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In this paper we briefly survey the history of the Dichotomy Conjecture for the Constraint Satisfaction prob-
lem, that was posed 25 years ago by Feder and Vardi. We outline some of the approaches to this conjecture,
and then describe an algorithm that yields an answer to the conjecture.

1. THE COMPLEXITY DICHOTOMY PHENOMENON
It is well known that if P 6=NP, then there are infinitely many distinct complexity
classes between them [Ladner 1975]. However, the only known examples of such
classes are constructed through diagonalization, and therefore are somewhat artifi-
cial. It is thus an appealing idea to suggest that no ‘natural’ problem attains any of
those intermediate complexity classes and either belongs to P or is NP-complete. Prov-
ing such a result for all ‘natural’ problems may be difficult, as it is not clear what a
‘natural’ problem may mean precisely. However, in a more practical perspective one
can try to show that large classes of problems that are arguably ‘natural’ enjoy this
dichotomy property. This approach has been suggested for several classes of problems,
most notably by Valiant in the context of counting problems, the Holant problem and
holographic algorithms [Valiant 2006; 2008], and by Feder and Vardi in the context of
the Constraint Satisfaction Problem (CSP) [Feder and Vardi 1993; 1998]. Since this
paper is about the CSP, we discuss the latter research direction in more details.

In the most concise way the CSP of the type studied by Feder and Vardi can be rep-
resented through homomorphisms of relational structures. A Constraint Satisfaction
Problem, given relational structures G,H with the same vocabulary, asks whether or
not there is a homomorphism from G toH. We will refer to this definition of the CSP as
the homomorphism definition. As is easily seen, it allows for various kinds of restric-
tions and parametrizations, say, by restricting the classes of structures from which G
and H can be taken from. The nonuniform CSP for a relational structure H, denoted
CSP(H), asks whether there exists a homomorphism from a given structure G to H.

In [Feder and Vardi 1993; 1998] Feder and Vardi start off by a systematic study of
problems representable through logic formulas that may exhibit the dichotomy phe-
nomenon. Due to Fagin’s theorem we know that every problem in NP can be repre-
sented as deciding if the input structure satisfies a second-order existential formula.
So, Feder and Vardi tried to identify the largest class of formulas that does not repre-
sent the whole of NP, and therefore may have the dichotomy property. The candidate
class they arrived at was MMSNP, the class of monotone monadic formulas without in-
equalities. In particular, they show that if any of these three properties is eliminated,
any problem from NP is polynomial time equivalent to a problem in the resulting class,
and therefore this class cannot have the dichotomy property. On the other hand, they
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show that for every problem from the class MMSNP itself there is a randomized poly-
nomial time reduction to a certain nonuniform CSP2. This led them to the following
CSP Dichotomy Conjecture

CONJECTURE 1.1 (CSP DICHOTOMY CONJECTURE, [FEDER AND VARDI 1993; 1998]).
For every finite relational structureH, the nonuniform constraint satisfaction problem,
CSP(H), either can be solved in polynomial time, or is NP-complete.

In this paper we discuss how the CSP Dichotomy Conjecture has been resolved,
starting from early dichotomy results of Schaefer [Schaefer 1978] on the Generalized
Satisfiability Problem, and Hell and Nesetril [Hell and Nešetřil 1990] on Graph H-
Colouring, to its final resolution by the author [Bulatov 2017b; 2017c] and indepen-
dently and nearly simultaneously by Zhuk [Zhuk 2017a; 2018]. Most of the paper uses
the links between the CSP and universal algebra — the approach that has been very
effective in the study of the CSP. However, before turning to algebraic concepts we
touch upon other approaches and provide a number of results and examples obtained
there.

Complexity classification of the decision CSP and its variants has been moved be-
yond the Dichotomy conjecture. Dichotomy or other complexity classification results
have been proved (or sometimes conjectured) for a number of variants of the CSP. We
will mention some of these results towards the end of the paper.

2. THE CONSTRAINT SATISFACTION PROBLEM
We begin with defining the CSP in a way that historically has been used by researchers
in Artificial Intelligence, and will be convenient in this paper. In the definition below
tuples of elements are denoted in boldface, say, a, and the ith component of a is referred
to as a[i]. The set {1, . . . , n} will be denoted by [n].

Definition 2.1. Let A1, . . . , A` be finite sets. An instance I = (V, C) of the CSP over
A1, . . . , A` consists of a finite set of variables V such that each v ∈ V is assigned a
domain Aiv , iv ∈ [`], and a finite set C of constraints. Each constraint is a pair 〈s, R〉
where R is a relation over A1, . . . , A` (say, k-ary), often called the constraint relation,
and s is a k-tuple of variables from V , called the constraint scope. Let σ : V → A =
A1 ∪ · · · ∪ A` be a mapping with σ(v) ∈ Aiv ; we write σ(s), for (σ(s[1]), . . . , σ(s[k])). A
solution of I is a mapping σ : V → A such that for every constraint 〈s, R〉 ∈ C we have
σ(s) ∈ R. The objective in the CSP is to decide whether or not a solution of a given
instance I exists.

Since its inception in the early 70s [Mackworth 1977], the CSP has become a very
popular and powerful framework, widely used to model computational problems first
in artificial intelligence, [Dechter 2003] and later in many other areas.

Restrictions of the general CSP similar to nonuniform CSPs from the previous sec-
tion can be introduced through constraint languages. Let A1, . . . , A` be finite sets and Γ
a set (finite or infinite) of relations over A1, . . . , A`, called a constraint language. Then
CSP(Γ) is the class of all instances I of the CSP such that R ∈ Γ for every constraint
〈s, R〉 from I. The following examples are just a few of the problems representable as
CSP(Γ).

Example 2.2. (k-COL) The standard k-Colouring problem has the form
CSP(ΓkCOL), where ΓkCOL = {6=k} and 6=k is the disequality relation on a k-element
set (of colours).

2These reductions have been derandomized by Kun [Kun 2013].

ACM SIGLOG News 5 October 2018, Vol. 5, No. 4



(3-SAT) An instance of the 3-SAT problem is a propositional logic formula in CNF
each clause of which contains 3 literals, and the goal is to decide if it has a satisfying
assignment. Thus, 3-SAT is equivalent to CSP(Γ3SAT), where Γ3SAT is the constraint
language on {0, 1} that contains relations R1, . . . , R8, which are the 8 ternary relations
that can be expressed by a 3-clause.

(LIN) Let F be a finite field and let LIN(F ) be the problem of deciding the consistency
of a system of linear equations over F . Then LIN(F ) is equivalent to CSP(ΓLIN(F )),
where ΓLIN(F ) is the constraint language over F whose relations are given by a linear
equation.

As the examples above indicate, in most cases our CSPs start off as problems over a
single domain. However, solution algorithms often modify the domains of variables in
different ways.

We illustrate the correspondence between the homomorphism definition of the CSP
and Definition 2.1 with an example. Consider again the k-COLOURING problem, and
let Hk denote the relational structure with universe [k] over vocabulary {R6=} and RHk

6=
is interpreted as the disequality relation. In other words, Hk = Kk is a complete graph
with k vertices. Then a homomorphism from a given graph G = (V,E) to Kk exists if
and only if it is possible to assign vertices of Kk (colours) to vertices of G in such a way
that for any (u, v) ∈ E the vertices u and v are assigned different colours. The latter is
just a proper k-colouring of G.

Using the homomorphism definition the k-COLOURING problem can be generalized
to the H -COLOURING problem, where H is a graph or digraph: Given a (di)graph G,
decide whether or not there is a homomorphism from G to H. Using the CSP notation
the H -COLOURING problem is CSP(EH), where EH denotes the edge relation of H.
The H -COLOURING problem has received much attention in graph theory, see, e.g.
[Hell and Nešetřil 2004; Hell and Nešetřil 1990].

3. LOGIC AND CONSTRAINT PROPAGATION
3.1. Logic and Databases
The next step in the CSP research was motivated by its applications in the theory of
relational databases. The QUERY EVALUATION problem can be thought of as deciding
whether a first order sentence in the vocabulary of a database is true in that database
(that is, whether or not the query has a non-empty answer). The QUERY CONTAIN-
MENT problem asks, given two queries Φ and Ψ, whether the query Φ → Ψ is true in
all databases of the given vocabulary. The former problem is of course the main prob-
lem relational databases are needed for, while the latter is routinely used in various
query optimization techniques. It turns out that both problems have intimate connec-
tions to the CSP, if the CSP is properly reformulated. We need some terminology from
model theory.

A vocabulary is a finite set of relational symbols R1, . . . , Rn each of which has a
fixed arity ar(Ri). A relational structure over vocabulary R1, . . . , Rn is a tuple H =
(H;RH1 , . . . , R

H
n ) such that H is a non-empty set, called the universe of H, and each RHi

is a relation over H having the same arity as the symbol Ri. A sentence is said to be a
conjunctive query if it only uses existential quantifiers and its quantifier-free part is a
conjunction of atomic formulas.

Definition 3.1. An instance of the CSP is a pair (Φ,H), where H is a relational
structure in a certain vocabulary, and Φ is a conjunctive query in the same vocabulary.
The objective is to decide whether Φ is true in H.
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To see that the definition above is equivalent to the previous two definitions of
the CSP, we again consider its special case, k-COLOURING. The vocabulary cor-
responding to the problem contains just one binary predicate R6=. Let again Hk
be the relational structure with universe [k] in the vocabulary {R6=}, where RHk

6=
is interpreted as the disequality relation on the set [k]. Then an instance G =
({v1, . . . , vn}, E) of k-COLOURING is equivalent to testing whether conjunctive query
∃x1, . . . , xn

∧
(vi,vj)∈E R6=(xi, xj) is true in H.

Thus, the QUERY EVALUATION problem, when restricted to conjunctive queries, is
just the CSP. A database is then considered as the input relational structure. The
Chandra-Merlin Theorem [Chandra and Merlin 1977] shows that the QUERY CON-
TAINMENT problem is also equivalent to the CSP.

Relational database theory also massively contributed to the CSP research, most
notably by techniques related to local propagation algorithms and the logic language
Datalog that we will discuss next.

3.2. Local Propagation Algorithms
Constraint propagation algorithms are probably the most natural way to solve a CSP,
and have been intensively studied and widely used in AI since the very beginning.
There is a variety of such algorithms (see [Dechter 2003] to have some idea) differing in
strength and running time, but we describe essentially one such algorithm, applicable
whenever any other propagation algorithm solves the problem.

Let R ⊆ A1 × · · · × A` be a relation, a ∈ A1 × · · · × A`, and J = {i1, . . . , ik} ⊆ [`].
Let prJa = (a[i1], . . . ,a[ik]) and prJR = {prJa : a ∈ R}, be the projections of a and R,
respectively, on J . Often we will use sets of CSP variables to index entries of tuples
and relations. Projections in this case are defined in a similar way. Let I = (V, C) be
a CSP instance. For W ⊆ V by IW we denote the restriction of I onto W , that is, the
instance (W, CW ), where for each C = 〈s, R〉 ∈ C, the set CW includes the constraint
CW = 〈s ∩W, prs∩WR〉. The set of solutions of IW will be denoted by SW .

Unary solutions, that is, when |W | = 1 play a special role. As is easily seen, for v ∈ V
the set Sv is just the intersection of unary projections prvR of constraints whose scope
contains v. Instance I is said to be 1-minimal if for every v ∈ V and every constraint
C = 〈s, R〉 ∈ C such that v ∈ s, it holds prvR = Sv. For a 1-minimal instance one may
always assume that allowed values for a variable v ∈ V is the set Sv. We call this
set the domain of v. The domain Sv may change as a result of transformations of the
instance.

Instance I is said to be (2,3)-minimal if it satisfies the following condition:
– for every X = {u, v} ⊆ V , any w ∈ V −X, and any (a, b) ∈ SX , there is c ∈ Sw such
that (a, c) ∈ S{u,w} and (b, c) ∈ S{v,w}.
For k ∈ N, (k, k+ 1)-minimality is defined in a similar way using k, k+ 1 instead of 2, 3.

Instance I is said to be minimal (or globally minimal) if for every C = 〈s, R〉 ∈ C
and every a ∈ R there is a solution ϕ such that ϕ(s) = a. Similarly, I is said to be
globally 1-minimal if for every v ∈ V and a ∈ Sv there is a solution ϕ with ϕ(v) = a.
Clearly, establishing minimality amounts to solving the problem and so not always can
be easily done.

Any instance can be transformed to a 1-minimal or (2,3)-minimal instance in poly-
nomial time using the standard constraint propagation algorithms (see, e.g. [Dechter
2003]). These algorithms work by changing the constraint relations and the domains
of the variables eliminating some tuples and elements from them.

If a constraint propagation algorithm solves a CSP, the problem is said to be of
bounded width. More precisely, CSP(Γ) is said to have bounded width if for some k
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every (k, k+ 1)-minimal instance from CSP(Γ) has a solution (we also say that CSP(Γ)
has width k in this case).

Example 3.2. (1) The 2-SAT problem has bounded width, namely, width 2.

(2) The H -COLOURING problem has width 2 when graph H is bipartite, and is NP-
complete otherwise.

(3) HORN-SAT is the SATISFIABILITY problem restricted to Horn clauses, i.e., clauses
of the form x1 ∧ · · · ∧ xk → y. Let Γk-HORN be the constraint language consisting of rela-
tions expressible by a Horn clause with at most k premises. The problem k-HORN-SAT
is equivalent to CSP(Γk-HORN) and has width k.

(4) The LIN problem provides an archetypical example of a CSP that does not have
bounded width. Indeed, for any k it is not difficult to construct a system of linear equa-
tions that is inconsistent, but the (k, k + 1)-minimality algorithm returns an instance
with non-empty constraints.

Problems of bounded width are well studied, see the older survey [Bulatov et al.
2008] and more recent [Barto 2014a]. Barto and Kozik [Barto and Kozik 2014; Barto
2014a] and independently Bulatov [Bulatov 2016c] characterized languages Γ such
that CSP(Γ) has bounded width. As this characterization involves some algebraic con-
cepts, we return to it later.

3.3. Datalog and other equivalent characterizations of bounded width
Problems of bounded width have several equivalent characterizations.

Datalog. This simple language is related to the least fixed point operator in logic and
uses the predicates of some relational structure as well as certain derived predicates.
For example, letG = (V,E) be a graph, and let us consider the following simple Datalog
program

P (x, y) |− E(x, y)
P (x, y) |− P (x, z) ∧ E(z, t) ∧ E(t, y)
O |− P (x, x)

Here, say, the second rule (line) means that predicate P has to be true on all pairs x, y,
for which there are z, t satisfying the expression on the right hand side. It is easy to see
that predicate O here becomes true if and only if G contains an odd cycle. In this sense
the Datalog program above decides whether a given graph is NOT bipartite. For more
basics of Datalog and its applications see [Kolaitis and Vardi 1995; Kolaitis 2007].

Homomorphism duality. Let H be a structure, a set O is said to be an obstruction
set for H if for any structure G, there is a homomorphism from G to H if and only if
for no structure G′ ∈ O there is a homomorphism from G′ to G. For instance, the set
of odd cycles is an obstruction set for any bipartite graph. Structure H is said to have
tree-width k duality if there is an obstruction set O for H such that the tree-width of
every structure of O is at most k. Thus, any bipartite graph has tree-width 2 duality.
Homomorphism duality originates in graph theory [Hell and Nešetřil 2004], and has
been used for CSP as well.

Pebble games. The existential k-pebble game has been introduced in [Kolaitis and
Vardi 1995]. It is played on a pair of structures G and H by two players Spoiler and
Duplicator. Spoiler has k pebbles and in every move she can place or remove a pebble
on an element of G. Duplicator has to respond by maintaining a partial homomorphism
from G to H. More precisely, if I ⊆ G is the current set of pebbled elements of G and
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ϕ : I → H is the current partial homomorphism, then, if Spoiler removes a pebble,
Duplicator has to respond with the corresponding restriction of ϕ. If Spoiler adds a
pebble, Duplicator has to respond with an extension of ϕ. Spoiler wins if at any point
of time Duplicator is unable to respond. Duplicator wins if she has a strategy of keeping
the game going forever.

It turns out that the three frameworks above lead to the same class(es) of the CSP.

THEOREM 3.3 ([KOLAITIS AND VARDI 1995; FEDER AND VARDI 1998]). For a fi-
nite relational structure H and k ∈ N the following conditions are equivalent:

(1) There is a Datalog program P whose rules use no more than k different variables that
defines the class of structures not homomorphic to H.

(2)H has tree-width k duality.
(3) A structure G is homomorphic to H if and only if Duplicator has a winning strategy

in the k-pebble game on G,H.

Although CSPs of width k (as defined here) are not captured by the conditions of
Theorem 3.3, those conditions capture bounded width.

THEOREM 3.4 ([BARTO AND KOZIK 2012; BARTO 2014A; BULATOV 2016C]). For
a finite relational structure H the following conditions are equivalent:

(1) CSP(H) has width 2, that is, establishing (2,3)-minimality is a solution algorithm.
(2) CSP(H) has width ` for some ` ≥ 2, that is, CSP(H) has bounded width.
(3) there is k, for which the equivalent conditions of Theorem 3.3 hold.

From the practical perspective establishing (2,3)-minimality, and moreover (k, k+1)-
minimality for k > 2 is very computationally demanding. It is therefore important to
find the fastest propagation algorithm that nevertheless solves problems of bounded
width. So far the fastest such algorithm was suggested by Kozik [Kozik 2016].

Note that if a relational structure H has infinite number of predicates or, equiva-
lently, a constraint language is infinite, Theorems 3.3,3.4 are no longer true, and some
of the conditions (such as definability by Datalog) are even not applicable. The con-
cept of width and bounded width of a CSP nevertheless remains valid, as well as, the
equivalence of conditions (1),(2) of Theorem 3.4.

4. ALGEBRAIC APPROACH
The most successful approach to tackling the Dichotomy Conjecture turned out to be
the algebraic one. In this section we introduce the algebraic approach to the CSP and
show how it can be used to determine the complexity of nonuniform CSPs. A keen
reader can find more details on the algebraic approach, its applications, and the un-
derlying algebraic facts from the following books [Grätzer 2008; Hobby and McKenzie
1988], surveys [Barto et al. 2017; Barto and Kozik 2017; Bulatov and Valeriote 2008;
Bulatov et al. 2008], and research papers [Bulatov et al. 2005; Bulatov 2006b; 2011;
2016a; Bulatov and Dalmau 2006; Berman et al. 2010; Barto 2014a; Barto and Kozik
2014; 2012; Idziak et al. 2010].

4.1. Primitive Positive Definitions
Let Γ be a set of relations (predicates) over a finite set A. A relation R over A is said
to be primitive-positive (pp-) definable in Γ if R(x) = ∃y Φ(x,y), where Φ is a conjunc-
tion that involves predicates from Γ and equality relations. The formula above is then
called a pp-definition of R in Γ. A constraint language ∆ is pp-definable in Γ if so is
every relation from ∆. In a similar way pp-definability can be introduced for relational
structures.
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Example 4.1. Let K3 = ([3], E) be a 3-element complete graph. Its edge relation is
the binary disequality relation on [3] = {1, 2, 3}. Then the pp-formula

Q(x, y, z) = ∃t, u, v, w(E(t, x) ∧ E(t, y) ∧ E(t, z) ∧ E(u, v) ∧ E(v, w)

∧E(w, u) ∧ E(u, x) ∧ E(v, y) ∧ E(w, z))

defines the relationQ that consists of all triples containing exactly 2 different elements
from [3].

A link between pp-definitions and reducibility between nonuniform CSPs was first
observed by Jeavons et al. in [Jeavons et al. 1997].

THEOREM 4.2 ([JEAVONS ET AL. 1997]). Let Γ and ∆ be constraint languages and
∆ finite. If ∆ is pp-definable in Γ then CSP(∆) is polynomial time reducible3 to CSP(Γ).

It was later shown that pp-definability in Theorem 4.2 can be replaced with a more
general notion of pp-constructability [Barto et al. 2017; Barto et al. 2018].

4.2. Polymorphisms and Invariants
Primitive positive definability can be concisely characterized using polymorphisms.
An operation f : Ak → A is said to be a polymorphism of a relation R ⊆ An if for
any a1, . . . ,ak ∈ R the tuple f(a1, . . . ,ak) also belongs to R, where f(a1, . . . ,ak) stands
for (f(a1[1], . . . ,ak[1]), . . . , f(a1[n], . . . ,ak[n])). Operation f is a polymorphism of a con-
straint language Γ if it is a polymorphism of every relation from Γ. Similarly, operation
f is a polymorphism of a relational structureH if it is a polymorphism of every relation
of H. The set of all polymorphisms of language Γ or relational structure H is denoted
by Pol(Γ), Pol(H). If F is a set of operations, Inv(F ) denotes the set of all relations R
such that every operation from F is a polymorphism of R.

Example 4.3. Let R be an affine relation, that is, R is the solution space of a sys-
tem of linear equations over a field F . Then the operation f(x, y, z) = x − y + z is a
polymorphism of R. Indeed, let A · x = b be a system defining R, and x,y, z ∈ R. Then

A · f(x,y, z) = A · (x− y + z) = A · x−A · y +A · z = b− b + b = b.

In fact, the converse can also be shown: if R is invariant under f , where f is defined in
a certain finite field F then R is the solution space of some system of linear equations
over F .

Several other useful polymorphisms are the following

Example 4.4 ([Jeavons et al. 1997; Jeavons et al. 1998; Bulatov and Dalmau 2006; Maróti and McKenzie 2008]).
(1) A binary operation · on a set A is said to be a semilattice operation if it is (a) idem-
potent, x · x = x; (b) commutative, x · y = y · x; and (c) associative, x · (y · z) = (x · y) · z,
for any x, y, z ∈ A.
(2) A k-ary operation g on A is called a near-unanimity operation, or NU if

g(y, x, . . . , x) = g(x, y, x, . . . , x) = · · · = g(x, . . . , x, y) = x

for any x, y ∈ A. A ternary NU is also referred to as a majority operation.
(3) A k-ary operation g on A is called a weak near-unanimity operation, or WNU if it
satisfies all the equations of an NU except for the last one

g(y, x, . . . , x) = g(x, y, x, . . . , x) = · · · = g(x, . . . , x, y).

3In fact, due to the result of [Reingold 2008] this reduction can be made log-space.
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(4) A ternary operation h on A is called Maltsev if

h(x, y, y) = h(y, y, x) = x

for any x, y ∈ A. As we saw in Example 4.3 any structure whose relations can be
represented by linear equations has the Maltsev polymorphism x− y + z where + and
− are the operations of the underlying field.

A link between polymorphisms and pp-definability of relations is given by the Galois
connection.

THEOREM 4.5 (GALOIS CONNECTION, [BODNARCHUK ET AL. 1969; GEIGER 1968]).
Let Γ be a constraint language on A, and let R ⊆ An be a non-empty relation. Then R

is preserved by all polymorphisms of Γ if and only if R is pp-definable in Γ.

Theorems 4.2 and 4.5 together imply that the complexity of CSP(Γ) depends entirely
on Pol(Γ). This was used by Jeavons and coauthors in the early papers on the algebraic
approach to show the tractability and hardness of certain classes of the CSP.

Example 4.6. (A) If a constraint language Γ has a semilattice or NU polymorphism,
then CSP(Γ) can be solved in polynomial time, [Jeavons et al. 1997; Jeavons et al.
1998].
(B) If Γ has a Mal’tsev polymorphism h, then CSP(Γ) can be solved in polynomial time,
[Bulatov 2002b; Bulatov and Dalmau 2006]. In certain special cases — when h is an
affine operation or the operation xy−1z of a finite group — this result can be traced
back to [Feder and Vardi 1998; Jeavons et al. 1997]. However, the general result turns
out to be much more difficult than those from the previous item.
(C) If every polymorphism f of a constraint language Γ on a set A is such that
f(x1, . . . , xn) = xi for some i and all x1, . . . , xn ∈ A, then CSP(Γ) is NP-complete [Jeav-
ons et al. 1997].
(D) Schaefer’s Theorem [Schaefer 1978] can be stated in terms of polymorphisms. Let
Γ be a constraint language on a 2-element set (we assume this set to be {0, 1}). The
problem CSP(Γ) is solvable in polynomial time if and only if one of the following opera-
tions is a polymorphism of Γ: the constant operations 0 or 1, the semilattice operations
of conjunction and disjunction, the majority operation on {0, 1} (there is only one such
operation), or the Maltsev operation x− y+ z where + and − are modulo 2. Otherwise
CSP(Γ) is NP-complete.

4.3. Algebras and the CSP
Recall that a (universal) algebra is an ordered pair A = (A,F ) where A is a non-
empty set, called the universe of A, and F is a family of finitary operations on A,
called the basic operations of A. Operations that can be obtained from F by means
of composition are said to be term operations of the algebra. Every constraint lan-
guage on a set A can be associated with an algebra Alg(Γ) = (A,Pol(Γ)). In a similar
way any relational structure A (with universe A) can be paired up with the algebra
Alg(A) = (A,Pol(A)). On the other hand, an algebra A = (A,F ), can be associated with
the constraint language Inv(F ) or the class Str(A) of structures A = (A,R1, . . . , Rk)
such that R1, . . . , Rk ∈ Inv(F ).

This correspondence can be extended to CSPs: For an algebra A by CSP(A) we denote
the class of problems CSP(A), A ∈ Str(A). Equivalently, CSP(A) can be thought of as
CSP(Inv(F )) for the infinite constraint language Inv(F ). Note, however, that there is a
subtle difference in the notion of polynomial time solvability in these two cases that
we will address next.
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We say that algebra A is tractable if every CSP(A), A ∈ Str(A), is solvable in poly-
nomial time. Observe that this does not guarantee that there is a single solution algo-
rithm for all such problems, nor does it guarantee that there is any uniformity among
those algorithms. In general, it may be possible that for a tractable algebra A = (A,F )
the problem CSP(Inv(F )) is NP-hard. If the problem CSP(Inv(F )) is solvable in polyno-
mial time, we call A globally tractable. Algebra A is called NP-complete if some CSP(A),
A ∈ Str(A), is NP-complete. Algebra A is globally NP-complete if CSP(Inv(F )) is NP-
complete.

Using the algebraic terminology we can pose a stronger version of the Dichotomy
Conjecture.

CONJECTURE 4.7 (DICHOTOMY CONJECTURE+). Every finite algebra either is
globally tractable or is NP-complete (in the local sense).

The Dichotomy Conjecture+ can be made more precise by making use of weak near-
unanimity terms. An operation f on a set A is said to be idempotent if the equality
f(x, . . . , x) = x holds for all x ∈ A. An algebra all of whose term operations are idem-
potent is said to be idempotent.

THEOREM 4.8 ([BULATOV ET AL. 2005]). For any finite algebra A there is an idem-
potent finite algebra B such that:
– A is globally tractable if and only if B is globally tractable;
– A is NP-complete if and only if B is NP-complete.

Theorem 4.8 reduces the Dichotomy Conjecture+ to idempotent algebras.

CONJECTURE 4.9. If a relational structureA is such that Alg(A) is idempotent, then
CSP(A) is solvable in polynomial time if and only if A admits a weak near-unanimity
polymorphism. Otherwise it is NP-complete.

Or in the stronger algebraic version

CONJECTURE 4.10 (DICHOTOMY CONJECTURE ++). An idempotent algebra A is
globally tractable if and only if it has a weak near-unanimity term operation. Otherwise
it is NP-complete.

By the results of [Maróti and McKenzie 2008] the Dichotomy Conjecture ++ is equiv-
alent to the conjecture stated in [Bulatov et al. 2005].

5. THE PURSUIT OF THE DICHOTOMY CONJECTURE
The complexity of the CSP including the dichotomy conjecture has been intensively
studied for 40 years. Here we outline the history of this area that is related to the
dichotomy conjecture.

Early dichotomies. Schaefer [Schaefer 1978] obtained the first dichotomy theorem
on the CSP, long before the Dichotomy Conjecture was proposed. His classification of
constraint languages on a 2-element set can be easily extended to 2-element algebras.
Then it claims that an idempotent 2-element algebra is globally tractable if and only
if it has one of the following term operations: a semilattice operation, a majority op-
eration, or the affine operation x − y + z. By [Post 1941] this is equivalent to having
a weak near-unanimity term operation. Another early dichotomy result by Hell and
Nesetril [Hell and Nešetřil 1990] gives a classification of (undirected) graphs H with
respect to the complexity of the H -COLOURING problem: such a problem is polynomial
time solvable if H is bipartite or contains a loop, and NP-complete otherwise. Let H
be a graph, A = Alg(H), and let B be the idempotent algebra constructed from A as in
Theorem 4.8. If H is bipartite then B is 2-element and has a majority term operation.
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Otherwise B does not have a WNU [Bulatov 2005]. Thus the classification from [Hell
and Nešetřil 1990] matches the Dichotomy Conjecture++.

The two algorithms. Apart from posing the Dichotomy Conjecture Feder and Vardi
[Feder and Vardi 1998] made several important observations. One of them is a clear
distinction between two types of CSP algorithms. One might expect that problems as
diverse as nonuniform CSPs would have a variety of different solution algorithms.
This, however, is not the case, and all known (at that point) algorithms are variations
of just two types of algorithms. Algorithms of the first type include all local propagation
algorithms as described in Section 3.2. Feder and Vardi conjectured that the solvability
of CSP(H) by a local propagation algorithm is related to a property they called the
‘ability to count’. More precisely, they conjectured that a propagation algorithm solves
CSP(H) if and only if H does not have the ability to count. This conjecture has been
confirmed much later in [Larose et al. 2009] (if combined with the characterization
of CSPs of bounded width [Barto and Kozik 2014; Bulatov 2016c]). Algorithms of the
second type use variations of Gaussian Elimination or group theoretic approaches such
as Furst’s algorithm for coset generation [Furst et al. 1980] which is used in [Feder and
Vardi 1998].

Algebraic approach, polymorphisms. The discovery by Jeavons et al. [Jeavons et al.
1997; Jeavons et al. 1998] of the connection between polymorphisms and the complex-
ity of the CSP allowed, firstly, to greater unify approaches to different constraint lan-
guages. It turned out, many of them have polymorphisms possessing similar properties
and so could be handled in similar ways. In particular, the fact that all the assorted
constraint languages known to have bounded width actually have this property can be
explained by polymorphisms of just two types [Jeavons et al. 1998]: NU and semilattice
operations. In the former case bounded width follows from the decomposition theorem
by Pixley [Pixley 1979], while in the latter case bounded width is an easy implication
of the structure of semilattices. Similarly, in nearly all other cases the tractability of
a CSP could be explained by the existence of a group Mal’tsev polymorphism xy−1z or
x− y + z. For a recent survey of the algebraic approach see [Barto et al. 2017].

Algebraic approach: algebras and varieties. Extending the algebraic approach from
polymorphisms to algebras and varieties of algebras [Bulatov et al. 2005; Bulatov
and Jeavons 2001; 2003] contributed to the study of the CSP in two ways. Firstly,
it demonstrated that what is important for the complexity of CSPs is not particular
polymorphisms, but the identities or equations they satisfy (cf. Example 4.4). Sec-
ondly, it allowed to employ various structural theories of universal algebras. In par-
ticular, it made possible dichotomy results on arbitrary CSPs on small domains, they
all agree with the Dichotomy Conjecture++, [Bulatov 2002a; 2006b] (3-element do-
mains), [Marković 2011] (4-element domains), [Zhuk 2016b; 2016a] (5- and 7-element
domains). Although still somewhat ad-hoc and based on case analysis, such results
had been inaccessible by previous methods for more than 20 years. This structural ap-
proach also made it possible to design algorithms for several types of polymorphisms:
Mal’tsev polymorphisms, see Example 4.4(4) ([Bulatov 2002b; Bulatov and Dalmau
2006] subsequently generalized in [Dalmau 2006]), and 2-semilattice polymorphisms
satisfying the identities xx = x, xy = yx, x(yx) = (xy)x, [Bulatov 2006a]. Another
direction that became possible due to the algebraic approach is the finer classification
of complexity of the CSP. Initiated in [Allender et al. 2009] it was later developed in
[Larose and Tesson 2009], where a conjecture was posed on such a classification using
the language of omitting types in the sense of tame congruence theory [Hobby and
McKenzie 1988], and then in [Larose et al. 2007; Kazda 2018].
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Absorption and bounded width. Interaction with the CSP research catalyzed the
development of universal algebra as well, since new tools were needed. One of the
major developments was the concept of absorption and related techniques introduced
by Barto and Kozik [Barto and Kozik 2012; Barto 2014b], see also [Barto and Kozik
2017] for a recent survey. Fundamental technical lemmas obtained in those papers,
such as the Loop Lemma and the Rectangularity Lemma, allowed them to prove a
number of major results in universal algebra. For CSP they led to a dichotomy theorem
for digraphs without sources and sinks [Barto et al. 2009] and some other classes of
digraphs [Barto et al. 2009; Barto and Bulin 2013]. The most important result obtained
using this technique is the characterization of problems of bounded width.

THEOREM 5.1 ([BARTO 2014A; BULATOV 2016C; 2004; KOZIK ET AL. 2015]).
For an idempotent algebra A the following are equivalent:

(1) CSP(A) has bounded width;
(2) every (2,3)-minimal instance from CSP(A) has a solution;
(3) A has a weak near-unanimity term operation of arity k for every k ≥ 3;
(4) every quotient algebra of a subalgebra of A has a nontrivial operation, and none of
them is equivalent to a module (in a certain precise sense).

Few subpowers algorithm. The second type of algorithms identified in [Feder and
Vardi 1998] is based on group theoretic tools and has been generalized to problems
with a Mal’tsev polymorphism [Bulatov 2002b; Bulatov and Dalmau 2006], and then
to problems with a Generalized Majority-Minority polymorphism [Dalmau 2006]. The
common feature of all those algorithms was that similar to Gaussian Elimination they
construct some sort of a compact basis of the set of solutions. Such a basis may not
exist in the general case

It is thought that the property of relations to have a compact representation, where
compactness is understood as having size polynomial in the arity of the relation, is
the right generalization of linear algebra problems where Gaussian Elimination can
be used. Let A = (A,F ) be an algebra. It is said to be an algebra with few subpowers
if every relation over A invariant under F admits a compact representation [Berman
et al. 2010; Idziak et al. 2010]. The term few subpowers comes from the observation
that every relation invariant under F is a subalgebra of a direct power of A, and if
the size of compact representation is bounded by a polynomial p(n) then at most 2p(n)

n-ary relations can be represented, while the total number of such relations can be as
large as 2|A|

n

. Algebras with few subpowers are completely characterized by Idziak et
al. [Berman et al. 2010; Idziak et al. 2010]. A minor generalization of the algorithm
from [Dalmau 2006] solves CSP(A), where A has few subpowers.

Conservative CSPs and graphs of algebras. An important general class of constraint
languages where a dichotomy theorem could be obtained by more or less ad-hoc meth-
ods is the class of conservative languages: A language Γ over a set A is said to be
conservative if every subset of A is a (unary) relation in Γ. In terms of the CSP it
means that in an instance the set of possible values of each variable can be arbitrar-
ily restricted. Similar problems have been studied within the graph homomorphism
community, where they are called LIST HOMOMORPHISM PROBLEMS (as every vertex
of the source graph is equipped with a list of possible images), see [Hell and Nešetřil
2004; Feder and Hell 1998; Feder et al. 1999]. As is shown in [Bulatov 2011; 2003] the
Dichotomy Conjecture++ holds for such constraint languages. This result was later
greatly simplified in [Barto 2011; Bulatov 2016a]. The main approach used in these
proofs (except [Barto 2011] that is based on absorption) has later proved to be the key
to resolving the dichotomy conjecture. For any polynomial time solvable conservative
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Γ on a set A the problem CSP(Γ) restricted to a 2-element subset of A is equivalent
to one of Schaefer’s cases and therefore has one of the good polymorphisms: semilat-
tice, majority, or affine. Thus within this approach 2-element subsets of A are assigned
types that depend on which good polymorphism occurs in the restricted problem, con-
verting A into an edge-coloured graph. This approach has been further generalized for
arbitrary constraint languages (algebras) in [Bulatov 2004; 2016b; 2016c].

Hybrid algorithms. CSPs solvable by ‘pure’ constraint propagation and few subpow-
ers algorithms are fully characterized, see above, and fall way short of the CSPs that
are conjectured to be polynomial time solvable according to the dichotomy conjecture.
Designing ‘hybrid’ algorithms has therefore been the crucial problem in resolving the
conjecture. Apart from the ad-hoc hybrid algorithms used for CSPs on small domains
[Bulatov 2006b; Marković 2011; Zhuk 2016b; 2016a] and conservative CSPs [Bulatov
2011; 2003; Barto 2011; Bulatov 2016a], Maroti was the first who explicitly posed the
problem of combining different algorithmic techniques for the CSP. Recall that a con-
gruence of an algebra A is an equivalence relation θ invariant with respect to the oper-
ations of A. This way one may consider the quotient algebra A/θ, whose elements are
the equivalence classes of θ. Maroti attempted to prove the tractability of CSP(A), in
which algebra A has a congruence θ such that A/θ is an algebra with a Mal’tsev term,
and every block of θ satisfies the condition of Theorem 5.1, that is, gives rise to a CSP of
bounded width; or the other way round A/θ has bounded width, while every θ-block is
Mal’tsev. He managed to design a hybrid algorithm for the former case [Maróti 2011a]
and to make significant progress towards resolving the latter case [Maróti 2011b]. This
latter case however turned out to be the crux in proving the dichotomy conjecture [Bu-
latov 2017a].

Dichotomy theorems. The dichotomy conjecture was settled independently and al-
most at the same time by the author [Bulatov 2017c; 2017b] (the Dichotomy Con-
jecture++), and Zhuk [Zhuk 2017a; 2017b] (Conjecture 4.9) and [Zhuk 2018] (the Di-
chotomy Conjecture++). The first algorithm, [Bulatov 2017c; 2017b] is based on the
local structure of algebras as introduced in [Bulatov 2004; 2016b; 2016c] and a new
notion of minimality. The second algorithm uses a totally different approach which
involves an intricate combination of constraint propagation techniques and then ap-
proximating a solution using systems of linear equations. In this paper we give an
outline of the first algorithm [Bulatov 2017c; 2017b].

6. THE ALGORITHM
We now outline the algorithm resolving the Dichotomy Conjecture. The main approach
will be to introduce a more general minimality notion (not local anymore) that allows
us to solve problems beyond bounded width, and then to reduce the general CSP to
such instances. A more detailed description along with some simple examples can be
found in [Bulatov 2017b; 2018].

6.1. Algorithm ingredients
Gaussian Elimination and Few Subpowers. The main routine of the algorithm is re-

moving semilattice edges. Let A = (A,F ) be an idempotent algebra. A pair of elements
a, b ∈ A is said to be a semilattice edge if there is a binary term operation f of A such
that f(a, a) = a and f(a, b) = f(b, a) = f(b, b) = b, that is, f is a semilattice operation on
{a, b}. We say that algebra A is semilattice free if it does not contain semilattice edges.
Removing semilattice edges is useful because of the following

PROPOSITION 6.1 ([BULATOV 2016C]). If an idempotent algebra A is semilattice
free, then it has few subpowers, and therefore CSP(A) is solvable in polynomial time.
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Quasi-Centralizers. Quasi-centralizer is an operator on the congruences of an alge-
bra. It is similar to the centralizer as it is defined in commutator theory [Freese and
McKenzie 1987], albeit the exact relationship between the two concepts is not quite
clear, and so we name it differently for safety.

The set of all congruences of an algebra A is denoted by Con(A). For an algebra A, a
term operation f(x, y1, . . . , yk), and a ∈ Ak, let fa(x) = f(x,a); it is a unary polynomial
of A. Let α, β ∈ Con(A), and let ζ(α, β) ⊆ A2 denote the following binary relation:
(a, b) ∈ ζ(α, β) if and only if, for any term operation f(x, y1, . . . , yk), any i ∈ [k], and
any a,b ∈ Ak such that a[i] = a, b[i] = b, and a[j] = b[j] for j 6= i, it holds fa(β) ⊆ α
if and only if fb(β) ⊆ α. (Polynomials of the form fa, fb are sometimes called twin
polynomials.) The relation ζ(α, β) is always a congruence of A.

Propagation and algebras. Let A = (A,F ) be an algebra. As is mentioned in Sec-
tion 3.2 applying propagation and other algorithms to an instance I of CSP(A) may
change the domain of the variables of I. However, it is well known that these new do-
mains remain subalgebras of A, that is, operations from F act on the new domains as
well. The domain of a variable v will be denoted Av. Transformations used in our al-
gorithm can also change domain Av to a quotient algebra Av/θ. Thus, we will consider
constraint relations as subsets of the product of different algebras: R ⊆ Av1 ×· · ·×Avk ;
however, the operations of A can still be used on these algebras.

Decomposition of CSPs. Let R be a binary relation, a subset of the product of A× B,
and α ∈ Con(A), γ ∈ Con(B). Relation R is said to be αγ-aligned if, for any (a, c), (b, d) ∈
R, (a, b) ∈ α if and only if (c, d) ∈ γ. This means that if A1, . . . , Ak are the α-blocks of
A, then there are also k γ-blocks of B and they can be labeled B1, . . . , Bk in such a way
that

R = (R ∩ (A1 ×B1)) ∪ · · · ∪ (R ∩ (Ak ×Bk)).

Let I = (V, C) be a (2,3)-minimal instance from CSP(A). We will always assume that
a (2,3)-minimal instance has a constraint CX = 〈X,RX〉 for every X ⊆ V , |X| = 2,
where RX = SX . Recall that Av denotes the domain of v ∈ V . A set W ⊆ V is said
to be a strand if it is maximal (under inclusion) among the sets with the following
property: There are αv ∈ Con(Av), v ∈ W , such that R{v,w} is αvαw-aligned. Thus
for a strand W there is a one-to-one correspondence between αv- and αw-blocks of Av
and Aw, v, w ∈W . Moreover, by (2,3)-minimality these correspondences are consistent,
that is, if u, v, w ∈W and Bu, Bv, Bw are αu-, αv- and αw-blocks, respectively, such that
R{u,v} ∩ (Bu×Bv) 6= ∅ and R{v,w} ∩ (Bv ×Bw) 6= ∅, then R{u,w} ∩ (Bu×Bw) 6= ∅. This
means that IW can be split into several instances, whose domains are αv-blocks.

LEMMA 6.2. Let I,W, αv for each v ∈ W , be as above. Then IW can be decomposed
into a collection of instances I1, . . . , Ik, k constant, Ii = (W, Ci) such that every solution
of IW is a solution of one of the Ii and for every v ∈W its domain in Ii is an αv-block.

Subdirectly irreducible algebras. In order to formulate the algorithm properly we
need one more transformation of algebras. An algebra A is said to be subdirectly ir-
reducible if the intersection of all its nontrivial (different from the equality relation)
congruences is nontrivial. This smallest nontrivial congruence µA is called the mono-
lith of A. It is a folklore observation that any CSP instance can be transformed in
polynomial time to an instance, in which the domain of every variable is a subdirectly
irreducible algebra. We will assume this property of all the instances we consider.

6.2. Block-Minimality
The notion of alignment allows for a new type of minimality of a CSP instance, block-
minimality, which is key for our algorithm. In a certain sense it is similar to the stan-
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dard local minimality, as it is also defined through a family of relations that have to be
consistent in a certain way. However, block-minimality is not local, and is more difficult
to establish, as it involves solving smaller CSP instances recursively. The definitions
below are designed to allow for an efficient procedure to establish block-minimality.

Let I = (V, C) ∈ CSP(A) and αv be a congruence of Av for v ∈ V . By I/α we denote
the instance (V, Cα) constructed as follows: the domain of v ∈ V is Av/αv

; for every
constraint C = 〈s, R〉 ∈ C, s = (v1, . . . , vk), the set Cα includes the constraint 〈s, R/α〉,
where R/α = {(a[v1]αv1 , . . . ,a[vk]αvk ) | a ∈ R}.

Let size(I) denote the maximal size of domains of I that are not semilattice free and
MAX(I) be the set of variables v ∈ V with |Av| = size(I) and Av is not semilattice free.
For instances I, I ′ we say that I ′ is strictly smaller than I if size(I ′) < size(I). For
Y ⊆ V let µYv = µv if v ∈ Y and µYv = ∆v otherwise, where ∆v denotes the equality
relation on Av.

Instance I is said to be block-minimal if for every strand W the following condition
hold:

(BM) the problem I/µY , where Y = MAX(I)−W , is minimal.

Next we observe that establishing block-minimality can be efficiently reduced to
solving a polynomial number of strictly smaller instances. Let W be a strand and Y =
MAX(I) − W . Then there are congruences αv, v ∈ W , such that for any v, w ∈ W
the relation R{v,w} is αvαw-aligned. This means that every Av, v ∈ W , has the same
number of αv-blocks, let them be B1

v , . . . , B
k
v , and R{v,w} ⊆

⋃k
i=1B

i
v×Biw. By Lemma 6.2

the problem IW can be decomposed into a collection I1, . . . , Ik of instances such that
the domain of v ∈ W in Ii is Biv. Now we restrict the domains of v ∈ W in I/µY in the
same way, that is, let Ii/µY is obtained from I/µY by setting the domain of v ∈ W to
be Biv and keeping the domains of the remaining variables. Note that every solution of
I/µY is a solution of one of Ii/µY . It is also not hard to see that size(Ii/µY ) < size(I).
Indeed, for every v ∈ V either |Av| < size(I) if v 6∈ MAX(I), or |Av/µv

| < size(I) if
v ∈ Y , or |Biv| < size(I) if v ∈ W . Establishing the minimality of I/µY can be reduced
to solving strictly smaller problems.

LEMMA 6.3. Let I = (V, C) be a (2,3)-minimal instance. Then by solving a linear
number of strictly smaller CSPs, I can be transformed to an equivalent block-minimal
instance I ′.

6.3. The Algorithm
In the algorithm we distinguish three cases depending on the presence of semilattice
edges and quasi-centralizers of the domains of variables. In each case we employ dif-
ferent methods of solving or reducing the instance to a strictly smaller one.

Let I = (V, C) be a subdirectly irreducible, (2,3)-minimal instance. Let Center(I)
denote the set of variables v ∈ V such that ζ(∆v, µv) is the full relation. Let µ∗v = µv if
v ∈ MAX(I) ∩ Center(I) and µ∗v = ∆v otherwise.

Semilattice Free Domains. If no domain of I contains a semilattice edge then by
Proposition 6.1 I can be solved in polynomial time, using the few subpowers algorithm,
as shown in [Idziak et al. 2010; Bulatov 2016c].

Small Centralizers. If µ∗v = ∆v for all v ∈ V , block-minimality guarantees the ex-
istence of a solution, as Theorem 6.4 shows, and we can use Lemma 6.3 to solve the
instance.

THEOREM 6.4. If I is subdirectly irreducible, (2,3)-minimal, block-minimal, and
MAX(I) ∩ Center(I) = ∅, then I has a solution.
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Large Centralizers. Suppose that MAX(I)∩Center(I) 6= ∅. In this case the algorithm
proceeds in three steps.
Step 1. Consider the problem I/µ∗. We establish the global 1-minimality of this prob-
lem. If it is changed in the process, we start solving the new problem from scratch.
Checking global 1-minimality can be reduced using standard techniques to solving a
linear number of problems that are either strictly smaller, or have small centralizers
(see above).
Step 2. For every v ∈ Center(I) we find a solution ϕ of I/µ∗ satisfying the following
condition: there is a ∈ Av such that {a, ϕ(v)} is a semilattice edge if µ∗v = ∆v, or, if
µ∗v = µv, there is b ∈ ϕ(v) such that {a, b} is a semilattice edge. Such a solution exists
since I/µ∗ is globally 1-minimal.
Step 3. Using the solutions found in Step 2 apply the transformation of I suggested by
Maroti in [Maróti 2011b]. This transformation results in an equivalent instance, but
eliminates from the respective domains the ‘lower’ ends a of semilattice edges chosen
in Step 2. Thus the resulting instance is strictly smaller.

Using Lemma 6.3 and Theorems 6.4 it is not difficult to see that the algorithm runs
in polynomial time. Indeed, every time it makes a recursive call it calls on a problem
whose non-semilattice free domains of maximal cardinality have strictly smaller size,
and therefore the depth of recursion is bounded by |A| if we are dealing with CSP(A).
More precisely,

THEOREM 6.5. If A is a finite idempotent algebra with a weak near-unanimity term.
Then CSP(A) can be solved in time O(Nmn|A|+k), where n is the number of variables
in an instance, m the number of constraints, N is the total number of tuples in all
the constraint relations, and k is a constant such that the CSP over algebras with few
subpowers derived from A can be solved in time O(mnk).

7. FUTURE DIRECTIONS
We conclude the column with a short review of open questions related to the dichotomy
conjecture, related areas and potential future directions.

Polymorphism oblivious algorithms. There is a peculiar asymmetry between the two
main types of CSP algorithms, constraint propagation and the few subpowers algo-
rithm. While constraint propagation can be run on any given instance without any
prior knowledge about the underlying constraint language or algebra (although also
without any guarantees to solve the problem), the few subpowers algorithm explicitly
uses the polymorphisms associated with the problem. Both general algorithms for the
CSP also use the knowledge of the algebraic structure of the problem. It is therefore
an important question whether or not there exists an algorithm that solves, say, few
subpowers CSPs without knowing any polymorphisms of the constraint language, but
only certain local properties of the relations involved.

This question has a connection to the problem of recognizing, given a relational
structure H or an algebra A, if the problem CSP(H) or CSP(A) can be solved in polyno-
mial time or has bounded width, or is within some other complexity class. This problem
is known as the metaproblem, see [Chen and Larose 2017; Freese and Valeriote 2009].
Chen and Larose in [Chen and Larose 2017] observed that if a class of CSPs has such
a polymorphism oblivious algorithm, then the metaproblem for this class can be solved
in polynomial time (assuming the structures involved are cores and algebras are idem-
potent). In particular, the metaproblem for the class of structures of bounded width is
polynomial time, while for the class of structures with tractable CSP the complexity of
the metaproblem is unknown.
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Other complexity classes. There is strong evidence that nonuniform CSPs can be
complete in very few complexity classes. In [Allender et al. 2009] Allender et al. showed
that for constraint language Γ on a 2-element set, the problem CSP(Γ) can be complete
in only a handful of complexity classes: NP, P, ⊕P, NL, L, and AC0. A similar classi-
fication has been conjectured in the general case by Larose and Tesson [Larose and
Tesson 2009] with the class modpL for prime p instead of ⊕P. The best way to express
this collection of conjectures is through omitting types of the local structure of algebras
in the sense of tame congruence theory [Hobby and McKenzie 1988]. Assuming all the
complexity classes involved are different, for a structure H the problem CSP(H)

(a) is NP-complete unless Alg(H) omits the unary type,
(b) is modmL-complete for some m if and only if Alg(H) omits the unary and semilattice

types but does not omit the affine type ([Larose and Tesson 2009] shows that in this
case CSP(H) is modpL-hard for some prime p),

(c) is P-complete if and only if Alg(H) omits the unary type but not the semilattice type,
(d) is of bounded width if and only if Alg(H) omits the unary and affine types,
(e) is NL-complete if and only Alg(H) omits the unary, affine and semilattice types but

not the lattice type,
(f) is L-complete if and only if Alg(H) omits the unary, affine, semilattice, and lattice

types, but CSP(H) is not FO-expressible.

The hardness parts of all these conjectures are confirmed in [Larose and Tesson 2009].
Items (a) and (d) are the dichotomy theorem and the characterization of CSPs of
bounded width which are also established. FO-expressible problems have been charac-
terized in [Larose et al. 2007]. Kazda [Kazda 2018] proved that (e) implies (f). Finally,
Dalmau and Krokhin [Dalmau and Krokhin 2008], and Barto et al. [Barto et al. 2012]
made significant progress towards resolving (e). The rest of the problems above remain
wide open.

Infinite CSPs. The majority of work on the CSP has been done under the assump-
tion that the domain is finite. Allowing infinite domains expands the CSP framework
so that it includes an enormous range of problems from GRAPH-SAT [Bodirsky and
Pinsker 2015] to problems of scheduling and temporal reasoning [Allen 1983; Jons-
son and Krokhin 2004; Bodirsky et al. 2018]. Problems representable by infinite CSPs
such as temporal and spatial reasoning are standard in artificial intelligence. How-
ever, there has also been a significant amount of research initiated by [Bodirsky and
Neˇ setřil 2003] on the algebraic structure of such problems. Although infinite CSPs
use a variety of specific methods, the overall approach is to identify a finite algebraic
structure in an as large as possible class of infinite CSPs [Barto and Pinsker 2016;
Barto et al. 2017; Pinsker 2015]. The current dichotomy conjecture for infinite CSPs
[Barto and Pinsker 2016; Barto et al. 2017] extends that for finite CSPs. For a recent
survey on infinite CSPs see [Bodirsky and Mamino 2017].

Alternative parametrizations. In nonuniform CSPs we restrict a constraint language
or a template relational structure. Clearly, other kinds of restrictions are also possible.
For instance, in database theory one cannot assume any restrictions on the possible
content of a database — which is a template structure in the CONJUNCTIVE QUERY
EVALUATION problem — but some restrictions on the possible form of queries make
much sense. If a CSP is viewed as in Definition 2.1, the constraint scopes of an instance
I form a hypergraph on the set of variables. In a series of works [Gottlob et al. 2000;
Flum et al. 2002; Gottlob et al. 2002; Grohe 2007; Grohe and Marx 2014] it has been
shown that if this hypergraph allows some sort of decomposition, or is tree-like, then
the CSP can be solved in polynomial time. The tree-likeness of a hypergraph is usually
formalized as having bounded tree width, or bounded hypertree width, or bounded
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fractional hypertree width. This line of work culminated in [Marx 2013], in which
Marx gave an almost tight description of classes of hypergraphs that give rise to a CSP
solvable in polynomial time. Hybrid restrictions are also possible, although research
in this direction has been more limited, see, [Feder et al. 2003; Feder and Hell 2006;
Cooper and Zivny 2017] as an example.

The Promise CSP. Recently, Brakensiek and Guruswami [Brakensiek and Gu-
ruswami 2018b] suggested the following generalization of the CSP that they called
the Promise CSP or PCSP. An instance of the PCSP consists of a pair of CSP instances
(I, I ′) such that they have the same number of constraints and for each constraint
〈s, R〉 of I there is a constraint 〈s, R′〉 of I ′ such that R ⊆ R′. The goal is to distinguish
between the case when I is satisfiable and the case when I ′ is unsatisfiable. PCSP
can express a much wider class of problems than the regular CSP, which includes, for
instance, approximate graph and hypergraph colouring. It also uses a wider variety of
solution algorithms such as LP and combinations of LP with other techniques [Brak-
ensiek and Guruswami 2018b; 2018a]. On the other hand, PCSP allows for algebraic
approach (although more limited than the regular CSP) as was demonstrated in [Brak-
ensiek and Guruswami 2018b] and further developed in [Krokhin and Oprˇ sal 2018].
In the latter work a connection between the LABEL COVER problem and checking the
triviality of certain systems of algebraic identities has been established.

Variations of the CSP. Numerous variations and generalizations of the regular CSP
have been studied over the last two decades. These include quantified CSPs, counting
CSP, enumeration problems, CSPs with global constraints, a number of optimization
problems such as Max- and Min-CSP, Valued CSP, the Min-Homomorphism problem.
Many of the counting and optimization problems admit approximation algorithms,
which have also been extensively studied. A dichotomy or other complexity classi-
fication results have been proved (or sometimes conjectured) for a number of those
problems starting from the early works for 2-element structures, see, [Creignou et al.
2001]. A dichotomy theorem has been proved for the counting CSP [Bulatov 2013; Cai
and Chen 2017]. Similarly, for the optimization problem of (Valued) CSP a dichotomy
result is proved in [Thapper and Zivny 2016; Kolmogorov et al. 2017], and a (condi-
tional) complexity classification of approximation of Valued CSP [Raghavendra 2008]
was established. We should also mention the recent advances in complexity classifi-
cation of Quantified CSP, enumeration problems, and a large number of related prob-
lems, in each of which the hope is to obtain some dichotomy-like results. Unfortunately,
there is no room in this column to stop even briefly on any of these fascinating prob-
lems; each of them requires its own survey. The keen reader is however referred to a
recent collection of such surveys [Krokhin and Zivny 2017].
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