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Abstract. The Random Satisfiability problem has been intensively stud-
ied for decades. For a number of reasons the focus of this study has mostly
been on the model, in which instances are sampled uniformly at random
from a set of formulas satisfying some clear conditions, such as fixed den-
sity or the probability of a clause to occur. However, some non-uniform
distributions are also of considerable interest. In this paper we consider
Random 2-SAT problems, in which instances are sampled from a wide
range of non-uniform distributions.

The model of random SAT we choose is the so-called configuration model,
given by a distribution £ for the degree (or the number of occurrences) of
each variable. Then to generate a formula the degree of each variable is
sampled from &, generating several clones of the variable. Then 2-clauses
are created by choosing a random paritioning into 2-element sets on the
set of clones and assigning the polarity of literals at random.

Here we consider the random 2-SAT problem in the configuration model
for power-law-like distributions £. More precisely, we assume that & is
such that its right tail F¢(z) satisfies the conditions WE~™* < Fe(¢) <
Vi~ for some constants V, W. The main goal is to study the satisfia-
bility threshold phenomenon depending on the parameters o, V, W. We
show that a satisfiability threshold exists and is determined by a simple
relation between the first and second moments of &.
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1 Introduction

The Random Satisfiability problem (Random SAT) and its special cases Ran-
dom k-SAT as a model of ‘typical case’ instances of SAT has been intensively
studied for decades. Apart from algorithmic questions related to the Random
SAT, much attention has been paid to such problems as satisfiability thresholds
and the structure of the solution space. The most widely studied model of the
Random k-SAT is the uniform one parametrized by the (expected) density or
clause-to-variable ratio g of input formulas. Friedgut in [26] proved that depend-
ing on the parameter ¢ (and possibly the number of variables) Random k-SAT
exhibits a sharp satisfiability threshold: a formula of density less than a certain
value gg (or possibly gg(n)) is satisfiable with high probability, and if the density
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is greater than gg, it is unsatisfiable with high probability. Moreover, a recent
work of Friedrich and Rothenberger [28], which may be regarded as an exten-
sion of Fridgut’s result to non-uniform random SAT instances, shows that if a
distribution of variable’s occurence in random formulas satisfies some criteria,
then such formulas must undergo a sharp satisfiability threshold.

Hence, an impressive line of research aims at locating the satisfiability thresh-
old for each random generating model. This includes more and more sophisti-
cated methods of algorithms analysis [1, 17, 18, 22] and applications of the second
moment method [2] to find lower bounds, and a variety of probabilistic and proof
complexity tools to obtain upper bounds [23,33,24]. In the case of sufficiently
large k the exact location of the satisfiability threshold was identified by Ding,
Sly and Sun [22]. The satisfiability threshold and the structure of random k-
CNFs received special attention for small values of k, see [15,40,30] for k = 2,
and [21, 31, 33] for k = 3.

The satisfiability threshold phenomenon turned out to be closely connected
with algorithmic properties of the Random SAT, as well as with the structure of
its solution space. Experimental and theoretical results [39, 19] demonstrate that
finding a solution or proving unsatisfiability is hardest around the satisfiability
threshold. The geometry of the solution space also exhibits phase transitions not
far from the satisfiability threshold, related to various clustering properties [35].
This phenomenon has been exploited by applications of methods from statistical
physics that resulted in some of the most efficient algorithms for Random SAT
with densities around the satisfiability threshold [36, 14].

Random k-SAT can be formulated using one of the three models whose sta-
tistical properties are very similar. In the model with fixed density p, one fixes
n distinct propositional variables v1,...,v, and then chooses on k-clauses uni-
formly at random [25,39]. Alternatively, for selected variables every possible
k-clause is included with probability tuned up so that the expected number of
clauses equals gn. Finally, Kim [32] showed that one can also use the config-
uration model, which he called Poisson Cloning model. In this model for each
variable v; we first select a positive integer d; accordingly to the Poisson distri-
bution with expectation ko, the degree of the variable. Then we create d; clones
of variable v;, and choose (d; + --- + d,)/k random k-element subsets of the
set of clones, then converting them into clauses randomly. The three models are
largely equivalent and can be used whichever suits better to the task at hand.

The configuration model opens up a possibility for a wide range of differ-
ent distributions of k-CNF's arising from different degree distributions. Starting
with any random variable £ that takes positive integer values one obtains a dis-
tribution @(£) on k-CNFs as above using £ in place of the Poisson distribution.
Note that £ may depend on n, the number of variables, and even be different for
different variables. One ‘extreme’ case of such a distribution is Poisson Cloning
described above. Another case is studied by Cooper, Frieze, and Sorkin [20]. In
their case each variable of a 2-SAT instance has a prescribed degree, which can
be viewed as assigning a degree to every variable according to a random variable
that only takes one value. We will be often returning to that paper, as our cri-
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terion for a satisfiability threshold is a generalization of that in [20]. Boufkhad
et al. [13] considered another case of this kind — regular Random k-SAT.

In this paper we consider Random 2-SAT in the configuration model given by
distribution @(§), where ¢ is distributed according to the power law distribution
in the following sense. Let F¢(¢) = Pr[¢{ > /] denote the tail function of a positive
integer valued random variable £. We say that £ is distributed according to the
power law with parameter « if there exist constants V, W such that

W= < Fe(t) < V™. (1)

Power law type distributions have received much attention. They have been
widely observed in natural phenomena [37, 16], as well as in more artificial struc-
tures such as networks of various kinds [10]. Apart from the configuration model,
graphs (and therefore 2-CNFs) whose degree sequences are distributed accord-
ingly to a power law of some kind can also be generated in a number of ways.
These include preferential attachment [3,10,12,11], hyperbolic geometry [34],
and others [5, 6]. Although the graphs resulting from all such processes satisfy
the power law distributions of their degrees, other properties can be very differ-
ent. We will encounter the same phenomenon in this paper.

The approach most closely related to this paper was suggested by Ansotegui
et al. [5,6]. Given the number of variables n, the number of clauses m, and a
parameter (3, the first step in their construction is to create m k-clauses without
naming the variables. Then for every variable-place X in every clause, X is
assigned to be one of the variables vy, ..., v, according to the distribution

=B
PO/

Ansotegui et al. argue that this model often well matches the experimental results
on industrial instances, see also [4,29, 8]. Interesting to note that although the
model studied in these papers differ from the configuration model, it exhibits the
same criterion of unsatisfiability EK? > 3EK, where K is the r.v. that governs
the number of times a variable appears in 2-SAT formula ¢ [7].

The satisfiability threshold of this model has been studied by Friedrich et
al. in [27]. Since the model has two parameters, 8 and r = m/n, the resulting
picture is complicated. Friedrich et al. proved that a random CNF is unsatisfiable
with high probability if  is large enough (although constant), and if 8 < %
Ifpg > %, the formula is satisfiable with high probability provided r is smaller
than a certain constant. The unsatisfiability results in [27] are mostly proved
using the local structure of a formula.

In this paper we aim at a similar result for Random 2-SAT in the config-
uration model. Although the configuration model has only one parameter, the
overall picture is somewhat more intricate, because there are more reasons for
unsatisfiability than just the local structure of a formula. We show that for 2-
SAT the parameter « from the tail condition (1) is what decides the satisfiability
of such CNF. The main result of this paper is a satisfiability threshold given by
the following

Pr[X =wv;, 5,n] =
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Theorem 1. Let ¢ be a random 2-CNF in the configuration model, such that
the number of occurrences of each variable in ¢ is an independent copy of the
random variable £, satisfying the tail condition (1) for some «. Then for n — co

0, when 0O0<a<?2
Pr[ ¢ is satisfiable | = < 0, when o =2 or E&2 > 3E¢,
1, when E&? < 3EE.

In the first case of Theorem 1 we show that ¢ is unsatisfiable with high
probability due to very local structure of the formula, such as the existence of
variables of sufficiently high degree. Moreover, same structures persist with high
probability in k-CNF formulas for any k > 2 obtained from the configuration
model, when a < ﬁ

In the remaining cases we apply the approach of Cooper, Frieze, and Sorkin
[20]. It makes use of the structural characterization of unsatisfiable 2-CNF's: a
2-CNF is unsatisfiable if and only if it contains so-called contradictory paths.
If E€?2 < 3ES we prove that w.h.p. formula ¢ does not have long paths, and
contradictory paths are unlikely to form. If E£2 > 3EE, we use the analysis
of the dynamics of the growth of ¢ to show that contradictory paths appear
w.h.p. However, the original method by Cooper et al. only works with strong
restrictions on the maximal degree of variables that are not affordable in our
case, and so it requires substantial modifications.

2 Notation and preliminaries

We use the standard terminology and notation of variables, positive and negative
literals, clauses and 2-CNF's, and degrees of variables. The degree of variable v
will be denoted by deg(v), or when our CNF contains only variables vy, ..., vy,
we use d; = deg(v;). By C(¢) we denote the set of clauses in ¢.

2.1 Configuration model

We describe the configuration model for k-CNFs, but will only use it for & = 2,
see also [32]. In the configuration model of k-CNFs with n variables vy, ..., v,
we are a given a positive integer-valued random variable (r.v.) ¢ from which we
sample independently n integers {d;}"_;. Then d; is the degree of v;, that is,
the number of occurrences of v; in the resulting formula ¢. Each occurrence of
v; in ¢ we call a clone of v;. Hence, d; is the number of clones of v;. Then we
sample k-element sets of clones from the set of all clones without replacement.
Finally, every such subset is converted into a clause by choosing the polarity of
every clone in it uniformly at random. If the total number of clones is not a
multiple of k, we discard the set and repeat the procedure. Algorithm 1 gives a
more precise description of the process. We will sometimes say that a clone p is
associated with variable v if p is a clone of v. In a similar sense we will say a
clone associated with a literal if we need to emphasize the polarity of the clone.
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Algorithm 1 Configuration Model CF (¢)

1: procedure SAMPLECNF (n, k, &)
2: Form a sequence of n numbers {d; }j—; each sampled independently from &

3: if S, :=> 7, d; is not a multiple of k then

4: discard the sequence, and go to step 2

5: end if .

6: Otherwise, introduce multi-set S < |J {vi, vi,..., v}
= d; times

7 Let ¢ < 0

8: while S # () do

9: Pick u.a.r. k elements {v1,v2,...,vx} from S without replacement

10: Let C + {v1,v2,..., vk}

11: S+S-C

12: Negate each element in C' u.a.r with probability 1/2

13: ¢+~ opuC

14: end while
15: return ¢
16: end procedure

We will denote a random formula ¢ obtained from CE(R) by ¢ ~ CE(R).
Clearly, formulas ¢ ~ CF(R) are defined over a set of n Boolean variables, which
we denote by V(¢). By L(¢) we denote the set of all literals in ¢. Let d;” denote
the number of occurrences of v; as a positive literal (or the number of positive
clones of v;), and let d; denote the number of negative clones of v;.

2.2 Power law distributions

We focus our attention on the configuration model CK (¢), in which every variable
is an i.i.d. copy of the random variable £ having power-law distribution. In this
paper we define such distributions through the properties of their tail functions.
If £ is an integer-valued r.v., its tail function is defined to be F¢(¢) = Pr[¢ > /],
where ¢ > 1.

Definition 1. An integer-valued positive r.v. £ has power-law probability distri-
bution, if Fe(£) = O ({~%), where oo > 0. We denote this fact as & ~ P ().

Clearly, if € ~ P («), then there exist constants V, W > 0, such that W £=% <
Fe(0) <V, for every £ > 1.
The existence of the moments of & ~ P («) depend only on «.

Lemma 1. Let £ ~ P (). Then E€™ < o0 iff 0 < m < a.

We will write E€™ = co when the m-th moment of some r.v. £ is not finite
or does not exist. We will have to deal with cases when the second or even first
moment of £ does not exist.

Nevertheless, we can obtain good bounds on useful quantities formed from
such variables with a good level of confidence, despite the absence of expectation
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or variance. One such quantity is the sum of independent variables drawn from
P(a): S, = >, &, where & ~ P (a). Note that &’s are not required to be
identically distributed. They can come from different distributions, as long as
their right tail can be bounded with some power-law functions with exponent «.
But we do require their independence.

The next two theorems provide bounds on the values of S, depending on «
in a slightly more general case of r.vs. admitting negative values.

Theorem 2 (Corollary 1 from [38]). Let S, = > | &, where &’s are inde-
pendent integer-valued random variables, with

Pri& > <Ve®  and Pr[& <-4 <VEe,

where V>0 and 0 < a < 1 are constants. Then w.h.p. S,, < C’né, where C' > 0
18 some constant.

As for the second theorem, we deal with a similar sum of random variables,
but each variable’s tail can be majorized with a power-law function with ex-
ponent a > 1. Then, as it follows from Lemma 1, such variables have finite
expectation, and due to the linearity of expectation, the sum itself has well
defined mean value.

Theorem 3 (Corollary 5 from [38]). Let S, = > | &, where & s are inde-
pendent integer-valued random variables, with

Pri& > <Ve®, and Pr[§ <-4 <Vie,
where V > 0 and a > 1 are constants. Then w.h.p. S, =Y i E& + o(n).

Hence, as the theorem states, when &;’s are independent r.vs. with power-law
boundable tails with tail exponent v > 1, then the sum of such variables does
not deviate much from its expected value.

Note that from now on we will deal with sctrictly positive power-law r.vs.
&:’s, hence, their expectation (given that it exists) is a positive constant. Then
when a > 1, we have S,, = "' | E& 4+ o(n) = (14 0(1)) Yo EE;.

Another important quantity we need is the maximum, A, of the sequence of
n independent random variables (or the maximum degree of a CNF in our case).

Lemma 2. Let A = max (&1, &o, -+, &), where &;’s are independent copies of
an r.v. & ~ P(a) with a > 0. Then w.h.p. A < Cn'/* where C > 0 is some
constant.

We will also need some bounds on the number of pairs of complementary
clones of a variable v;, that is, the value d; d; . By the definition of the configu-
ration model

df ~ Bin(deg(vi), 1/2) and d; = deg(v;) — dj,
where Bin(n,p) is the binomial distribution with n trials and the success prob-
ability p.
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Lemma 3. Let £ be some positive integer-valued r.v., and let dt ~ Bin (f, 1/2) ,
while d™ = & —d™. Then

Fys(0) = Fye (0) < Fe(0), and Feq-(0) < 2Fe (51/2) :

Hence, for £ ~ P («), we have

Corollary 1. Let £ ~ P («), where a > 0, be some positive integer-valued r.v.,
and let d* ~ Bin (5, 1 /2), while &~ = € — dT. Then

Fue(0) = Fy(0) <V 172, (2)
Fyeg-(0) <2V 07/2, (3)

The expectations of d* and d~ are easy to find: Edt = Ed~ = %. However,
the expected value of d*d~ requires a little more effort.

Lemma 4. Let ¢ be some positive integer-valued r.v., and let dT ~ Bin (5, 1/2) ,

while d= = £ —d*. Then E[d+d~] = BB

We use T, = Z?Zl d;"d; to denote the total number of pairs of complemen-
tary clones, i.e. the sum of unordered pairs of complementary clones over all n
variables,.

Note, that when o > 2, the r.v. d?‘di_ has finite expectation due to Lemma, 1.

Then by Theorem 3 w.h.p.
T, =(1+0(1)) El[dfd;].
i=1

We finish this subsection with Azuma-like inequality first appeared in [20],
which will be used in the proofs. Informally, the inequality states that a discrete-
time random walk X = >""" | X, with positive drift, consisting of not necessary
independent steps, each having a right tail, which can be bounded by a power
function with exponent at least 1, is very unlikely to drop much below the ex-
pected level, given n is large enough. Although, the original proof was relying on
the rather artificial step of introducing a sequence of uniformly distributed ran-
dom numbers, we figured out that the same result can be obtained by exploiting
the tower property of expectation.

Lemma 5 (Azuma-like inequality). Let X = Xo+>.1_, X; be some random
walk, such that Xy > 0 is constant initial value of the process, X; > —a, where
a > 0 is constant, are bounded from below random variables, not necessary in-
dependent, and such that E[X; | X1,...,X;—1] > u >0 (u is constant) and
Pr[X; > 0| X1,...,X;-1]) S VL% for every £ > 1 and constants V > 0, o > 1.
Then for any 0 < e < %, the following inequality holds

t+ X, 2(1 )2
Pr|X <eut] <ex — — —c .
(X <eut] < p( o2 3
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2.3 Contradictory paths and bicycles

Unlike k-CNFs for larger values of k, 2-CNF's have a clear structural feature
that indicates whether or not the formula is satisfiable. Let ¢ be a 2-CNF on
variables vy, ..., v,. A sequence of clauses (I1,1l2), (l2,13), ..., (Is,,1s) is said to
be a path from literal [y to literal l5. As is easily seen, if there are variables
u,v,w in ¢ such that there are paths from u to v and v, and from @ to w and
w, then ¢ is unsatisfiable, see also [9]. Such a collection of paths is sometimes
called contradictory paths.

On the other hand, if ¢ is unsatisfiable, it has to contain a bicycle, see [15].
A bicycle of length s is a path (u, 1), (I1,12), ..., (ls,v), where the variables as-
sociated with literals Iy, lo,. .., I, are distinct, and u,v € {Iy,11,l2,12,... 15,1}

2.4 The main result

Now we are ready to state our main result:

Theorem 4. Let ¢ ~ C2(&), where & ~ P («). Then for n — oo

0, when 0<a<2,
Pr[¢ is SAT | =<0, when o =2 orE&2 > 3EE,
1, when E&? < 3EE.

If the r.v. £ is distributed according to the zeta distribution, that is, Pr [§ = (] =
% for some B > 1 and where ((8) = 3_ 5, d=" is the Riemann zeta function

(note that in this case & ~ P(8 — 1)), then the satisfiabitliy threshold is given
by a certain value of .

Corollary 2. Let ¢ ~ C2(&), where the pdf of € is Pr[€ = /(] = % for some

B >1 and all £ > 1. Then there exists By such that for n — oo

0, when 1< < fo,

Pr[qﬁisSAT]:{l when 3> Bo.

The value By is the positive solution of the equation EE? = 3EE, and By ~ 3.26.

A proof of this theorem constitutes the rest of the paper. We consider each
case separately, and the first case is proved in Proposition 1, while the other two
cases are examined in Propositions 2 and 3.

3 Satisfiability of C2 (£¢), when £ ~ P (a) and 0 < @ < 2

This case is the easiest to analyze. Moreover, we show that the same result holds
for any ¢ ~ Ck (¢), where k > 2, when o < £;. Hence, the case 0 < a < 2

for unsatisfiable 2-CNF's follows. In other words, if a < %, then any k-CNF
formulas from CF (¢) will be unsatisfiable w.h.p.
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What happens here, is that we expect many variables to have degree >
S,(Lk_l)/k. Let us fix k such variables. Then, as it is shown in the proof, the
formula ¢ contains (k — 1)! log® n clauses that are formed only from literals of
these k variables. However, one of the possible subformulas, which is formed from
only k variables, that renders the whole k-CNF formula unsatisfiable consists of
only 2* clauses.

The next proposition establishes a lower bound of satisfiability threshold for
any power-law distributed k-CNF from configuration model.

Proposition 1. Let ¢ ~ CE(¢), where € ~ P(a), k > 2 and 0 < o < %
Then w.h.p. ¢ is unsatisfiable.

After proving the above proposition, result for 2-CNF from C2 () naturally
follows.

Corollary 3. Let ¢ ~ C2(¢), where & ~ P (a), such that 0 < a < 2. Then
w.h.p. ¢ is unsatisfiable.

4 Satisfiability of C2 (£), when £ ~ P (a) and a = 2 or
E¢? > 3E¢

4.1 The inequality E£? > 3E¢

Analysis of this and subsequent cases mainly follows the approach suggested
in [20], where they deal with random 2-SAT instances having prescribed literal
degrees. In other words, the assumption in [20] is that the degree sequences
df,....df and dy,...,d; are fixed, and a random 2-CNF is generated as in the
configuration model. Then two quantities play a very important role. The first
one is the sum of all degrees S, = >, (d; +d; ) (we use our notation) and the
second one is the number of pairs of complementary clones T), = >, d:rd; LIt
is then proved that a 2-CNF with a given degree sequence is satisfiable w.h.p.
if and only if 27,, < (1 — ¢)S,, for some & > 0. We will quickly show that the
conditions o = 2 and E£2 > 3E¢ imply the inequality 27, > (1 + ¢)S,, w.h.p.,
see Lemma 6, and therefore a random 2-CNF in this case should be unsatisfiable
w.h.p. The problem however is that Cooper et al. only prove their result under a
significant restrictions on the maximal degree of literals, A < n'/''. By Lemma 2
the maximal degree of literals in our case tends to be much higher, and we cannot
directly utilize the result from [20]. Therefore we follow the main steps of the
argument in [20] changing parameters, calculations, and in a number of cases
giving a completely new proofs.

Lemma 6. Let ¢ ~ C2(¢), where € ~ P (a) and o = 2 or B2 > 3EE. Let also
Sp=>".d; and T, =31 dfd;. Then w.h.p. 2T, > (1+¢€)S,.

7

Proof. Let us first consider the case, when a > 2 and E&? > 3EE. Then by
Lemma 1 and Theorem 3, we have that w.h.p.

Sp = ;di = (1+0(1)) ZlEdi = (1+ o(1)) nE¢,
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since d; 2 ¢. Likewise, since o > 2, we also have that w.h.p.

o= 3t = (o) 3B 7] = (1 o)) nBETEE

i=1 =1

where the last equality follows from Lemma 4.
Hence, when E£? > 3EE, we have that w.h.p.

2T, E&? — EE E2 1
5 = (1 io(1))W = (1+0(1)) (m - 2) > 1.

Now we consider the case o = 2. Unfortunately, then E [dfd;] = oo for any
i € [1...n], and so we cannot claim that T), is concentrated around its mean.
Nevertheless, the quantity QSL is still greater than 1 in this case.

Since £ ~ P (2), there are constants V, W such that W =2 < F¢(¢) < V {72,
We construct auxiliary random variables £, ~ P (2 + ¢) for € > 0. Later we will
argue that £ can be chosen such that E&2 > 3EE.. Specifically, let . be such
that Fr_(1) =1 and F¢_(¢) = W {727¢ for £ > 1.

Let T be the number of pairs of complementary clones in formula ¢g ~
C2(&.). Since Pr[&. > 4] < Pr[¢ > /] for any ¢ > 1, we have that

Pr (2T, > Sp] > Pr2T% > S,], (4)

due to the stochastic dominance of the r.v. T,, over T.. As is easily seen, for
sufficiently small & we have E¢2 > 3EE.. Therefore, by the first part of the proof
277 > S, w.h.p. The result follows.

Thus, in either case we obtain that for some p > 0 w.h.p. % =14 u.

In what follows, we will always assume that a > 2.

4.2 TSPAN

The process of generating a random 2-CNF in the configuration model can be
viewed as follows. After creating a pool of clones, we assign each clone a polarity,
making it a clone of a positive or negative literal. Then we choose a random
paritioning of the set of clones into 2-element sets. The important point here is
that in the process of selection of a random matching we pair clones up one after
another, and it does not matter in which order a clone to match is selected, as
long as it is paired with a random unpaired clone.

Our goal is to show that our random 2-CNF ¢ contains contradictory paths.
In order to achieve this we exploit the property above as follows. Starting from
a random literal p we will grow a set span(p) of literals reachable from p in the
sense of paths introduced in Section 2.3. This is done by trying to iteratively
extend span(p) by pairing one the unpaired clones of the negation of a literal
from span(p). The details of the process will be described later. The hope is that
at some point span(p) contains a pair of literals of the form v, o, and therefore
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¢ contains a part of the required contradictory paths. To obtain the remaining
part we run the same process starting from p.
To show that this approach works we need to prove three key facts:

— that span(p) grows to a certain size with reasonable probability (Lemma 10),

— that if span(p) has grown to the required size, it contains a pair v,7 w.h.p.
(Lemma 11), and

— that the processes initiated at p and p do not interact too much w.h.p.
(Lemma 8).

Since the probability that span(p) grows to the required size is not very
high, most likely this process will have to be repeated multiple times. It is there-
fore important that the probabilities above are estimated when some clones are
already paired up, and that all the quantities involved are carefully chosen.

We now fill in some details. The basic “growing” algorithm is TSPAN (short
for truncated span), see Algorithm 2. Take a literal and pick a clone p associated
with it. Then partition the set S of all clones into 3 subsets: the set L£(p) of “live”
clones from which we can grow the span, the set C of paired (or “connected”)
clones, and the set U of “untouched” yet clones. We start with L(p) = {p},
U =S8 — {p}, and empty set C.

TSPAN works as follows: while the set of live clones is not empty, pick
u.a.r. clone ¢; from the live set, and pair it u.a.r. with any non-paired clone
co €EUUL(p) \ {c1}. Since clones ¢; and cq are paired now, we move them into
the set of paired clones C, while removing them from both sets £(p) and U to
preserve the property that the sets C,U, and L(p) form a partition of S.

Next, we identify the literal [ which clone ¢ is associated with, and we move
all the complementary clones of I from the set of untouched clones U into £(p).
The idea of this step is, when we add an edge (c1,c2), where ¢y is one the
I’s clones, to grow the span further we will need to add another directed edge
(c3, - ), where c3 is one of the clones belonging to I. Hence, we make all clones of
[ live, making them available to pick as a starting point during next iterations
of TSPAN. This way we can grow a span, starting from the clone p, and then
the set

span(p) = {c € §|c is reachable from p},

contains all the clones, which are reachable from the clone p (or literal that is
associated with p) at a certain iteration of TSPAN. We call this set a p-span.

The version of TSPAN given in Algorithm 2 takes as input sets C,L,U
(which therefore do not have to be empty in the beginning of execution of the
procedure), a maximal number of iterations 7, and a maximal size of the set
of live clones. It starts by using the given sets, C, L,U, stops after at most 7
iterations or when L reaches size o.

4.3 Searching for contradictory paths

The procedure TSPAN is used to find contradictory paths as follows:
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Algorithm 2 Procedure TSPAN
1: procedure TSPAN(C,L,U,0,T)
2: while 0 < |£] < ¢ and less than 7 pairings performed do

3: Pick u.a.r. a live clone ¢; € £

4: Pick u.a.r. an unpaired clone c; e Y U L\ {1}
5: Pair clones ¢; and ¢z, i.e.

6: C <+ CU{c1, c2}

T: L+ L\ {1, e2}

8: UFU\{Cl,CQ}

9: Let w be the literal associated with co

10: Make live the clones associated with w, i.e
11: Let

12: k(w) = {c € S|c is associated with w}
13: L+ LU (UnNk(w))

14: U+ U\ k(w)

15: end while
16: end procedure

STEP 1. Pick a variable and a pair of its complementary clones p, g.

STEP 2. Run TSPAN starting from p for at most s; = ey steps. If L(p)
becomes empty during the process, or if g gets included into span(p), or if in the
end |L£(p)| < o = s14/6 (1 is determined by the value 27},/S,, see Lemma 7),
declare failure.

STEP 3. Run TSPAN starting from ¢ and the current set C of paired clones

for at most s1 = nﬁﬁt}l) steps. If £(g) becomes empty during the process, or if
|L(q) N L(q)| = O(s1), or if in the end |L(q)| < o, declare failure.
STEP 4. Run TSPAN starting from £(p) and the current set C of paired clones

11024302 .
for at most s, = n 12ate¥ gteps. If L£(p) becomes empty during the process,

declare failure.
STEP 5. Similarly, run TSPAN starting from £(g) and the current set C of

11624302 .
paired clones for at most sy = n 12a+D steps. If £(q) becomes empty during

the process, declare failure.

If a failure is declared at any step, we abandon the current pair p, ¢ and pick
another variable and a pair of clones keeping the current set C of paired clones
that will be used in the next round. Also, even if all the Steps are successful,
but the constructed span does not contain contradictory paths, we also declare
a failure. It is important that the set C never grows too large, that is, it remains

of size |C| = o(n). This implies that the number of restarts does not exceed
K = n% .

The next lemma shows how we choose the value of p. It also shows that we
expect a positive change in the size of the live set when QSL > 1. However, first,

we need to introduce several variables. Let £;, U;, and C; are the live, untouched,
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and connected sets respectively after the i-th iteration of some execution of
TSPAN. Additionally we have L; = |£;|, C; = |Ci|, U; = |U;]. Also let X;
indicate the change in the number of live clones after performing the ith iteration,
i.e. Xz = Lz — Lifl.

Lemma 7. Let % =1+ u, where u > 0. Then for any t < |C| = o(n), we
have
]E[Xt|X17...,Xt_1] ZILL/Q

Next, we bound the probability of failure in each of Steps 2-5. We start with
STEP 2 assuming that the number of paired clones is o(n).

Lemma 8 (STEP 2). (1) Let s; = el If TSPAN starts with a live set
containing only a single point Ly = 1, time bound T = sy, the live set size
bound o = s11/6, and the number of already paired clones |C| = o (n), then with
probability at least ﬁ TSPAN terminates with the live set of size at least o.

(2) For any fized clone q, the probability it will be paired in s; = nﬁ‘&tﬁ) <t=

o(n) steps of the algorithm, is at most o (;)

Note that in Lemma 8(1) the size of L(p) can be slightly greater than o, as
it may increase by more than 1 in the last iteration. Also, in Lemma 8(2) the
bound on the probability is only useful when s; is sufficiently large.

Proof. We prove item (1) here. The TSPAN procedure may terminate at the
moment i < 7 due to one of two reasons: first, when L; hits 0, and second, when
L; = 0. To simplify analysis of the lemma, instead of dealing with conditional
probabilities that the live set hasn’t paired all its clones, we suggest to use a
slightly modified version of TSPAN, which always runs for 7 steps.

The modified version works exactly as the original TSPAN procedure when
the live set has at least one clone. But if at some moment, the live set has
no clones to pick, we perform a “restart”: we restore the sets £,C, and D to
the states they’d been before the first iteration of TSPAN procedure occurred.
After that we continue the normal pairing process. Although during restarts we
reset the values of the sets, the counter that tracks the number of iterations the
TSPAN has performed is never reset, and keeps increasing with every iteration
until the procedure has performed pairings 7 times, or the live set was able to
grow up to size o, and only then the TSPAN terminates.

Now, let ; = 1 represents a “successfull” restart that started at ¢ iteration,
meaning during this restart the live set accumulated o clones, while r; = 0
means there was no restart or the live set became empty. What we are looking
for Pr[r; = 1], since this probability is identical to the probability that the
original TSPAN was able to grow the live set to the desired size. Next, we can
have at most 7 restarts, and, since the very first restart has the most time and
we expect the live set to grow in the long run, it follows that it stochastically
dominates over other r;’s. Thus,

Pr[Ls, > s144/6] < Pr

51 S1
S 1] SEY € siBry = o Prfry = 1]

i=1 =1
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from which we obtain the probability that the TSPAN terminates with large
enough live set from the very first try:
Pr[Ls, > 6
P:=Pifr, =1 > M (5)
S1
Now what is left is to obtain bounds on the right-hand side probability. We
have a random process
S1 S1
Ly =Y (Li=Li-) =Y X,
i=1 1=1
which consists of steps X;, each of which can be proved to have the right
tail bounded by Pr[X; > ¢|Xy,..., X;_1] < V£72, and positive expectation
(Lemma 7) E [Xz ‘)(17 [N ,Xifl] Z %
Therefore, according to Azuma-like inequality (Lemma 5), we obtain that

wy 1 S1 I
Pr[L,, < 6] =Pr|Ls < (s15) 3| < 4log? s, 576
r[Lg, < s11/6] r [ 1 (Sl 2) 3} P ( 41og? 51 576)

.. ‘(x+4
Fixing 51 = n®%@=+D | we have for some constant C' > 0

at4a
PICEaY)

Pr[L,, < s11/6] < exp (C 5
log”n

) =o(1) < 1/2.

Thus, from (5) follows P > M = i, which proves item (1) of the

lemma. O

The probability that both runs of TSPAN for p and ¢ are successful is given
by the following

Lemma 9 (STEP 3). The probability that two specific clones p and q accumulate
s1u/7 clones in their corresponding live sets L during the execution of STEPS

2,3, such that the span from clone p doesn’t include g nor make it live, is at least
1
Q .
Next, we show that we can grow the spans for another ss steps, while keeping
the size of the respective live sets of order at least sqpu/8.

Lemma 10 (STEPS 4,5). Assume that p- and q-spans were both able to accu-

mulate at least s1pu/8 live clones after s; = nf’(ﬁﬁl) steps, and q is not in the
p-span. Then with probability 1 — o(1), TSPAN will be able to perform another

11a?43a-2 . .
sg = n 12aleatD gterations, and Ls,; > s141/8 for every 0 < j < s for each

clone p and q.

Finally, we show that w.h.p. the spans produced in STEPS 1-5, provided no
failure occurred, contain contradictory paths. In other words, we are looking for
the probability that spans do not contain complement clones after growing them
for s1 + so steps, i.e. at each step TSPAN was choosing only untouched clones
from the set U.
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Lemma 11 (Contradiction paths). If for a pair of complementary clones
p,q Steps 1-5 are completed successfully, the probability that span(p) or span(q)

a2—o¢—2
contain no 2 complementary clones is less than exp ( — n12alatD) )

This completes the proof in the case o = 2 or E£2 > 3E¢, and the next
proposition summarizes the result.

Proposition 2. Let ¢ ~ C2(&), where € ~ P (a) and a = 2 or E¢? > 3EE.
Then w.h.p. ¢ is unsatisfiable.

5 Satisfiability of C2 (&), when & ~ P (a) and E¢? < 3E¢

Chvétal and Reed [15] argue that if 2-SAT formula ¢ is unsatisfiable, then it
contains a bicycle, see Section 2.3. Thus, the absence of bicycles may serve as
a convenient witness of formula’s satisfiability. The general idea of this section
is to show that w.h.p. there are no bicycles in ¢ ~ C2Z(€), when & ~ P («) and
E¢? < 3EE.

Intuitively, when E¢2 < 3EE, then we expec = 1-—yu > 0, where
w' > 0 is some small number. As it was showed in Lemma 7, the latter quantity
approximates the number of newly added live clones, when running the TSPAN
procedure. Since TSPAN always performs at least one iteration of growing the
span, it may add at most A clones into the live set after constructing the very
first span from the root. After that each subsequent iteration adds on average
~ 2ST' = new live clones. So after running the TSPAN for j iterations, where
] — go, when n — 0o, then we expect the live set to contain around

2T,
t S

J
Ly=A <2Tn) = Al =) < Ae™IH
Sn
clones. Therefore, after O(logn) iterations, the live set becomes empty, and
TSPAN terminates. Thus, we expect paths of length at most O(logn), which is
not enough for bicycles to occur.
More formally we first show that in the case 2SL = 1— ' arandom formula
is unlikely to contain long paths. !

Lemma 12. If % =1—p' <1, then paths in ¢ are of length O (logn), w.h.p.
Then we give a straightforward estimation of the number of ‘short’ bicycles

Lemma 13. | % =1—y' <1, then for any k the probability that formula ¢
contains a bicycle of length v is at most (14 o(1))" (1 — u')".

These two lemmas imply that ¢ contains no bicycles.

Corollary 4. If %

— ' <1, then ¢ contains no bicycles, w.h.p.

It remains to argue that the inequality 25" =1— ' <1 holds w.h.p.

Proposition 3. Let ¢ ~ C2(€), where £ ~ P (a) and EE? < 3EE. Then w.h.p.
¢ 1is satisfiable.
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