level caches. The replacement bits in the metadata of the
Baseline Cache are modified as they would be in an
uncompressed cache. Line sizes do not change on a read, so
no data movement occurs in the Baseline and Victim caches.

5) Write Hit to the Baseline Cache

This case is handled in exactly the same way as a write
hit in an uncompressed cache, except that the victim partner
line sharing the same physical way is evicted if the Baseline
Cache line grows so the new size would not fit the existing
victim. To simplify our implementation, we evict the Victim
Cache line right away even if it was the MRU line in the
Victim Cache set. Since our victim cache is always clean with
respect to memory, this silent eviction only requires changing
the state of the Victim Cache line to “Invalid”. However, it is

possible to implement a more complex policy where the
victim line can be moved to a different way.

C. Area Overheads

For a 2MB 16-way uncompressed cache, each way
requires 64B of data, 31 bits for the address tag (assuming 48
bit addresses that include 6 offset bits and 11 index bits), and
an additional byte for metadata including replacement,
coherence state and tracking bits. The opportunistic
compressed cache adds an additional address tag for the
Victim Cache. The Victim Cache is always clean and uses
random replacement, so it only needs one “valid” bit of
metadata (no other coherence or replacement bits are
needed). However, to simplify our implementation, we need
to add size information to both the Baseline Cache and
Victim Cache to simplify victim selection and partner line
victimization. This adds 4 bits of metadata to each tag to align
compressed lines at 4-byte boundaries (i.e., to support 16
different sizes for compressed lines). It should be noted that
our evaluation is based on 4B segments (not 8B as in
examples in this section). Overall, we add an additional 31-
bit address tag and 9 extra bits of metadata (4x2 for size, and
1 valid bit) for each original way. The area overhead for this
is 40b/(39b+512b) = 7.3% of the original (tag + data) array
size. We use the compression and decompression logic area
estimates from [32] where that logic accounts for 1.2%
additional area. With these estimates, the overall area
overhead (as a fraction of cache area) is 8.5% for a 2MB
cache.

V. EVALUATION METHODOLOGY

We evaluated our proposed architecture using a cycle-
accurate execution-driven x86 simulator. We model a 4 GHz
4-way dynamically scheduled out-of-order issue core, similar
to the state-of-the-art Intel® CoreTM processor [17]. Each core
has its own private L1 and L2 caches. We model a 32KB L1
instruction cache, a 32 KB 8-way L1 data cache, and a unified
256 KB 8-way L2 cache. For single-thread studies, we model
a 2 MB 16-way last-level cache (LLC). For multi-program
simulations, we model a 4MB 16-way LLC. All caches in the
hierarchy use a 64B line size. The LLC is inclusive of the
core caches and uses 1-bit Not Recently Used (NRU) [14] as
the replacement policy. The load-to-use latencies for L1, L2
and L3 are 3 cycles, 10 cycles, and 24 cycles respectively.
For all simulations, we model the main memory as two
channels of DDR3-1600. The DRAM has timing parameters
of 15-15-15-34 (tCL-tRCD-tRP-tRAS). We model per-core
aggressive multi-stream instruction and data prefetchers for
the L1, L2 and LLC.

Our single-threaded traces are drawn from four workload
categories as outlined in Table I. We use 100 traces
representing different execution phases of benchmarks in
these categories. Each trace is run for 200 million
instructions. We report performance in terms of instructions
per cycle (IPC). Out of these 100 traces, we found 60 traces
to be sensitive to cache performance. All analysis and results

will be presented for these 60 traces. In Section VI.B.5, we
will show the performance impact on the remaining 40 traces.
We use the geometric mean to present average normalized
IPC and miss rate ratios across traces.

We also present results for 20 4-way multi-programmed
workloads prepared by mixing four representative single-
threaded traces from the workload categories. Within a mix,
each thread executes 100 million instructions. If a thread
finishes its performance simulation phase early, it continues
executing so that we can model the shared LLC contention
properly. The mix terminates when every thread has finished
its performance simulation phase. Hence, a minimum of 400
million instructions are retired. We report performance as the
weighted speedup of all threads.

TABLE I: WORKLOADS

Category Total
Traces

Benchmarks

SPECCPU 2006
FP (FSPEC) [35]

30 CactusADM, Milc, LBM, Wrf,
Sphinx3, GemsFDTD, Soplex,
Calculix, Bwaves

SPECCPU 2006
Integer (ISPEC)
[35]

29 Xalancbmk, Sjeng, Gobmk,
Omnetpp, Astar, Gcc, Libquantum,
Mcf

Productivity 14 Sysmark[5] , Winrar, Win-
compression

Client 27 Octane Browser Benchmarks [27],
Speech Recognition, Cinebench [10],
3DMark [12]

We use Base Delta Immediate (BDI) as our LLC
compression algorithm [28]. We align the compressed data to
a 32-bit (i.e., 4 byte) boundary. We added two cycles for the
decompression latency and an additional cycle for tag lookup
(since tags have been doubled). Uncompressed and Zero lines
do not suffer any decompression latency since we add the size
information to the tag metadata: Zero blocks and
uncompressed blocks can be detected from the data size field
when we read the tag and metadata, and therefore we do not
need to decompress the data read from the LLC data array for
these block types.

For the majority of our results, we use the Not-Recently-
Used replacement policy in the Baseline Cache. We also use
a replacement policy inspired by ECM [4] for the Victim
Cache. However, we discuss sensitivity to Baseline Cache
and Victim Cache replacement policies in Section VI.B.

Earlier proposals like VSC-2X [1] and DCC [32] rely on
distributing compressed cache lines across ways in a given
set. When simulated on functional cache models, these
policies come close to an 80% increase in cache capacity.
This is significantly higher than our opportunistic Base-
Victim architecture. Unfortunately, as discussed in Section II,
these architectures require significant changes to the SRAM
data array layout, potentially needing deeper cache pipelines
that will add more latency for all cache lookups. This makes
it difficult to compare these policies to our opportunistic
Base-Victim architecture. We therefore do not compare the
IPC from such policies to our proposal. The two-tag
architecture does not require any changes to SRAM data

array (it only changes the controller), so comparing it to an
uncompressed cache is more straightforward.

VI. RESULTS

A. Single-Core Performance

We split the single-threaded benchmarks into two
categories depending on their compression ratios. Of the 60
cache-sensitive traces, 10 traces have an average compressed
block size higher than 75% of the uncompressed size. These
10 traces are not expected to gain much performance from
compression. For the remaining 50 traces, the average block
size after compression is 50% of the uncompressed size, so
we classify them as compression-friendly. On average across
all 60 traces, the compressed block size is 55% of the
uncompressed size.

We first show the performance of the simple two-tag
architecture where we always victimize partner lines that
don’t fit with the fill line. Figure 6 shows a line graph for this
scheme. The graph shows the normalized performance (IPC
Ratio) and normalized read miss rate (Memory Read Ratio)
compared to an uncompressed cache baseline. For workloads
that have significantly higher miss rate, normalized IPC is
much lower than the baseline. The opposite is true for
workloads that have significantly lower miss rates. As
discussed earlier in Section III, there are significant negative
outliers because of partner line victimization. Despite the
capacity increases due to compression, this scheme loses 12%
performance, on average, over an uncompressed baseline. 37
out of the 60 traces have a lower IPC (IPC ratio less than 1)
compared to the uncompressed cache.

To reduce the partner line victimization problem, we use
a replacement policy similar to ECM [4] tailored to our
baseline two tag architecture. We search for a tag (based on
NRU) which does not need to evict its partner. Among all
such victim candidates, we chose the one with the largest
compressed size. Figure 7 shows the performance of the
modified two-tag architecture. On average, this scheme gives
4.7% performance gain for compression-friendly
benchmarks. However it causes a 3.8% performance loss for
workloads that don’t compress well. There are significant
negative outliers (up to 14%), which also correlates with
more DRAM traffic. Nearly half the traces (27 out of 60) lose
performance compared to an uncompressed cache. Moreover,
this scheme causes more back-invalidations than the baseline.
This is because, in an inclusive cache hierarchy, partner lines
that have been victimized could still be present in the L1/L2
caches and hence need to be back-invalidated.

We also tried out other variants of the replacement and
insertion policies that were found to be inferior to the
modified policy shown in Figure 7, and are hence not shown
in this paper. As discussed in Section III, pairing and
replacement policies are difficult to maintain since LRU and
compressibility may not correlate. As a result, all variants that
we tried out had significant negative outliers.

Figure 6. Normalized IPC and DRAM Read Ratios compared to a 2MB
uncompressed baseline for the two-tag architecture. The left side shows

gains for compression friendly traces, and right side shows traces that have
low compression. Higher DRAM read ratios usually correspond to lower

performance (IPC).

Figure 7. Normalized IPC and DRAM Read Ratio compared to a 2MB

LLC for the modified two-tag architecture.

Figure 8. Normalized Performance and DRAM Read Ratio compared to a
2MB Baseline for the Opportunistic Cache Compression. LLC misses are

always less than or equal to baseline.

Figure 8 shows the performance (IPC) improvement
with our opportunistic Base-Victim compression architecture
across all workloads. The graph shows that there is only one
negative outlier out of 60 (that loses 0.01% IPC). We also
show that reads from memory are always lower than or the
same as baseline. The small losses are caused only by the
additional latency due to decompression and tag lookup.

For compression-friendly benchmarks, opportunistic
compression gives an average (geometric mean)

0

0.5

1

1.5

2

2.5

3

IP
C

an
d

DR
AM

 R
ea

d
Ra

tio

ov
er

 B
as

el
in

e

Traces --->

IPC Ratio DRAM Read Ratio

0

0.5

1

1.5

2

IP
C

an
d

DR
AM

 R
ea

d
Ra

tio

ov
er

 B
as

el
in

e

Traces ----------->

IPC Ratio DRAM Read Ratio

0

0.5

1

1.5

2

IP
C

an
d

DR
AM

 R
ea

d
Ra

tio
ov

er
 B

as
el

in
e

Traces ----------->

IPC Ratio DRAM Read Ratio

improvement of 8.5% and reduces read misses by an average
of 16%. Figure 9 shows the average performance
improvement per workload category. We also show the gains
from a 3MB uncompressed cache. We construct a 3MB cache
by adding 8 ways to a 2MB, 16-way baseline. We add an
extra cycle of latency because of the increase in tag and data
array sizes. On average, a 3MB uncompressed cache also
gives a performance improvement of 8.5% and reduces read
misses by 16.1% for compression-friendly traces.
Opportunistic compression hence, gives a performance
similar to a 50% larger (3MB) LLC. In other words, by
adding 8.5% to LLC area, we gain performance equivalent to
a 50% increase in cache capacity.

For the 10 traces that are not compression-friendly,
opportunistic compression gives an average IPC
improvement of 1.45%. This is expected, since
compressibility of these workloads limit their potential
performance gain. Across all cache-sensitive workloads,
opportunistic compression gives an average 7.3%
performance gain over a 2MB uncompressed cache, whereas
a 3MB uncompressed cache gains an average 8.1%.

B. Sensitivity Analysis

1) Effect of LLC Associativity

In our opportunistic compression architecture, we use 32
tags, instead of 16, in each set, and add an additional 1 cycle
of latency for tag access. To analyze the sensitivity of our
results to baseline associativity, we simulated a 16-tags-per-
set version of the opportunistic compressed cache. In that
version, the baseline (uncompressed) associativity would be
8-way, and compression adds 8 additional ways per set.
Compared to a baseline 2MB 16-way set-associative cache,
the 16-way opportunistic compression version gives an
average performance gain of 6.2% (vs. 7.3% for the 32-way
version). On the other hand, increasing the associativity of
the baseline uncompressed cache from 16 to 32 yields
insignificant (almost zero) performance gains.

2) Effect of Base Replacement policy

We used a 1-bit NRU replacement policy for this study.
Significant prior work has been done to improve replacement
policies for the LLC. In this section we study the impact of
advanced replacement policies when applied to the Baseline
Cache.

We consider two recent replacement policies. The first is
SRRIP [20] that uses 2 bits per cache line for managing ages.
The second is CHAR [7] that uses set-dueling for learning
workload cache behavior and then sends downgrade hints on
L2 cache evictions. The CHAR replacement policy can
manipulate the ages, not just on fill or hit, but also based on
hints. We implement the CHAR replacement policy with 1
bit ages and not on top of SRRIP, as was done in [7]. Since
the Base-Victim architecture maintains the Baseline Cache
behavior, advanced replacement policies can be seamlessly
integrated.

Figure 9. Performance Per category for Opportunistic compression as

compared to a 2MB Uncompressed LLC. The left side shows performance
for compressible workloads, and the right side shows overall performance

for all cache-sensitive workloads.

Figure 10. Impact of Baseline Cache replacement policy on opportunistic

compression.

Figure 10 shows the performance gains for our
opportunistic compression architectures with these
replacement policies as baseline. On top of a 1-bit NRU
replacement policy, SRRIP gives a 2.9% gain in performance
and CHAR gives a 3.2% performance gain. Opportunistic
cache compression gives 6.4% gain on top of SRRIP-
managed baseline, and 7.2% gain on top of a CHAR-
managed baseline. We found that, as in the case of NRU
replacement, the baseline hit rate is not decreased and there
are no negative outliers. This illustrates that our opportunistic
(Base-Victim) compression architecture is synergistic with
advanced replacement policies. We maintain performance
improvements of replacement, and gain more performance
because of compression.

1.03

1.13

1.07

1.10
1.09

1.04

1.12

1.07

1.10
1.08

1.06

1.11

1.05

1.11
1.09

1.05

1.08

1.05

1.09

1.07

0.900

0.950

1.000

1.050

1.100

1.150

SP
EC

FP

SP
EC

IN
T

Pr
od

uc
tiv

ity

Cl
ie

nt

Av
er

ag
e

SP
EC

FP

SP
EC

IN
T

Pr
od

uc
tiv

ity

Cl
ie

nt

Av
er

ag
e

Compression Friendly Overall

IP
C

Ra
tio

 w
rt

 b
as

el
ie

ne

3M Uncompressed LLC Opportunistic Compression

0.90

0.95

1.00

1.05

1.10

1.15

1.20

SP
EC

FP

SP
EC

IN
T

Pr
od

uc
tiv

ity

Cl
ie

nt

Av
er

ag
e

SP
EC

FP

SP
EC

IN
T

Pr
od

uc
tiv

ity

Cl
ie

nt

Av
er

ag
e

Compression Friendly Overall

IP
C

Ra
tio

 o
ve

r B
as

el
in

e

SRRIP SRRIP + Compression CHAR CHAR + Compression

Figure 11. Sensitivity to LLC Size. We show IPC gains over a 2MB

uncompressed cache for a 4MB uncompressed cache, a 6MB
uncompressed cache, and 4MB compressed cache. The left side shows

workloads with good compression, and the right shows all cache-sensitive
workloads.

Figure 12. Normalized IPC and DRAM Read Ratio as compared to a 2MB

uncompressed Baseline for all 100 traces.

3) Effect of increasing LLC Size

Figure 11 shows the performance gains for Opportunistic
compression for a 4MB cache. A 4MB uncompressed cache
gains 15.8% over a 2MB uncompressed cache. Opportunistic
compression provides an additional 6.8% performance gain
on top of it. A 50% larger (6MB) cache achieves 9% average
performance gain.

4) Effect of Victim Cache Replacement Policy

We observe that for compression-friendly benchmarks,
the average compressed size is close to 50% of uncompressed
size (i.e., 2X compression ratio), but effective cache capacity
only increases by 50% (i.e., 1.5X). This suggests that the
Victim Cache needs to be managed better.

We tried various other variations of Victim Cache
replacement, including LRU and a mix of LRU and size-
based replacement. Unfortunately, none of these variants
showed any significant improvement over the current policy.

We leave the exploration of better Victim Cache replacement
policies for future work.

5) Results on full trace list

In the previous sub-sections, we only considered the
traces that were sensitive to LLC performance. Figure 12
shows a line graph for all 100 traces including cache-
insensitive workloads. There are no significant negative
outliers for opportunistic cache compression. Overall, our
opportunistic compressed cache architecture gains an average
4.3% performance over an uncompressed cache baseline;
whereas a 50% larger (3MB) uncompressed cache gains an
average performance of 4.9%.

C. Multi-Core Performance

The results for 4-way multi-program (MP) workloads are
summarized in Figure 13. We use normalized weighted

speedup ∑ ቀூ௉஼೙೐ೢூ௉஼್ೌೞ೐ቁ௡ିଵ௜ୀ଴ as the metric for reporting multi-

program workload performance. Compared to a 4MB
baseline, opportunistic compression gains 8.7% performance,
on average, whereas a 6MB (50% larger) cache gains 9%.
Compared to an 8MB baseline, it gains 11.2% performance,
on average, whereas a 12MB (50% larger) cache gains
15.7%. As we observed in single-core results, there are no
negative outliers for our opportunistic compression
architecture. The hit rate for all the multi-program mixes is at
least as high as the hit rate of an uncompressed cache.

D. Power Analysis

Cache compression saves power by reducing the number
of requests that go to memory. However, it also adds power
because of the compression and decompression logic, as well
as leakage and active power needed for the extra tags and
metadata. Furthermore, our opportunistic cache compression
mechanism needs to migrate compressed cache lines from the
Baseline Cache to the Victim Cache and vice-versa. Since the
base way and victim way may be physically distinct ways,
data should be read out from the Baseline Cache and written
into the Victim Cache. Similarly, on a Victim Cache hit, data
should be read out and moved to the Baseline Cache. Both
operations require additional power. On a cache fill or write-
back, compressed data will be written to the cache without
overwriting an existing partner line.

Most SRAM implementations have byte or word enable
controls. If that is the case, these word enables need to be
enabled for only the specified number of words that are being
written to save power. However, if word enables are not
available, then a read modify write operation needs to be done
every time a fill or a writeback happens to ensure the integrity
of the compressed partner line.

For 2MB single-thread simulations, opportunistic
compression saves 16% of all reads to memory, but does not
save any writes to memory (as the victim cache is clean).
This results in a 12% average reduction in memory
bandwidth, since write bandwidth is not affected. On the

0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

SP
EC

FP

SP
EC

IN
T

Pr
od

uc
tiv

ity

Cl
ie

nt

Av
er

ag
e

SP
EC

FP

SP
EC

IN
T

Pr
od

uc
tiv

ity

Cl
ie

nt

Av
er

ag
e

Compression Friendly Overall

IP
C

Ra
tio

 o
ve

r 2
M

 B
as

el
in

e

4MB 6MB 4MB + Compression

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IP
C/

DR
AM

 R
ea

d
Ra

tio
 o

ve
r B

as
el

in
e

Traces --->

IPC Ratio DRAM Read Ratio

other hand, it adds about 31% additional accesses to LLC,
primarily because of the additional hits and necessary data
movement between the Baseline Cache and Victim Cache.

To estimate the power impact of opportunistic
compression, we use the Micron power calculator [25] for
estimating the DRAM array energy in the main memory. We
use CACTI [26] to estimate the dynamic and leakage energy
expended by the tag/state SRAM of the LLC, assuming a 22-
nm process. The compression/decompression power numbers
for BDI are scaled to a 22nm process based on [23].

Overall, opportunistic cache compression saves 6.5%
energy in the memory + cache subsystem. However if word
enables are not present, the energy savings drop to 2.2%,
primarily because of read modify write operations on fills and
writebacks. Figure 14 shows the energy ratio as compared to
baseline, for all 100 traces. Also plotted for correlation is the
DRAM read ratio for each trace. Power savings are highest
when DRAM bandwidth reduction (i.e., reduction in read
miss traffic) is substantial. There are a few traces where we
increase power as compared to the baseline (by up to 2.3%).
For such traces, the reduction in DRAM bandwidth is not
sufficient to offset power loss because of compression and
migration. Without word enables, there are even more
outliers and we see up to 6% higher power on some traces.

VII. RELATED WORK

A. Cache Compression Architectures and Algorithms

Prior work has explored a number of hardware
compression algorithms to compress cache data. These
algorithms are orthogonal to our opportunistic compressed
cache architecture, since we can use any of the previously
proposed compression algorithms. The only difference would
be in the compressibility, area and latency overheads of the
chosen compression algorithm.

Many compression architectures are motivated by the
concept of value locality introduced by Lipasti, et al. [24],
which indicates the likelihood that a previously-seen value
will be re-observed for the same storage location. Yang and

Gupta [40] propose augmenting the data array of the L1 cache
with a frequent value cache (FVC) that stores the most
frequent data values, therefore saving the energy needed for
accessing the L1 data array. Islam and Stenstrom [18] apply
a similar concept to speed up loads of zero values through
their Zero-Value Cache (ZVC). At the block level, Dusser, et
al. [11] propose augmenting the data cache with a zero-
content cache that stores the addresses of null (zero) blocks,
therefore increasing effective cache capacity. Tian et al. [36]
propose cache line de-duplication, where duplicate cache
blocks are detected, and a level of indirection is used to allow
multiple addresses to access the same data block.

Several compressed cache architecture proposals
decouple tags and data to allow variable-sized lines to co-
exist in the cache. Hallnor and Reinhardt [16] extend their
indirect index cache proposal to support compression by
allocating variable amounts of storage to different cache
blocks. Pekhimenko et al. [29] explore extending the V-Way
cache [30] to support multiple line sizes. We discussed the
Decoupled Variable-Segment Cache (VSC) [1], the
Decoupled Compressed Cache (DCC) [32] and the Skewed
Compressed Cache (SCC) [33] proposals in Section II.

Figure 14. Energy Reduction for Opportunistic Compression compared to
uncompressed baseline. Having word enables in the cache, helps reduce

read modify writes and saves substantial power.

0.2

0.4

0.6

0.8

1

1.2

DR
AM

 R
ea

d
Ra

tio
 a

nd
 E

ne
rg

y
Ra

tio
ov

er
 B

as
el

in
e

Traces ------------>

DRAM Read Ratio

Energy Ratio with Word Enables

Energy Ratio without Word
Enables

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Pe
rf

or
m

an
ce

 R
at

io
 o

ve
r 4

M

Ba
se

lin
e

fo
r 4

T

6M Opportunistic Compression 4M 8M 12M Opportunistic compression 8M

Figure 13. Performance gain for multi-program workload mixes (4 threads each) with 4MB uncompressed cache as the baseline.

Alameldeen and Wood [1] propose Frequent Pattern
Compression (FPC), a significance-based algorithm that
detects frequent patterns in each 32-bit word of a cache line,
and compresses the line if it can save enough bits. Chen, et
al. [9] propose the Cache Packer (C-Pack) algorithm that
augments frequent pattern detection with a dynamic
dictionary to detect redundancy within a cache line.
Pekhimenko, et al. [28] propose the Base-Delta-Immediate
(BDI) compression algorithm that detects whether all words
in a cache line are within a short delta from a base word, and
compresses cache lines with enough redundancy. Arelakis
and Stenstrom [3] propose a statistical compression
algorithm (SC2) based on Huffman encoding that takes
advantage of the low variability of data values over time and
across applications. We chose BDI as the compression
algorithm in our opportunistic compressed cache
implementation since it has a fast decompression latency and
a high compression ratio.

Our Base-Victim compressed cache architecture
opportunistically keeps replacement victims from the base
cache without sacrificing performance gains from advanced
replacement policies. Kim, et al. [22] compress two lines if
corresponding words can be sign-compressed to half their
size. Chen, et al. [8] combine two lines if their combined
compressed sizes can fit in one physical line, similar to this
paper. However, cache insertion policy for both proposals
does not preserve performance from advanced cache
replacement policies, since lines that would exist in the
baseline uncompressed cache could be evicted in many cases.

B. Cache Management and Replacement Policies

Prior work has investigated many cache replacement and
management policies that target reducing cache miss rate.
These policies are orthogonal to our opportunistic
compressed cache architecture, since we always maintain the
same cache insertion/replacement policy in the Baseline
Cache. The key feature of our opportunistic Base-Victim
compressed cache architecture is that we guarantee that all
hits in an uncompressed cache would still be hits in our
compressed cache, regardless of the underlying baseline
replacement and/or insertion policy.

Prior proposals have focused on detecting blocks that are
unlikely to be used in the future and picking those blocks as
replacement victims. This could be achieved through
insertion policies ([14], [19], [20], [31], [38], [39]) that insert
blocks that are likely to be reused in a location that is unlikely
to be evicted quickly. Many replacement policies detect dead
blocks that are unlikely to be reused before eviction, and
either completely bypass those blocks, or insert them in a
vulnerable position ([7], [13], [20], [21], [39]). More
advanced replacement/insertion policies use more
information to predict future reuse, such as SHiP [38] which
uses the data block’s program counter (PC) value. However,
most replacement policies do not depend on having the PC
available at the last-level cache.

C. Interactions between Compression and Cache
Management Policies

In much of the earlier work on cache compression, the
interactions between compression and cache management
policies were not considered. Prior proposals [1] assumed
LRU as the underlying replacement policy, and allowed more
than one block to be evicted on a cache fill, as we explained
in more detail in Section II.

Two recent proposals consider tailoring cache
management and replacement policies for a compressed
cache. Baek, et al. [4] propose the Effective Capacity
Maximizer (ECM) that attempts to maximize the compressed
cache capacity by optimizing the replacement policy. In this
paper, we use a replacement policy in our Victim Cache that
is inspired by ECM since we also try to maximize the
capacity of the Victim Cache. Pekhimenko, et al. [29]
propose novel Compression-Aware Management Policies
(CAMP) for compressed caches that use compressed size as
an indicator to predict future reuse. They propose eviction
and insertion policies to keep lines with the highest reuse
probability in the cache. CAMP is evaluated on top of a V-
Way cache [30] where tags and data are decoupled through a
level of indirection, which is more complex than our two-tag
baseline architecture. Our opportunistic compressed cache
architecture can be adopted to implement CAMP in the
Baseline Cache, which could be addressed in future work.

VIII. CONCLUSIONS

In this paper, we demonstrate that cache compression
and replacement policies can interact negatively. Many
workloads suffer performance losses due to the need to alter
the replacement policy to accommodate compression,
leading to sub-optimal replacement policies. We introduce a
novel, opportunistic cache compression mechanism, Base-
Victim, based on an efficient cache design. Our compression
implementation retains the performance gains due to
advanced cache replacement policies, while still increasing
effective cache capacity. We guarantee that the cache hit rate
will be at least as high as an uncompressed cache for all
workloads. For cache-sensitive applications, Base-Victim
achieves an average 7.3% performance gain for single-
threaded workloads and an average 8.7% gain for four-thread
multi-program workload mixes.

ACKNOWLEDGMENT

We thank Komal Jothi and Ragavendra Natarajan for their
help during early phases of this work. We thank Shih-Lien Lu
and the anonymous reviewers for their valuable and
constructive feedback.

REFERENCES

[1] Alaa R. Alameldeen and David A. Wood, “Adaptive Cache
Compression for High-Performance Processors,” International
Symposium on Computer Architecture (ISCA-31), pp. 212-223,
Munich, Germany, June 2004.

[2] Alaa R. Alameldeen and David A. Wood, “Interactions Between
Compression and Prefetching in Chip Multiprocessors,” International
Symposium on High-Performance Computer Architecture (HPCA-13),
pp. 228-239, Phoenix, AZ, February 2007.

[3] A. Arelakis and P. Stenstrom, “SC2: A Statistical Compression Cache
Scheme,” International Symposium on Computer Architecture (ISCA-
41), pp. 145-156, Minneapolis, MN, June 2014.

[4] Seungcheol Baek, Hyung Gyu Lee, Chrysostomos Nicopoulos,
Junghee Lee, and Jongman Kim, “ECM: Effective Capacity Maximizer
for High-Performance Compressed Caching,” International
Symposium on High-Performance Computer Architecture (HPCA-19),
pp. 131-142, Shenzhen, China, February 2013.

[5] Business Applications Performance Corporation (BAPCo), “Sysmark
2014,” Whitepaper, 2014. https://bapco.com/wp-
content/uploads/2015/09/SYSmark2014Whitepaper_1.0.pdf

[6] Jonathan Chang, Ming Huang, Jonathan Shoemaker, John Benoit, Szu-
Liang Chen, Wei Chen, Siufu Chiu, Raghuraman Ganesan, Gloria
Leong, Venkata Lukka, Stefan Rusu, and Durgesh Srivastava, “The 65-
nm 16-MB Shared On-Die L3 Cache for the Dual-Core Intel Xeon
Processor 7100 Series,” IEEE Journal of Solid-State Circuits, Vol. 42,
No. 4, pp. 846-852, April 2007.

[7] Mainak Chaudhuri, Jayesh Gaur, Nithiyanandan Bashyam, Sreenivas
Subramoney, and Joseph Nuzman, “Introducing Hierarchy-awareness
in Replacement and Bypass Algorithms for Last-level
Caches,” International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp 293-304, Minneapolis, MN,
September 2012.

[8] X. Chen, L. Yang, H. Lekatsas, R. P. Dick,and L. Shang, “Design and
Implementation of a High-Performance Microprocessor Cache
Compression Algorithm,” Data Compression Conference (DCC), pp
43-52, March 2008.

[9] X. Chen, L Yang, R. P. Dick, L. Shang, and H. Lekatsas, “C-Pack: A
High-Performance Microprocessor Cache Compression Algoithm,”
IEEE Transactions on VLSI Systems, Vol. 18, No. 8, pp. 1196-1208,
2010.

[10] CineBench, http://www.maxon.net/products/cinebench/overview.html
[11] Julien Dusser, Thomas Piquet and Andre Seznec, “Zero-Content

Augmented Caches,” 23rd International Conference on
Supercomputing (ICS’09), pp. 46-55, 2009.

[12] Futuremark, “3DMARK 11 Benchmark,”
http://www.futuremark.com/benchmarks/3dmark11

[13] Hongliang Gao and Chris Wilkerson, “A Dueling Segmented LRU
Replacement Algorithm with Adaptive Bypassing,” First JILP
Workshop on Computer Architecture Competitions, June 2010.

[14] Jayesh Gaur, Mainak Chaudhuri, and Sreenivas Subramoney, “Bypass
and Insertion Algorithms for Exclusive Last-level Caches,”
International Symposium on Computer Architecture (ISCA-38), pp.
81-92, June 2011.

[15] K. Ghose and M.B. Kamble, “Reducing Power in Superscalar
Processor Caches Using Subbanking, Multiple Line Buffers and Bit-
Line Segmentation,” International Symposium on Low Power
Electronics and Design (ISLPED), pp. 70-75, 1999.

[16] E.G. Hallnor and S.K. Reinhardt, “A Unified Compressed Memory
Hierarchy,” International Symposium on High-Performance Computer
Architecture, pp. 201-212, 2005.

[17] Intel Corporation, “Intel Core i7 Processor,”
www.intel.com/products/processor/corei7/index.htm

[18] M. M. Islam and Per Stenstrom, “Zero-Value Caches; Cancelling
Loads that Return Zero” International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 237-245,
Raleigh, NC, September 2009.

[19] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot,
Simon C. Steely Jr., and Joel Emer, “Adaptive Insertion Policies for
Managing Shared Caches,” International Conference on Parallel
Architecture and Compilation Techniques (PACT’08), pp. 208-219,
2008.

[20] Aamer Jaleel, Kevin Theobald, Simon C. Steely Jr, and Joel Emer,
“High Performance Cache Replacement Using Re-Reference Interval
Prediction (RRIP),” International Symposium on Computer
Architecture (ISCA-37), pp. 60-71, Saint Malo, France, June 2010.

[21] Samira M. Khan, Yingying Tian, and Daniel A. Jiménez, “Dead Block
Replacement and Bypass with a Sampling Predictor,” International
Symposium on Microarchitecture (MICRO-43), pp. 175-186,
December 2010.

[22] Nam-Sung Kim, Todd Austin, and Trevor Mudge, “Low-Energy Data
Cache Design Using Sign Compression and Cache Line Bisection,” 2nd
Workshop on Memory Performance Issues (WMPI’02), May 2002.

[23] Sangpil Lee, Keunsoo Kim, Gunjae Koo, Hyeran Jeon, Won Woo Ro,
and Murali Annavaram, “Warped-Compression: Enabling Power
Efficient GPUs through Register Compression,” International
Symposium on Computer Architecture (ISCA-42), pp. 502-514,
Portland, OR, June 2015.

[24] H. Lipasti, Christopher B. Wilkerson and John Paul Shen, “Value
Locality and Load Value Prediction,” International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VII), pp. 138-147, Cambridge, MA, 1996.

[25] Micron Technology Inc., “Calculating Memory System Power for
DDR3. Micron Technical Note TN-41-01.
http://www.micron.com/products/support/power-calc.

[26] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P.
Jouppi, “CACTI 6.0: A Tool to Model Large Caches,” HP Labs
Technical Report HPL-2009-85, HP Laboratories, 2009.

[27] Octane, https://developers.google.com/octane/?hl=en
[28] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Michael A.

Kozuch, Phillip B. Gibbons, and Todd C. Mowry, “Base-Delta-
Immediate Compression: Practical Data Compression for On-Chip
Caches,” International Conference on Parallel Architectures and
Compilation Techniques (PACT), Minneapolis, MN, September 2012.

[29] Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P.
Gibbons, Michael A. Kozuch, and Todd C. Mowry, “Exploiting
Compressed Block Size as an Indicator of Future Reuse,” International
Symposium on High-Performance Computer Architecture (HPCA-21),
pp. 51-63, February 2015.

[30] Moinuddin K. Qureshi, David Thompson, and Yale N. Patt, “The V-
Way Cache: Demand Based Associativity via Global Replacement,”
International Symposium on Computer Architecture (ISCA-32), pp.
544-555, Madison, WI, June 2005.

[31] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely
Jr., and Joel Emer, “Adaptive Insertion Policies for High Performance
Caching,” International Symposium on Computer Architecture (ISCA-
34), pp. 381-391, San Diego, CA, June 2007.

[32] Somayeh Sardashti and David A. Wood, “Decoupled Compressed
Cache: Exploiting Spatial Locality for Energy-Optimized Compressed
Caching,” International Symposium on Microarchitecture, Davis, CA,
December 2013.

[33] Somayeh Sardashti, Andre Seznec, and David A. Wood, “Skewed
Compressed Caches,” 47th International Symposium on
Microarchitecture (MICRO-47), pp. 331–342, Washington, D.C.,
December 2014.

[34] Andre Seznec, “Decoupled Sectored Caches,” IEEE Transactions on
Computers, Vol. 46, No. 2, pp. 210–215, February 1997.

[35] SPEC CPU 2006 Benchmarks. http://www.spec.org/cpu2006
[36] Yingying Tian, Samira M. Khan, Daniel A. Jimenez, and Gabriel H.

Loh, “Last-level cache deduplication,” 28th International Conference
on Supercomputing (ICS ’14), pp. 53–62, 2014.

[37] C. L. Su and A.M. Despain, “Cache Designs for Energy Efficiency,”
28th Annual Hawaii International Conference of System Sciences,
1995.

[38] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret
Martonosi, Simon C. Steely Jr., and Joel Emer, “SHiP: Signature-based
Hit Predictor for High Performance Caching,” International
Symposium on Microarchitecture (MICRO-44), pp. 430-441,
December 2011.

[39] Yuejian Xie and Gabriel H. Loh, “PIPP: Promotion/Insertion Pseudo-
partitioning of Multi-core Shared Caches,” International Symposium
on Computer Architecture (ISCA-36), pp. 174-183, Austin, TX, June
2009.

[40] Jun Yang and Rajiv Gupta, “Energy Efficient Frequent Value Cache
Design,” International Symposium on Microarchitecture (MICRO-35),
pp. 197-207, Istanbul, Turkey, December 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

