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Counting quantifiers, subset surjective
functions, and counting CSPs

Andrei A. Bulatov Amir Hedayaty

Abstract—We introduce a new type of closure operator
on the set of relations, max-implementation, and its weaker
analog max-quantification. Then we show that approxi-
mation reductions between counting constraint satisfaction
problems (CSPs) are preserved by these two types of closure
operators. Together with some previous results this means
that the approximation complexity of counting CSPs is
determined by partial clones of relations that additionally
closed under these new types of closure operators. Galois
correspondence of various kind have proved to been quite
helpful in the study of the complexity of the CSP. While
we were unable to identify a Galois correspondence for
partial clones closed under max-implementation and max-
quantification, we obtain such results for slightly different
type of closure operators, k-existential quantification. This
type of quantifiers are known as counting quantifiers
in model theory, and often used to enhance first order
logic languages. We characterize partial clones of relations
closed under k-existential quantification as sets of relations
invariant under a set of partial functions that satisfy the
condition of k-subset surjectivity.

I. INTRODUCTION

Clones of functions and clones of relations in their
various incarnations have proved to be an immensely
powerful tool in the study of the complexity of different
versions of the Constraint Satisfaction Problem (CSP,
for short). In a CSP the aim is to find an assignment of
values to a given set of variables, subject to constraints
on the values that can be assigned simultaneously to
certain specified subsets of variables. A CSP can also
be expressed as the problem of deciding whether a given
conjunctive formula has a model. In the counting version
of the CSP the goal is to find the number of satisfying
assignments, and in the quantified version we need to
verify if a first order sentence, whose quantifier-free part
is conjunctive, is true in a given model.

The general CSP is NP-complete [17]. However, many
practical and theoretical problems can be expressed in
terms of CSP using constraints of a certain restricted
form. One of the most widely used way to restrict a
constraint satisfaction problem is to specify the set of
allowed constraints, which is usually a collection of
relations on a finite set. The key result is that this set of

relations can usually be assumed to be a co-clone of a
certain kind. More precisely, a generic statement asserts
that if a relation R belongs to the co-clone generated
by a set Γ of relations then the CSP over Γ ∪ {R}
is polynomial time reducible to the CSP over Γ. Then
we can use the appropriate Galois connection to transfer
the question about sets of relations to a question about
certain class of functions.

For the classical decision CSP such a result was ob-
tained by Jeavons et al. [16], who proved that intersection
of relations (that is, conjunction of the corresponding
predicates) and projections (that is, existential quantifi-
cation) give rise to polynomial time reducibility of CSPs.
Therefore in the study of the complexity of the CSP it
suffices to focus on co-clones. Using the result of Geiger
[13] or of Bodnarchuk et al. [2] one can instead consider
regular clones of functions. A similar result is true for
the counting CSP as shown by Bulatov and Dalmau
[8]. In the case of quantified CSP, Börner et al. proved
[3] that conjunction, existential quantification, and also
universal quantification give rise to a polynomial time
reduction between quantified problems. The appropriate
class of functions is then the class of surjective func-
tions. Along with the usual counting CSP, a version,
in which one is required to approximate the number of
solutions, has also been considered. The standard poly-
nomial time reduction between problems is not suitable
for approximation complexity. In this case, therefore,
another type of reductions, approximation preserving,
or, AP-reductions, are used. The first author proved in
[7] that conjunction of predicates gives rise to an AP-
reduction between approximation counting CSPs. By the
Galois connection established by Fleischner and Rosen-
berg [12], the approximation complexity of a counting
CSP is a property of a clone of partial functions.

In most cases establishing the connection between
clones of functions and reductions between CSPs has
led to a major success in the study of the CSP. For
the decision problem, a number of very strong results
have been proved using methods of universal algebra
[9], [4], [5], [1], [15]. For the exact counting CSP a
complete complexity classification of such problems has



been obtained [6]. Substantial progress has been also
made in the quantified CSP [10].

Compared to the results cited above the progress made
in the approximation counting CSP is modest. Perhaps,
one reason for this is that clones of partial functions are
much less studied, and much more diverse than clones
of total functions. In this paper we attempt to overcome
to some extent the difficulties arising from the weakness
of partial clones.

In the first part of the paper we introduce new types of
quantification and show that such quantifications, we call
them max-implementation and max-quantification, give
rise to AP-reductions between approximation counting
CSPs. Intuitively, applying the max-existential quanti-
fier to a relation R(x1, . . . , xn, y) results in the rela-
tion ∃maxyR(x1, . . . , xn, y) that contains those tuples
(a1, . . . , an) that have a maximal number of extensions
(a1, . . . , an, b) such that R(a1, . . . , an, b) is satisfied.
Thus we strengthen the closure operator on sets of
relation hoping that the sets of functions corresponding
to the new type of Galois connection are more tractable.
We were unable, however, to describe a Galois con-
nection for sets closed under max-implementation and
max-quantification. Instead, we consider a somewhat
close type of quantifiers, k-existential quantifiers. This
type of quantifiers are known as counting quantifiers
in model theory, and often used to enhance first order
logic languages (see, e.g. [11]). Counting quantifiers
are similar to max-existential quantifiers, although do
not capture them completely. We call sets of relations
closed under conjunctions and k-existential quantifica-
tion k-existential co-clones. On the functional side, an
n-ary (partial) function on a set D is said to be k-
subset surjective if it is surjective on any collection of
k-element subsets. More precisely, for any k-element
subsets A1, . . . , An ⊆ D the set f(A1, . . . , An) is
either empty or contains at least k elements. The second
result of the paper asserts that k-existential co-clones are
exactly the sets of relation invariant with respect to a set
of k-subset surjective (partial) functions.

II. PRELIMINARIES

By [n] we denote the set {1, . . . , n}. For a set D by
Dn we denote the set of all n-tuples of elements of
D. An n-ary relation is any set R ⊆ Dn. The number
n is called the arity of R and denoted ar(R). Tuples
will be denoted in boldface, say, a, and their entries
denoted by a[1], . . . ,a[n]. For I = (i1, . . . , ik) ⊆ [n]
by prIa we denote the tuple (a[i1], . . . ,a[ik]), and we
use prIR to denote {prIa | a ∈ R}. We will also
need predicates corresponding to relations. To simplify

the notation we use the same symbol for a relation and
the corresponding predicate, for instance, for an n-ary
relation R the corresponding predicate R(x1, . . . , xn) is
given by R(a[1], . . . ,a[n]) = 1 if and only if a ∈ R.

For a set of relations Γ over a set D, the set ⟨⟨Γ⟩⟩
includes all relations that can be expressed (as a predi-
cate) using (a) relations from Γ, together with the binary
equality relation =D on D, (b) conjunctions, and (c)
existential quantification. This set is called the co-clone
generated by Γ.

Weak co-clone generated by Γ is obtained in a sim-
ilar way by disallowing existential quantification. ⟨Γ⟩
includes all relations that can be expressed using (a)
relations from Γ, together with =D, and (b) conjunctions,

If Γ = ⟨Γ⟩ or Γ = ⟨⟨Γ⟩⟩ then the set Γ is said to be
a weak co-clone, and a co-clone, respectively.

Co-clones and weak co-clones can often be conve-
niently and concisely represented trough functions and
partial functions, respectively.

Let R be a (k-ary) relation on a set D, and f : Dn →
D an n-ary function on the same set. Function f
preserves R, or is a polymorphism of R, if for any n
tuples a1, . . . ,an ∈ R the tuple f(a1, . . . ,an) obtained
by component-wise application of f also belongs to R.
Relation R in this case is said to be invariant with respect
to f . The set of all functions that preserve every relation
from a constraint language Γ is denoted by Pol(Γ), the
set of all relations invariant with respect to a set of
functions C is denoted by Inv(C).

Operators Inv and Pol form a Galois connection be-
tween sets of functions and sets of relations. Sets of the
form Inv(C) are precisely co-clones; on the operational
side there is another type of closed sets.

A set of functions is said to be a clone of functions
if it is closed under superpositions and contain all
the projection functions, that is functions of the form
f(x1, . . . , xn) = xi. Sets of functions of the form Pol(Γ)
are exactly clones of functions [18] .

The study of the #CSP also makes use of another
Galois connection, a connection between weak co-clones
and sets of partial functions. An n-ary partial function f
on a set D is just a partial mapping f : Dn → D. As in
the case of total functions, a partial function f preserves
relation R, if for any n tuples a1, . . . ,an ∈ R the tuple
f(a1, . . . ,an) obtained by component-wise application
of f is either undefined or belongs to R. The set of all
partial functions that preserve every relation from a set
of relations Γ is denoted by pPol(Γ).

The set of all tuples from Dn on which f is defined
is called the domain of f and denoted by dom(f).
A set of functions is said to be down-closed if along
with a function f it contains any function f ′ such that
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dom(f ′) ⊆ dom(f) and f ′(a1, . . . , an) = f(a1, . . . , an)
for every tuple (a1, . . . , an) ∈ dom(f ′). A down-closed
set of functions, containing all projections and closed
under superpositions is called a partial clone. Fleischner
and Rosenberg [12] proved that Partial clones are exactly
the sets of the form pPol(Γ) for a certain Γ, and the weak
co-clones are precisely the sets Inv(C) for collections C
of partial functions.

III. APPROXIMATE COUNTING AND
MAX-QUANTIFIERS

Let D be a set, and let Γ be a finite set of relations over
D. An instance of the counting Constraint Satisfaction
Problem, #CSP(Γ) is a pair P = (V, C) where V is
a set of variables, and C is a set of constraints. Every
constraint is a pair ⟨s, R⟩, in which R is a member of
Γ, and s is a tuple of variables from V of length ar(R)
(possibly with repetitions). A solution to P is a mapping
φ : V → D such that φ(s) ∈ R for every constraint
⟨s, R⟩ ∈ C. The objective in #CSP(Γ) is to find the
number #P of solutions to a given instance P .

We are interested in the complexity of this problem
depending on the set Γ. The complexity of the exact
counting problem (when we are required to find the exact
number of solutions) is settled in [6] by showing that
for any finite D and any set Γ of relations over D the
problem is polynomial time solvable or is complete in
a natural complexity class #P . One of the key steps in
that line of research is the following result: For a relation
R and a set of relations Γ over D, such that R belongs
to the co-clone generated by Γ, then #CSP(Γ ∪ {R})
is polynomial time reducible to #CSP(Γ). This results
emphasizes the importance of co-clones in the study of
constraint problems.

A situation is different if we are concerned about
approximating the number of solutions. We will need
some notation and terminology. Let A be a counting
problem. An algorithm Alg is said to be an approxima-
tion algorithm for A with relative error ε (which may
depend on the size of the input) if it is polynomial time
and for any instance P of A it outputs a certain number
Alg(P) such that

|#P − Alg(P)|
#P

< ε,

where #P denotes the exact number of solutions to P .
The following framework is viewed as one of the

most realistic models of efficient computations. A fully
polynomial approximation scheme (FPAS, for short) for
a problem A is an algorithm Alg such that: It takes as
input an instance P of A and a real number ε > 0, the

relative error of Alg on the input (P, ε) is less than ε,
and Alg is polynomial in the size of P and log( 1ε ).

To determine the approximation complexity of prob-
lems another type of reductions is used. Suppose A
and B are two counting problems whose complexity (of
approximation) we want to compare. An approximation
preserving reduction or AP-reduction from A to B is
an algorithm Alg, using B as an oracle, that takes as
input a pair (P, ε) where P is an instance of A and
0 < ε < 1, and satisfies the following three conditions:
(i) every oracle call made by Alg is of the form (P ′, δ),
where P ′ is an instance of B, and 0 < δ < 1 is an
error bound such that 1

δ is bounded by a polynomial
in the size of P and 1

ε ; (ii) the algorithm Alg meets
the specifications for being approximation scheme for
A whenever the oracle meets the specification for being
approximation scheme for B; and (iii) the running time
of Alg is polynomial in the size of I and log( 1ε ). If an
approximation preserving reduction from A to B exists
we write A ≤AP B, and say that A is AP-reducible to
B.

Similar to co-clones and polynomial time reductions,
weak co-clones can be shown to be preserved by AP-
reductions.

Theorem 1 ([7]): Let R be a relation and Γ be a set
of relations over a finite set such that R belongs to ⟨Γ⟩.
Then #CSP(Γ ∪ {R}) is AP-reducible to #CSP(Γ).

This result however has two significant setbacks. First,
weak co-clones are not studied to the same extent as
regular co-clones, and, due to greater diversity, are
not believed to be ever studied to a comparable level.
Second, it does not used the full power of AP-reductions,
and therefore leaves significant space for improvements.
In the rest of this section we try to improve upon the
second issue.

Definition 2: Let Γ be a set of relations on a set D,
and let R be an n-ary relation on D. Let P be an
instance of #CSP(Γ) over the set of variables consisting
of V = Vx∪Vy , where Vx = {x1, x2, · · · , xn} and Vy =
{y1, y2, · · · , yq}. For any assignment of φ : Vx → D,
let #φ be the number of assignments ψ : Vy → D such
that φ ∪ ψ satisfy P . Let M be the maximum value of
#φ among all assignments of Vx. The instance P is said
to be a max-implementation of R if a tuple φ is in R if
and only if #φ =M .

Theorem 3: If there is max-implementation of R by
Γ, then #CSP(Γ ∪ {R}) ≤AP #CSP(Γ).

Proof: For any instance P1 = (V1, C1) of
#CSP(Γ∪{R}) we construct an instance P2 = (V2, C2)
of #CSP(Γ) as follows.

• Choose a sufficiently large integer m (to be deter-
mined later).
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• Let C1, . . . , Cℓ ∈ C1 be the constraints from P1

involving R, Ci = ⟨si, R⟩. Set V2 = V1∪
∪ℓ

i=1(V
i
1∪

. . .∪V i
m), where each V i

j is a fresh copy of Vy from
Definition 2.

• Let C be the set of constraints of P (see Defini-
tion 2). Set C2 = (C1−{C1, . . . , Cℓ})∪

∪ℓ
i=1(Ci

1 ∪
. . . ∪ Ci

m), where each Ci
j is a copy of C defined

as follows. For each ⟨s, Q⟩ ∈ C we include ⟨sij , Q⟩
into Ci

j , where sij is obtained from s replacing every
variable from Vy with its copy from V i

j .
Now, as is easily seen, every solution of P1 can be

extended to a solution of P2 in M ℓm ways. Observe that
sometimes the restriction of a solution ψ of P2 to V1 is
not a solution of P1. Indeed, it may happen that although
ψ satisfies every copy Ci

j of P , its restriction to sij does
not belong to R, simply because this restriction does
not have sufficiently many extensions to solutions of P .
However, any assignment to V1 that is not a solution
to P1 can be extended to a solution of P2 in at most
(M − 1)m ·M (ℓ−1)m ways. Hence,

M ℓm ·#P1 ≤ #P2

≤M ℓm ·#P1 + |V1||D| · (M − 1)m ·M (ℓ−1)m

Then we output #P2/M
ℓm.

Let |V1| = k and |D| = d. Given a desired relative
error ε we have to find m such that #P2

Mℓm −#P1 < ε.
A straightforward computation shows that any

m >
log ε− d log k

logM − log(M − 1)

achieves the goal.
Max-implementation can be used as another closure

operator on the set of relations. A set of relations Γ
over D is said to be a max-co-clone if it contains
the equality relations, and closed under conjunctions
and max-implementations. The smallest max-co-clone
containing a set of relations Γ is called the max-co-clone
generated by Γ and denoted ⟨Γ⟩max.

The next natural step would be to find a type of func-
tions and closure operator on the set of functions that
give rise to a Galois connection capturing max-co-clones.

Problem 1: Find a class F of (partial) functions and
a closure operator [·] on this class such that for any set
of relations Γ and any set C ⊆ F it holds that ⟨Γ⟩max =
Inv(F ∩ pPol(Γ)), and [C] = F ∩ pPol Inv(C).

In all the cases studied the projection (or quan-
tification) type operators on relations can be reduced
to quantifying away a single variable. It is not clear,
however, if this can be done for max-implementations,
which seems to inherently involve a number of variables,
rather than a single variable. Therefore a meaningful

relaxation of max-co-clones restricts the use of max-
implementation to one auxiliary variable. Let Φ be a
formula with free variables x1, . . . , xn and y over set D
and some predicate symbols. Then a1, . . . , an satisfy

Ψ(x1, . . . , xn) = ∃maxyΦ(x1, . . . , xn, y)

if and only if the number of b ∈ D such that
Φ(a1, . . . , an, b) is true is maximal among all tuples
(c1, . . . , cn) ∈ Dn. The quantifier ∃max will be called
max-existential quantifier. A set of relations Γ over D
is said to be a max-existential co-clone if it contains
the equality relation, and closed under conjunctions
and max-existential quantification. The smallest max-
existential co-clone containing a set of relations Γ is
called the max-existential co-clone generated by Γ and
denoted ⟨Γ⟩1max.

Problem 2: Find a class F of (partial) functions and a
closure operator [·] on this class such that for any set of
relations Γ and any set of functions C ⊆ F it holds that
⟨Γ⟩1max = Inv(F∩pPol(Γ)), and [C] = F∩pPol Inv(C).

In the next section we consider certain constructions
approximating max-existential co-clones.

IV. k-EXISTENTIAL AND MAX-EXISTENTIAL
CO-CLONES

In order to approach max-quantification we consider
counting quantifiers that have been used in model theory
to increase the power of first order logic.

Let Φ be a formula with free variables x1, . . . , xn
and y over set D and some predicate symbols. Then
a1, . . . , an satisfy

Ψ(x1, . . . , xn) = ∃kyΦ(x1, . . . , xn, y)

if and only if Φ(a1, . . . , an, b) is true for at least k values
b ∈ D. The quantifier ∃k will be called k-existential
quantifier.

We now introduce several types of co-clones depend-
ing on what kind of k-existential quantifiers are allowed.
A set of relations Γ over set D is said to be a k-existential
weak co-clone if it contains the equality relation =D,
and closed under conjunctions and k-existential quan-
tification. It is called k-existential co-clone if in addition
it is closed under regular existential quantification. The
set Γ is said to be a counting co-clone1 if it contains
=D, and closed under conjunctions and k-existential
quantification for all k ≥ 1. The smallest k-existential
weak co-clone containing a set of relations Γ is called
the k-existential weak co-clone generated by Γ and

1‘Counting’ in this term comes from counting quantifiers and has
nothing to do with counting constraint satisfaction.
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denoted ⟨Γ⟩k. Similarly, the smallest k-existential co-
clone and the smallest counting co-clone containing Γ
are called the k-existential co-clone and the counting
clone generated by Γ and denoted ⟨⟨Γ⟩⟩k and ⟨⟨Γ⟩⟩∞,
respectively.

The following observation summarizes some relation-
ship between the constructions introduced.

Observation 4: For a set of relations Γ on D, |D| =
m, the following hold.

- Γ is a 1-existential (weak) co-clone if and only if it
is a co-clone.

- Γ is a (weak) m-existential clone if and only if it a
(weak) co-clone closed under universal quantification.

- if Γ is a counting co-clone then it is a max-existential
co-clone.

- if Γ is a max-existential co-clone then it is a weak
m-existential clone.

In all other cases the introduced versions of co-clones
are incomparable.

Example 5: Fix a natural number m and let D be a set
with m(m−1)

2 elements. Consider an equivalence relation
R on D with classes D1, . . . , Dm such that |Di| = i.
Then the co-clone generated by Rm corresponds to
one of the Rosenberg’s maximal clones [19], and so
the structure of relations from this co-clone is well
understood. For any n-ary relation Q ∈ ⟨⟨Rm⟩⟩ there is
a partition I1, . . . , Ik of [n] such that a tuple a belongs to
Q if and only if for each j ∈ [k] and every i, i′ ∈ Ij the
entries a[i],a[i′] are Rm-related. This also means that
⟨Rm⟩ = ⟨⟨Rm⟩⟩.

Applying k-existential and max-existential quantifiers
one can easily find the k-existential, counting, and max-
existential clones generated by R:

- ⟨Rm⟩k = ⟨⟨Rm⟩⟩k is the set of relations Q: There
is a partition I1, . . . , It of [ar(Q)] and J ⊆ [t] such that
a tuple a belongs to Q if and only if for each j ∈ [t]
and every i, i′ ∈ Ij the entries a[i],a[i′] are Rm-related
and a[i] ∈ Dk ∪ . . . ∪Dm for i ∈ Ij , j ∈ J .

- ⟨⟨Rm⟩⟩∞ is the set of relations Q: There is a par-
tition I1, . . . , It of [ar(Q)] and a function φ : [t] → [m]
such that a tuple a belongs to Q if and only if for each
j ∈ [t] and every i, i′ ∈ Ij the entries a[i],a[i′] are Rm-
related and a[i] ∈ Dφ(j) ∪ . . . ∪Dm for i ∈ Ij , j ∈ J .

- ⟨Rm⟩max = ⟨Rm⟩1max is the set of relations Q: There
is a partition I1, . . . , It of [ar(Q)] and J ⊆ [t] such that
a tuple a belongs to Q if and only if for each j ∈ [t]
and every i, i′ ∈ Ij the entries a[i],a[i′] are Rm-related
and a[i] ∈ Dm for i ∈ Ij , j ∈ J .

A set Γ such that ⟨Γ⟩k ̸= ⟨⟨Γ⟩⟩k can be easily found
among usual weak co-clones. For instance, for any weak
co-clone Γ that is not a co-clone we have ⟨Γ⟩1 ̸= ⟨⟨Γ⟩⟩1.

Such a weak co-clone can be found in, say, [14].
In the example given we have ⟨Rm⟩1max = ⟨Rm⟩m.

However, since ⟨Rm−1⟩m = ⟨Rm−1⟩, we have
⟨Rm−1⟩1max ̸= ⟨Rm−1⟩m. Distinguishing between
⟨Γ⟩max and ⟨Γ⟩1max is more involved.

V. GALOIS CORRESPONDENCE

Let D be a finite set. A (partial) function f : Dn → D
is said to be k-subset surjective if for any k-element
subsets A1, . . . , An ⊆ D the image f(A1, . . . , An) is
either empty, or has cardinality at least k. A (partial)
function that is k-subset surjective for each k, 1 ≤
k ≤ |D| is said to be subset surjective. The set of all
arity n k-subset surjective partial functions [arity n k-
subset surjective functions, subset surjective functions]
on D will be denoted by P

k,(n)
D [resp., F k,(n)

D , F (n)
D ];

furthermore, P k
D =

∪
n≥0 P

k,(n)
D , F k

D =
∪

n≥0 F
k,(n)
D ,

FD =
∪

n≥0 F
(n)
D . Any partial function is 1-subset sur-

jective, while |D|-subset surjective partial functions are
exactly the surjective partial functions, and the function
with empty domain. Observe that this definition can be
strengthened by allowing the sets Ai, i ∈ [n], to have at
least k elements.

Lemma 6: If an n-ary function f is k-subset sur-
jective, then for any subsets A1, . . . , An ⊆ D with
|Ai| ≥ k, i ∈ [n], the image f(A1, . . . , An) is either
empty, or has cardinality at least k.

Proof: Suppose f(A1, . . . , An) is nonempty. Then
there are Bi ⊆ Ai, i ∈ [n], such that B =
f(B1, . . . , Bn) is nonempty. As f is k-subset surjective,
|B| ≥ k. Finally, B ⊆ f(A1, . . . , An), and the result
follows.

The notion of invariance for k-subset surjective func-
tions is the standard one for partial functions and rela-
tions. As usual, if C is a set of (k-) subset surjective
(partial) functions, Inv(C) denotes the set of relations
invariant with respect to every function from C. For a set
Γ of relations, m(k)-Pol(Γ) and m(k)-pPol(Γ) denote
the set of all k-subset surjective functions and partial
functions, respectively, preserving every relation from
Γ. By m-Pol(Γ) we denote the analogous set of subset
surjective functions.

The operator Inv on one side and the operators
m(k)-pPol(Γ), m(k)-Pol(Γ), m-Pol(Γ) on the other side
form Galois correspondences in the standard fashion. We
characterize closed sets of relations that give rise from
this correspondence.

Lemma 7: Let R(x1, . . . , xℓ, y) be a relation on D,
and let Q(x1, . . . , xℓ) = ∃kyR(x1, . . . , xℓ, y). Then if
a k-subset surjective (partial) function f preserves R, it
also preserves Q.

5



Proof: Suppose f is n-ary. Take a1, . . . ,an ∈ Q.
Since each of them is put into Q by k-existential quantifi-
cation, it has at least k extensions to a tuple from R. Let
B1, . . . , Bn ⊆ D be such that |Bi| ≥ k and (ai, b) ∈ R
for b ∈ Bi and i ∈ [n]. Let also b = f(a1, . . . ,an). For
any b ∈ B = f(B1, . . . , Bn) the tuple (b, b) belongs to
R. As f is k-subset surjective, |B| ≥ k, hence, b ∈ Q.

Theorem 8: Let Γ be a set of relations on a set D.
(a) Invm(k)-pPol(Γ) = ⟨Γ⟩k;
(b) Invm(k)-Pol(Γ) = ⟨⟨Γ⟩⟩k;
(c) Invm-Pol(Γ) = ⟨⟨Γ⟩⟩∞;

Proof: (a) The equality relation, =D, is invariant
with respect to any partial function on D. Let f be a k-
subset surjective functions. It is straightforward to verify
that the conjunction of any two predicates invariant under
f results in a predicate invariant under f . By Lemma 7
applying k-quantification to a predicate invariant under
f gives again a predicate invariant under f . Hence,
⟨Γ⟩k ⊆ Invm(k)-pPol(Γ). Moreover, it follows that
Invm(k)-pPol(Γ) = Invm(k)-pPol(⟨Γ⟩k).

To establish the reverse inclusion, for any ℓ-ary re-
lation R ∈ Invm(k)-pPol(Γ) we define a relation Q
as follows. Let R = {a1, . . . ,at}. We consider se-
quences (B1, . . . , Bt) of k-element subsets of D. Let
also (B1

1 , . . . , B
1
t ), . . . , (B

r
1 , . . . , B

r
t ) be a list of all such

sequences. Then Q is the union of relations given by

aj ×B1
j × . . .×B1

j︸ ︷︷ ︸
k times

× . . .×Br
j × . . .×Br

j︸ ︷︷ ︸
k times

,

for all j ∈ [t]. We show that there is S ∈ ⟨Γ⟩k such that
Q ⊆ S and pr[ℓ]S = R. Then applying k-quantifications
to all coordinates of S except for the first ℓ we obtain
that R ∈ ⟨Γ⟩k.

Let us consider the relation S =
∩
{Q′ ∈ ⟨Γ⟩k |

Q ⊆ Q′}. Since ⟨Γ⟩k is closed under conjunctions and
contains the total relation Dℓ+kr, we have S ∈ ⟨Γ⟩k and
Q ⊆ S.

Now choose any tuple b = (b1, . . . , bℓ, d1, . . . , dkr) ∈
S. There are sets C1, . . . , Cr such that |Ci| = k, for any
j ∈ [r], Ck(j−1)+1 = . . . = Ckj , di ∈ Ci, and for any
d′i ∈ Ci, i ∈ [kr], the tuple (b1, . . . , bℓ, d

′
1, . . . , d

′
kr),

since otherwise we can obtain a smaller relation S′ con-
taining Q, by applying a sequence of k-quantifications,
followed by a conjunction with the total relation Dℓ+kr.
Therefore we can choose b such that for any j ∈
[r] all the values dk(j−1)+1, . . . , dkj are distinct, and
{dk(j−1)+1, . . . , dkj} = Ckj .

Since ⟨Γ⟩k is closed under conjunctions, by the
Fleischer and Rosenberg result [12] it satisfies ⟨Γ⟩k =
Inv pPol(⟨Γ⟩k). Moreover, by the proof of Theorem 2 of

[12] S is the set of all tuples of the form f(c1, . . . , cn)
for n ≥ 1, c1, . . . , cn ∈ Q, and f ∈ pPol(⟨Γ⟩k).
Therefore there exist n ≥ 1, c1, . . . , cn ∈ Q and
f ∈ pPol(⟨Γ⟩k) such that c = f(c1, . . . , cn). Let
pr[ℓ]cq = aiq . For any selection E1, . . . , En of k-
element subsets of D there is j ∈ [r] such that Eq = Bj

iq
for q ∈ [n]. By the choice of c the range of f on
E1×. . .×En = Bj

i1
×. . .×Bj

in
contains Ckj . Hence f is

k-subset surjective, and so f ∈ Invm(k)-pPol(Γ), as it is
equal to Invm(k)-pPol(⟨Γ⟩k). Therefore R is invariant
under f , and so (b1, . . . , bℓ) ∈ R. Relation S satisfies
the required conditions, which completes the proof.

Proofs in parts (b), and (c) are quite similar.
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