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Abstract. Counting graph homomorphisms and its generalizations such as the Counting
Constraint Satisfaction Problem (CSP), variations of the Counting CSP, and counting problems in
general have been intensively studied since the pioneering work of Valiant. While the complexity of
exact counting of graph homomorphisms (Dyer and Greenhill, 2000) and the Counting CSP (Bulatov,
2013, and Dyer and Richerby, 2013) is well understood, counting modulo some natural number has
attracted considerable interest as well. In their 2015 paper Faben and Jerrum suggested a conjecture
stating that counting homomorphisms to a fixed graph H modulo a prime number is hard whenever
it is hard to count exactly, unless H has automorphisms of certain kind. In this paper we confirm
this conjecture. As a part of this investigation we develop techniques that widen the spectrum of
reductions available for modular counting and apply to the general CSP rather than being limited to
graph homomorphisms.

1. Introduction. In this paper we tackle the problem of counting graph ho-
momorphisms modulo a prime number. Counting problems in general have been
intensively studied since the pioneering work by Valiant [37, 36]. For a problem A
from NP the corresponding counting problem asks about the number of accepting
paths of a nondeterministic Turing machine that solves the problem A. In many
cases rather than counting accepting paths we may need to compute a more tangible
number. One such case is the Constraint Satisfaction Problem (CSP), in which the
question is to decide the existence of an assignment of values to variables subject to
a given collection of constraints. Thus, in the Counting CSP the objective is to find
the number of such assignments. The counting CSP also allows for generalizations
such as partition functions [2, 6] that yield connections with areas such as statistical
physics, see, e.g. [30, 34]. While the complexity of exact counting solutions of a CSP
is now well understood [11, 4, 13, 10], modular counting such as finding the parity
of the number of solutions remains widely open. Although the focus of this paper is
on graph homomorphisms that are a special kind of the CSP, we intensively use the
general CSP as a technical tool, apply the techniques developed for the general CSP,
and also try to state our results in a form as general as possible.

Homomorphisms and the Constraint Satisfaction Problem. A relational signature
o is a collection of relational symbols each of which is assigned a positive integer, the
arity of the symbol. A relational structure H with signature o is a set H and an
interpretation R™ of each R € o, where R™ is a relation or a predicate on H whose
arity equals that of R. The structure H is finite if both H and o are finite. All the
structures in this paper are finite. The set H is said to be the base set or the universe
of H. We will use for the base set the same letter as for the structure, only in the
regular font. A structure with signature o is often called a o-structure. Structures
with the same signature are called similar.

Let G, H be similar structures with signature o. A homomorphism from G to H
is a mapping ¢ : G — H such that for any R € o, say, of arity r, if R9(a4,...,a,)
is true for ay,...,a, € G, then R*(p(ay),...,p(a,)) is true as well. The set of all
homomorphisms from G to H is denoted Hom(G,H). The cardinality of Hom(G,H) is
denoted by hom(G, ). A homomorphism ¢ is an isomorphism if it is bijective and
the inverse mapping ¢! is a homomorphism from # to G. If H and G are isomorphic,
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we write H = G. A homomorphism of a structure to itself is called an endomorphism,
and an isomorphism to itself is called an automorphism.

The Constraint Satisfaction Problem can be defined in multiple ways; one of the
standard ones actually involves constraints imposed on sets of variables. However, for
our purposes the definition promoted by Feder and Vardi [16] is the most convenient
one. It is also equivalent to the other definitions. The CSP asks, given similar relational
structures G and H, to decide whether there is a homomorphism from G to H.

While the general CSP is of course NP-complete, certain restrictions of the problem,
first, allow one to model specific combinatorial problems, and, second, give rise to
problems of lower complexity. The most widely studied way to restrict the CSP, and
the one we use here, is to fix the target structure H. By CSP(H) we denote the
problem, in which given a structure G similar to H, the goal is to decide whether
there is a homomorphism from G to H. CSPs of this form are sometimes called
nonuniform CSPs. In the literature such restrictions are also often given through
constraint languages.

Counting CSP and graph homomorphisms. In the (exact) Counting CSP the goal
is to find the number hom(G, H) of homomorphisms from a relational structure G to a
relational structure . Restricted versions of the Counting CSP can be introduced
in the same way as for the decision one. In the counting version of CSP(#) denoted
#CSP(H) the goal is to find hom(G, H) for a given structure G. A graph can be
viewed as a relational structure with one symmetric binary relation, however, for
historical reasons, we use slightly different notation for graphs. In particular, we use H
rather than H and Hom(H), #Hom(H) rather than CSP(H), #CSP(H). The problem
Hom(H) is often called the H-Coloring problem in the graph theory literature, see,
e.g., [25]. Tts counting variant is called the # H-Coloring problem.

The complexity class the Counting CSP belongs to is #P, the class of problems
of counting accepting paths of polynomial time nondeterministic Turing machines.
There are several ways to define reductions between counting problems, but the most
widely used ones are parsimonious reductions and Turing reductions. A parsimonious
reduction from a counting problem #A to a counting problem #B is an algorithm
that, given an instance I of #A, produces (in polynomial time) an instance I’ of #B
such that the answers to I and I’ are equal. A Turing reduction is a polynomial time
algorithm that solves # A using #B as an oracle. Completeness in #P is then defined
in the standard way. This paper and all the papers we cite predominantly use Turing
reductions.

The complexity of the #H-Coloring problem was characterized by Dyer and
Greenhill [11]. It turns out that this problem can be solved in polynomial time if and
only if every connected component of H is either an isolated vertex, or a complete
graph with all loops present, or a complete bipartite graph. Otherwise # H-Coloring
is #P-complete. This theorem was generalized through a sequence of intermediate
results [12, 9, 5, 6] to a complete complexity classification of #CSP(H) for arbitrary
finite relational structures H by Bulatov [4] and Dyer and Richerby [13].

Modular counting. In this paper we study the problem of counting solutions to a
CSP modulo a prime number p. If a relational structure H is fixed, this problem is
denoted by #,CSP(#). More precisely, in #,CSP(#) the objective is, given a relational
structure G, to find the number of homomorphisms from G to H modulo p. If the
relational structure H is a graph, this problem is also denoted by #,Hom(H). There
are several complexity classes related to modular counting. The more established type
of classes is ModP, the class of problems deciding whether the number of accepting
paths of a polynomial time nondeterministic Turing machine is not divisible by k,
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[8, 26]. In particular, if k¥ = 2 then ModiP is the class ®P. However, problems of
counting accepting paths naturally belong to classes of the form #;P, introduced in
[14] that contain problems of counting accepting paths modulo k. The standard notions
of reduction are again parsimonious reduction (only now the equality of answers is
understood modulo k) and Turing reduction. Faben in [14] studied basic properties of
such classes, in particular, he identified several #;P-complete problems.

A priori, the relationship of the complexity of such problems with that of regular
counting problems is unclear, except modular counting cannot be harder than exact
counting. Later we will see examples when modular counting problems are much easier
than their exact counterparts. The problem #;CSP(H) of counting solutions of CSPs
modulo a number k, which is not necessarily prime, is, of course, also very natural.
As is easily seen, solving #;CSP(H) reduces to solving several problems of the form
#,0CSP(H), where p is prime. However, problems of the form #,CSP(H) for £ > 1
have not been studied and are beyond the scope of this paper.

In the case of the CSP, the research has mostly been focused on graph homo-
morphisms. The only exceptions we are aware of are a result of Faben [14] who
characterized the complexity of counting the solutions of a Generalized Satisfiability
problem modulo an integer, a generalization of [14] to problems with weights by Guo
et al. [21], and a study of the complexity of a certain class of a more general Holant
problem by Guo et al. [22]. The study of modular counting of graph homomorphisms
has been much more vibrant.

Before discussing the results of this study we need to mention the automorphism
group of a graph or, more generally, of a relational structure. The automorphisms
of H form a group with respect to composition denoted Aut(#). The order of an
automorphism 7 € Aut(#) is the smallest number k such that 7% is the identity
permutation. An element a € H is a fixed point of 7 € Aut(H) if 7(a) = a. The set of
all fixed points of 7 is denoted by Fix(r).

A systematic study of counting graph homomorphisms modulo a prime number p
was initiated by Faben [14], and later continued by Faben and Jerrum [15]. One of
the first observations they made concerns the cases where exact and modular counting
clearly deviate from each other. As Faben and Jerrum observed, the automorphism
group Aut(H) of a graph H plays a very important role in solving the #,Hom(H)
problem. Let ¢ be a homomorphism from a graph G to H. Then composing ¢ with an
element from Aut(H) we again obtain a homomorphism from G to H. Thus, Aut(H)
acts on the set Hom(G, H) of all homomorphisms from G to H. If Aut(H) contains an
automorphism 7 of order p (or p-automorphisms), the cardinality of the orbit of ¢ is
divisible by p, unless 7 o p = ¢, that is, the range of ¢ is within the set of fixed points
Fix(m) of . Therefore this orbit contributes 0 modulo p into the total homomorphism
count from G to H. This motivates the following construction. Let H™ denote the
subgraph of H induced by Fix(m). We write H —, H' if there is 7 € Aut(H) such that
H' is isomorphic to H™. We also write H = H' if there are graphs Hy,..., H} such
that H is isomorphic to Hy, H' is isomorphic to Hy, and Hy —, Hy —, -+ —p Hy.

LEMMA 1.1 ([15]). Let H be a graph and p a prime number. Up to an isomorphism
there is a unique smallest (in terms of the number of vertices) graph H*P such that
H — H*P, and for any graph G it holds

hom(G, H) = hom(G, H*?) (mod p).

Moreover, H*P does not have automorphisms of order p.

Often Lemma 1.1 helps to reduce the complexity of modular counting.
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ExampLE 1.2. Consider the 3-Coloring problem. Since permuting colors in a
proper coloring produces another proper coloring, the number of 3-colorings of a graph
is always 0 (mod 3), that is, counting 3-colorings modulo 3 is trivial. From a more
formal perspective, the #33-Coloring problem is equivalent to #3Hom(Ks), where K
is a complete graph with 8 vertices. Any permutation of the vertices of K3 is an
automorphism, and the cyclic permutation of all vertices has order 3. Therefore by
Lemma 1.1 #3Hom(K3) is equivalent to counting homomorphisms to an empty graph.

Graphs in Lemma 1.1 can be replaced with relational structures without chang-
ing the result, see Lemma 3.4 in Section 3.1. We will call relational structures
p-automorphisms p-rigid. By Lemmas 1.1, 3.4, and 3.5 it suffices to determine the
complexity of #,CSP(H) for p-rigid structures H.

Faben and Jerrum [15] and then Gobel, Lagodzinski, and Seidel [20] conjectured
that p-automorphisms are the only reason why counting homomorphisms modulo p
can be easier than exact counting.

CONJECTURE 1.3 ([15, 20]). For a p-rigid graph H the problem #,Hom(H) is
#,P-complete (solvable in polynomial time) if and only if #Hom(H) is #P-complete
(solvable in polynomial time).

The existing results. The research in modular counting has mostly been aimed
at verifying Conjecture 1.3. In [15] Faben and Jerrum proved their conjecture in the
case when H is a tree and p = 2. This result has been extended by Goébel et al. first
to the class of cactus graphs [23] and then to the class of square-free graphs [19] (a
graph is square-free if it does not contain a 4-cycle), still for p = 2. Next, Gdbel,
Lagodzinski, and Seidel confirmed Conjecture 1.3 for trees and arbitrary prime p [20].
Kazeminia and Bulatov [31] confirmed the conjecture in the case of square-free graphs
and arbitrary prime p. Focke et al. [17, 18] used some techniques from [31] to prove
the conjecture for K4-minor-free graphs and p = 2. Finally, Lagodzinski et al. [33]
considered quantum graphs and quantum homomorphisms, where quantum graphs
are simply formal sums of graphs, and quantum homomorphisms are homomorphism-
like constructions for quantum graphs defined in an appropriate way. They proved
that #,Hom(H) for a quantum graph is #,P-complete whenever it is hard for any
of its component graphs. Also, they showed that #,Hom(H) is polynomial time
interreducible with #,Hom(H’), where H' is a certain bipartite graph. Finally, they
confirmed Conjecture 1.3 for bipartite graphs that do not contain K3 3 without an
edge or a domino as an induced subgraph (a domino is a bipartite graph obtained
from K33 by removing two non-incident edges). The last two results use intricate
structural properties of graphs and a massive case analysis.

In this paper we confirm Conjecture 1.3 for arbitrary graphs.

THEOREM 1.4. For any prime p and any graph H the problem #,Hom(H) is
solvable in polynomial time if and only if #Hom(H*P) is solvable in polynomial time.
Otherwise it is #,P-complete.

By the result of Dyer and Greenhill [11] #Hom(H*P) (and therefore #,Hom(H))
is solvable in polynomial time if and only if every connected component of H*P is a
complete graph with all loops present or a complete bipartite graph.

Our main technical contributions into the study of modular counting graph
homomorphisms are twofold. First, we expand the signature of graphs with new
relational symbols so that, on one hand, this does not change the complexity of the
counting problem, and on the other hand, the resulting relational structure is richer
and allows for more straightforward and concise arguments. Second, we do not design
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any particular gadgets for our reductions, but rather prove that the existence of such
gadgets follows from the p-rigidity of a graph or a structure.
In the next section we outline the main steps of the proof.

2. Outline of the proof. In this section we give a detailed outline of the proof of
Theorem 1.4. The easiness part of Theorem 1.4, that is, if #Hom(H*?) is polynomial-
time solvable then #,Hom(H) is polynomial-time solvable, follows from Lemma 1.1.
Indeed, for any input graph G, Lemma 1.1 guarantees that hom(G, H) = hom(G, H*P)
(mod p), and the latter value can be computed in polynomial time. Therefore we focus
on the proof of hardness.

We will need some additional definitions and notation.

Graphs and their expansions. Although the main result of the paper is about
graphs, we use relational structures with richer signatures. Let o,¢’ be signatures
such that o C ¢’. A o’-structure H’ is said to be an expansion of a o-structure H if
it has the same base set, and for every R € ¢ the interpretations R7* and R™" are
equal. If o/ = c U{Q}, and @ has a certain interpretation S on H, we often abuse the
terminology and write H + S instead of H’.

The majority of structures we deal with are expansions of graphs. We therefore
reserve E to denote the graph edge relation. To deal with bipartite graphs properly
it will be convenient to introduce a special kind of expansions of graphs that we call
graph-structures. In order to avoid confusion we use a different font for such structures,
say, H, rather than H. In the case of a nonbipartite graph H the corresponding
graph-structure H is just the graph itself. If H is a bipartite graph, then H includes
the binary edge relation E and two unary predicates L and R interpreted as the
two parts of the bipartition (the choice of parts is arbitrary, but fixed). If we need
to distinguish whether we are dealing with bipartite or nonbipartite case, we refer
to H as a bip- or nonbip-structure, respectively. Every expansion of a graph- (bip-,
nonbip-)structure is called a graph expansion (bipartite graph expansion, nonbipartite
graph expansion). We again use a different font in this case, say, H. A bipartite
graph expansion H has symbols F, f/, R in its signature, where E is an edge relation
of a bipartite graph, and E, R are the two parts of the bipartition. By H we denote
the underlying graph-structure with the base set H and signature {E, L, é} if Hisa
bipartite graph, and signature {E'} otherwise.

The proof of hardness is a chain of reductions, so here we explain each of these
steps, the main constructions and the techniques used. Then we fill in the remaining
details and proofs in the subsequent sections. The idea is to reduce one of three known
#,P-hard problems depending on whether the graph H is bipartite or not. In the case
of bipartite graphs the problem is #,BIS(«, 8) of counting weighted independent sets in
a bipartite graph to #,Hom(H). In the case of nonbipartite graphs, for simple graphs
we reduce the #,3SAT problem of counting the number of satisfying assignments to
a 3-CNF. Otherwise we reduce either #,BIS(a, 8) or #,IS, the problem of counting
independent sets in general graphs. This is done in five steps as shown in Figure 2.1.
We define all the intermediate problems as we go, and give a brief explanation on how
the reduction works in each step. We start with a graph H that satisfies the hardness
conditions of Theorem 1.4. The first three steps (right to left) transform the graph H
into a relational structure H¢ that is a graph expansion. The last two steps depend on
whether or not H is bipartite and in the nonbipartite case, whether or not the graph is
simple. In the bipartite case we identify a further expansion H? of HC of a particular
kind, and then show that #,BIS(«, 8) is reducible to the CSP over this expansion.
In the nonbipartite case if H has no loops, we find an expansion H3AT of H¢ such
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#,BIS(a, B) <1 #,CSP(H?) <r
#,3SAT <7 #,CSP(H*AT)  <p #,CSP(HC) <7 #,Hom(H*?) <t #,Hom(H)
#pBIS[#,IS] <p #,CSP(HT) <7

Fig. 2.1: The chain of reductions

that #,3SAT is reducible to #,CSP(H3%AT). Otherwise we find an expansion H' of
H¢ such that either #,BIS(a, ) or #,IS is reducible to #,CSP(H).

2.1. #,Hom(H*?) <p #,Hom(H). Recall that H*? denotes the p-rigid graph
obtained from H by means of p-automorphisms in Lemma 1.1. In this step of the proof,
we use Lemma 1.1 to obtain a parsimonious (modulo p) reduction from #,Hom(H*?)
to #pHom(H).

2.2. #,CSP(H®) <p #,Hom(H*P). One of the standard techniques in studying
homomorphisms is pinning. Let G,H be two similar relational structures. To pin a
vertex v € G to a vertex a € H means to require that we only consider homomorphisms
of G to H that map v to a. Clearly, if we allow pinning in a problem such as #CSP(H),
it only becomes harder. However, often under certain conditions the problem with
pinning can be reduced to the one without. In order to make this connection precise
we again translate it into the terminology of relational structures.

Let H be a o-structure and a € H. The constant relation C, = {(a)} is a unary
relation that contains just a single element. Consider the expansion ¢ of the signature
o, given by 0¢ = 0 U{Ch, | a € H}. Here we assume that Cy,, & o for any a € H.
For the structure H by H® we denote the o°-structure with the same base set as ‘H and
such that for every a € H the predicate symbol Cy , € o€ is interpreted as C,, and for
every symbol R € o the interpretations R* and R™" are the same. It is easy to see that
CSP(H€), #CSP(H) or #,CSP(H®) are the same as CSP(H), #CSP(H), #,CSP(H)
with pinning allowed.

Thus the claim that the problem with pinning is reducible to the one without is
equivalent to saying that the problem over H¢ is reducible to the one over H. Such
statements were proved in [7] for the decision CSP, i.e., that CSP(?¢) is polynomial
time reducible to CSP(H), provided H is a core, that is, it does not have endomorphisms
that are not automorphisms. It is proved in [5] that #CSP(H®) is polynomial time
reducible to #CSP(#H) for any H. In the case of #,Hom(H) it was proved in [19]
for p = 2 and in [20] for arbitrary prime p that if H is p-rigid then #,CSP(H®) is
polynomial time reducible to #,Hom(H). In Section 5.4 we prove a generalization of
this result for arbitrary relational structures.

THEOREM 2.1. Let H be a p-rigid o-structure. Then #,CSP(HC) is polynomial
time reducible to #,CSP(H).

REMARK 2.2. For any relational structure H the structure H® does not have any
nontrivial automorphisms, in particular, it is p-rigid, and so is any of its induced
substructures. We will assume this from this point on, and this is of course one of
the major advantages of working with structures of this kind. However, several times
we will need to work with direct powers of the structure HE, and such powers of H®
may have nontrivial automorphisms. The reason is that formally speaking if H is a
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o-structure then H° has the signature 0 U{Cr, | a € H}. Therefore, so does, say
€2 c

(H)2. For the latter structure (b,c) € Cg’{a) if and only if b,c € Cjf ,, that is, if and

only if b =c = a. This means that the involution, that is, the mapping (a,b) — (b, a),

is an automorphism of (H¢)?.

Further reductions are split into three cases: bipartite graphs without loops,
non-bipartite graphs without loops, and graphs with loops.

2.3. #,CSP(H?) <1 #,CSP(HE). We begin with the bipartite case without loops.
In this step we first identify a substructure, a thick Z-graph, of H¢ of a special kind.
We denote the structure H¢ augmented with this new substructure as a new predicate
by H%. Then it turns out that a thick Z-graph can be defined in such a way that
#,CSP(H?) is polynomial time reducible to #,CSP(H¢), thus completing this step of
reduction.

Before we consider specifically bipartite graphs, we explain a technique that is
used in both, bipartite and nonbipartite cases.

2.3.1. Primitive positive definitions and polynomial time reductions.
Primitive positive definitions (pp-definitions for short) have played a major role in
the study of the CSP. It has been proved in multiple circumstances that expanding a
relational structures with pp-definable relations does not change the complexity of the
corresponding CSP. This has been proved for the decision CSP in [27, 7] and the exact
Counting CSP [5]. The reader is referred to [1] for details about primitive positive
definitions and their use in the study of the CSP.

Let =g denote the equality relation on the set H. Let H be a relational structure
with the base set H. A primitive positive formula in H is a first-order formula

Elylv"‘vyscb(mlw~'7xk7y17'~'ays)7

where ® is a conjunction of atomic formulas of the form z1 =g 22 or R(z1,...,2¢),
Z1yeeey 20 S
{z1,..., 2k, y1,.-.,Ys}, and R is a predicate of H. We say that H pp-defines a
predicate R if there exists a pp-formula Jy1,...,ys®(z1,..., Tk, y1,...,Ys) such that

R(mla"'wrk) :Eyla-“7y8¢(x17~"7$k7y1>"'ays)a

that is, (a1,...,ar) € R if and only if for some values by,...,bs € H the formula
®(ay,...,ak,b1,...,bs) is true.

Let H be a relational structure and R a relation on H. By H + R we denote
the expansion of H with the relation R. Jeavons et al. [27] and Bulatov and Dalmau
[5] proved that if H pp-defines R then CSP(H + R) (respectively, #CSP(H + R)) is
polynomial time reducible to CSP(H) (respectively, to #CSP(H)).

The following theorem shows that expanding a relational structure H with a
pp-definable predicate does not change the complexity of modular counting provided
‘H is a graph expansion and is p-rigid.

THEOREM 2.3. Let p be a prime and H a p-rigid relational structure that is a
graph expansion. If R is pp-definable in H then #,CSP(H + R) is polynomial time
reducible to #,CSP(H).

A unary relation that is pp-definable in a relational structure is said to be a
subalgebra of the structure.

While the analogous reduction in [27, 7] is straightforward and that in [5] uses
interpolation techniques, the main tool in proving Theorem 2.3 is careful counting
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homomorphisms modulo p. A full proof for Theorem 2.3 is given in Section 5.6. We
show using the p-rigidity of H and the Md&bius inversion formula that R has a pp-
definition of a special kind that allows for a polynomial time reduction. However, as we
will see repeatedly in Section 5.6, the existence of such a pp-definition depends on the
structure of direct powers of H, or more precisely, on the structure of automorphisms
of direct powers of H. This requires an in-depth analysis of the automorphism group
of H* in Section 4. Note that the required properties of Aut(#?) are only known for
nonbipartite graphs and we prove them for graph expansions, including bipartite graph
extensions, and this restricts the scope of Theorem 2.3 to structures of this kind.

2.3.2. Thick Z-Graphs and H?. We now focus on bipartite graph expansions.

The special type of bipartite graphs we need in this step is shown in Figure 2.2.
More precisely, a bip-structure Z = (EZ U RZ, b, Iu/, R) is said to be a thick Z-graph
if its vertices can be partitioned into four nonempty sets A, B,C, D, where A,C C
Iv/Z,B,D C R? in such a way that the sets AU B,C' U B,C U D induce complete
bipartite subgraphs of Z, and there are no edges between vertices from AU D. The
relational structure H® we deal with is a bipartite graph expansion. We say that
the thick Z-graph Z is pp-definable in H€ if the sets LZ C LM and R? C RM are
pp-definable in H, and L% U R? induces Z.

The structure HZ is defined as the expansion of H by two new unary predicates
LZ and RZ interpreted on H as L7 and }U%Z, respectively. These new predicates can be
used in an input structure G of #pCSP(’HZ) to force some vertices of G to be mapped
into Z.

LEMMA 2.4. Let H be a bipartite graph expansion. If the underlying bipartite
graph of H is not a complete bipartite graph, then HS contains a pp-definable thick
Z-graph.

Fig. 2.2: Thick Z-graph

2.4. #,BIS(a, B) <7 #,CSP(H?). In the final step for the bipartite case we
reduce #,BIS(a, 8) to #,CSP(H%). The problem #,BIS(«q, 3) was introduced by
Gébel, Lagodzinski and Seidel [20]. Let o, 8 # 0 (mod p). Then #,BIS(a, 8) is the
problem defined as follows: given a bipartite graph, or, actually, a bip-structure, G
with bipartition EG, RG, find the value

76 5G

ZQ,B(G) _ Z a|IﬂL | _ﬁ\IﬂR |
I€1S(G)
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modulo p, where IS(G) denotes the set of independent sets of G. In the same paper
#,BIS(a, 5) was also shown to be #,P-complete for any «, 5 # 0 (mod p).

Before explaining the argument we need to introduce one more concept.

We sometimes need to restrict the set of homomorphisms between relational
structures G and H to those that map specific elements of G to specific sets of elements
of H. This can be achieved in two ways. First, the signature of G, can be expanded
by introducing unary predicates similar to constant relations as in Section 2.2. However,
a more flexible way is to use structures with distinguished vertices.

A pair (H,a), where a = (a1, ...,a) € H* for some k, will be called a relational
structure ‘H with distinguished vertices a. For structures with distinguished vertices
(G,a),(H,b), b = (by,...,by) € H such that G,H are similar, a homomorphism
from (G,a) to (H,b) is a homomorphism ¢ from G to H that maps a; to b;, i € [k].
The set of all homomorphisms from (G, a) to (H,b) is denoted by Hom((G, a), (#,b)).
Also, hom((G,a), (H,b)) = |[Hom((G, a), (H,b))|.

This notion can be slightly generalized replacing b with a sequence By, ..., By C H:

Hom((G,a),(H,B1,...,Bx)) = |J Hom((G,a),(H,bs,...,bx))  and

b;€B;,i€[k]
hom((G,a), (H,Bi,...,Bx)) = > hom((G,a), (H,b1,...,bk))
b; €B;,i€[k]
Observe that #,BIS(«, 8) can also be viewed as #,CSP(Z), where Z is a thick

Z-graph with parts A, B,C, D, AUC = L?,BUD = RZ, such that o = E%‘I and

8= %. Suppose that F' is an instance of #,BIS(«, §), that is, a bipartite graph. The
observation above means that, as H? contains a pp-definable thick Z-graph Z we can
consider homomorphisms from F to HZ and force all the vertices of F to be mapped
into Z thus simulating #,BIS(«, 5). If none of |A|,|B], |C|,|D| is 0 (mod p), this gives
us the #,P-completeness of #,CSP(#%). However, there is no way to guarantee this
and we need to make one more step to overcome this hurdle.

LEMMA 2.5. Let 0% be the signature of H*. There are o%-structures (Kr, ), (Kr,z)
with distinguished vertices such that

hom((Kr, ), (H*, A)) = a1 #0 (mod p),
hom((Kp, ), (H%,C)) =az #0 (mod p),
hom((Kg, ), (H*, D)) =1 #0 (mod p),
hom((Kg,x),(H*, B)) = B2 0 (mod p),

and
hom((Kp,z), (H%,v)) = 0, forve L — (AU 0),
hom((Kg, ), (H%,v) =0  forve R — (BUD).
We need a similar result for other cases, so we prove a more general result in

Section 5.8.
Let G be an instance of #pBIS(alaz_l, B15 ). For every vertex v of G we attach a

copy of (Kp,z)ifv € LS, and a copy of (Kg,z)ifv e RS, identifying the distinguished
vertex x with v as shown in Figure 2.3. We then show that

hom(G' HY) = Y (anay )T (818, )IMAYT (mod p),
I€IS(Q)
9



where G’ is the structure obtained by applications of (K, ), (Kg,x) to G. The result
follows.

Fig. 2.3: Reduction of BIS

2.5. #,CSP(H35AT) < #,CSP(H°). In this step, we assume that the graph H is
non-bipartite and contains no loops. We need a special type of structure that somehow
simulates the 3SAT problem. A relational structure S = (O U I, Ry, 1, j, k € {O,I})
is said to be a 3SAT structure if O, I # () and

Rijr = (OUI)* —{(a,b,c) |a€ibejcek},

for every i, j,k € {O,I}. We say that the 3SAT structure S is pp-definable in H€ if
the sets O, I, and O U I, the equivalence relation on O U I with equivalence classes O
and I, as well as the relations R;jx, 1,7,k € {O, I} are pp-definable in .

If the 3SAT structure S is pp-definable in H¢, then H3°AT is defined as the expansion
of H¢ by a new unary predicate O U I and the relations R;ji, 4, j, k € {O,I}. The new
unary predicate can be used in an input structure G of #pCSP(H3SAT) to force some
vertices of G to be mapped into S.

The following lemma is straightforward from the results of [3].

LEMMA 2.6. Let H be a nonbipartite graph expansion (of a graph without loops)
that contains all the constant relations. If the underlying graph of H is not a complete
graph or a single vertex, then HS contains a pp-definable 3SAT structure.

2.6. #,3SAT <1 #,CSP(H?SAT). In this step we need another construction that
has proved to be useful in the CSP research. Let H be a o-structure and 6 an
equivalence relation on H. By H /g we denote the factor structure defined as follows.

e H/p is a o-structure.

e The base set of H /g is H/gp = {a/g | a € H}, where a/y denotes the H-class

containing a.

e For any R € o, say, k-ary, R"/* = {(a1/g,...,ar/e) | (a1,...,ax) € R™}.
Now, let G C H be a subalgebra of H, that is, a unary relation pp-definable in H, G
the substructure of H induced by G, and 6, an equivalence relation on GG, a congruence
of H. Then G/g is said to be a quotient structure of H. Note that in this definition 6
is pp-definable in #H rather than in G.

If G is a quotient structure of H, then CSP(G) (the decision problem) is polynomial
time reducible to CSP(H), [7], and #CSP(G) (the exact counting problem) is polynomial
time reducible to #CSP(H), [5]. In Section 5.7 we prove that a similar reducibility
holds for modular counting as well, provided H is a graph expansion.
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THEOREM 2.7. Let p be a prime and H a p-rigid relational structure that is a
graph expansion. If G is a quotient structure of H then #,CSP(G) is polynomial time
reducible to #,CSP(H).

If H is a simple nonbipartite graph, then by Lemma 2.6 there is a subalgebra
G = OUT of H33AT and a congruence # on G with classes O and I such that the
quotient structure G/o of H35AT contains the relations Rfj,w i,5,k € {0,1}, where
we treat 0 = O/g,1 = I/y. These relations are given by 3-clauses on {0,1}, and
therefore implement 3SAT. By Theorem 2.7 #,3SAT is polynomial time reducible to
#,CSP(H3SAT).

2.7. #,CSP(HT) <7 #,CSP(H°). If the graph H has loops, we construct an
expansion of H¢ with one of the two kinds of subalgebras. A reflexive graph G = (V, E)
is called a thick star if there is a partition of V into Vg, Vi,..., Vi, k > 2, such that
the subgraph G|y, of G induced by V; is a clique with all loops present, every vertex
from Vj is connected with an edge with every other vertex, and there are no other
edges. A graph G = (V, E) is said to be an independent 3-path if there is a partition
of V into Vi, V1, V4 such that G|y, is an independent set and contains no loops, G|y,
is a disjoint union of complete graphs Vi, ..., V¥ with all loops present, G \Vouvli is a
complete graph with all loops present for i € [k], every vertex of V5 is connected with
all the vertices of Vy, but to no vertex of V7.

Fig. 2.4: The structure of (a) thick star and (b) an independent 3-path.

LEMMA 2.8. Let H be a connected graph that is not a clique and contains a loop.
Then there exists a subalgebra W of HE such that H|w is a thick star (with k > 2) or
an independent 3-path.

Finally, let H' denote the expansion of H¢ with the unary predicate W.

2.8. #,BIS, #,IS <7 #,CSP(H). The reduction from #,BIS (or from #,IS) is
less intuitive than that in the case of bipartite graphs, because neither a thick star
nor independent 3-path are bipartite graphs. A simpler case is when V3 = ) in an
independent 3-path. If this is the case, then the independent 3-path is very close to
the homomorphism analogue of #I1S, which is Hom(K3), where K3 is a 2-element edge,
say 01, with a loop attached to 1. Indeed, for any graph G and any homomorphism
¢ : G — K3, the preimage of 0 is an independent set. Vice versa, for any independent
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set I of G the mapping that takes the vertices from I to 0 and the rest to 1 is a
homomorphism. In the case of independent 3-paths with V; = () the reduction works
the same way except we also need to account for the sizes of Vj, V5. This can be done
in a manner similar to finding a non-degenerate Z-graph.

In the remaining cases it will be convenient to uniformize the notation for both
thick stars and independent 3-paths. Let A =V and B = V; in both cases. Then let
C =VoU---UV; for thick stars and C' = V5 in the case of independent 3-paths. Then,
as is easily seen A and A U B are subalgebras of H¢. Indeed, AU B = W N Ng(b)
where W is the subalgebra identified in Lemma 2.8 and b is an arbitrary vertex from
B. Then A = (AU B) N Ng(c), where ¢ is an arbitrary vertex from C. Similar to
Z-graphs, we are interested in non-degenerate thick stars ind independent 3-paths.

LEMMA 2.9. Let W be a subalgebra of H® such that H|w is a thick star or an
independent 3-path. There are structures (K, x), (K, x) with distinguished vertices
such that

hom((/Ch, ), (K, A)) =1 (mod p),
hom((K,z),(HT,B)) =1 (mod p),
hom((K's, x), (HT,AUB)) =1 (mod p),
hom((ICh, 2), (H1,C)) = 1 (mod ),

and
hom((K%,z), (H,v)) =0  forv¢ AUB,
hom((K’y, z), (HI,v) =0  forvg W.

Similar to the bipartite case, given an instance G of an instance of #,BIS(1,1),
for every vertex v of G we attach a copy of (K}, z) if v € LS, and a copy of (K, x) if
v € RC, identifying the distinguished vertex z with v. We then show that

hom(G', #') = IS(G)|  (mod p),

where G’ is the structure obtained by applications of (K7, z), (K, z) to G. The key
to the equality above is that for any homomorphism ¢ : G’ — H' the vertices from L°©
mapped to B and the vertices from R® mapped to C form an independent set of G.

3. Properties of Relational Structures and Mo6bius inversion. In this
section, first we prove several results about relational structures that will be used later.
Then we claim the existence of certain well-behaved pp-definitions and homomorphisms
for p-rigid relational structures.

3.1. Factors, products and homomorphisms. For a relational structure #, an
automorphism is an injective homomorphism into itself. The automorphisms of H form
a group with respect to composition denoted Aut(#). The set of all automorphisms
with @ € H as a fixed point is the stabilizer of a denoted Staby (a). It is always a
subgroup of Aut(H).

We will use two basic facts from group theory. First, for any prime p, if G is a
group and |G| =0 (mod p), then G contains an element of order p. In particular, if
|Aut(H)| = 0 (mod p) for a relational structure H, then H has an automorphism of
order p. We call such automorphisms p-automorphisms.

Second, for a subgroup H of a group G, a coset of G modulo H is a set of the
form aH = {ah | h € H} for an element a € G. Then G : H denotes the set of cosets
of G modulo H. In this case Lagrange’s theorem holds claiming |G| = |H| - |G : H|.
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We will also need several concepts related to homomorphisms. In particular we
use expansions of relational structures and structures with distinguished vertices and
their homomorphisms introduced in Section 2. Note that a relational structure (G, a)
with distinguished vertices can be viewed as an expansion of G with k£ additional unary
symbols, one for each distinguished vertex. In such an interpretation a homomor-
phism of structures with distinguished vertices is just a homomorphism between the
corresponding expansions.

Next we introduce two types of products of structures. The direct product of
o-structures H, G, denoted H x G is the o-structure with the base set H x G and such
that the interpretation of R € ¢ is given by R™*9((a1,b1),..., (ax,bx)) = 1 if and
only if R*(ay,...,a;) =1and RY(by,...,b) = 1. By H¢ we will denote the £th power
of H, that is, the direct product of ¢ copies of H. The direct product (G,x) x (H,y)
of structures (G,x), (H,y) is defined to be (H x G, (x1,91),- -, (Tr, yr))-

Let [n] denote the set {1,...,n}. Two r-tuples x and y have the same equality
type if z; = x; if and only if y; = y; for i,j € [r]. Let (G,x) and (#,y) be structures
with r distinguished vertices and such that x and y have the same equality type. Then
(G,x) ® (H,y) denotes the structure that is obtained by taking the disjoint union of G
and H and identifying every x; with y;, ¢ € [r]. The distinguished vertices of the new
structure are x1,...,2Z,.

The following statement is straightforward.

PROPOSITION 3.1 ((5.28),(5.30), p.61 of [35]). Let (G,x),(H,y), (K,z) be similar
relational structures with r distinguished vertices. Then

hom((g,x) © (Hay)’ (IC7 Z)) = hom((g,x)7 (K:vz)) : hom(<H>Y)’ (’Cvz));
hom((K,z), ((G,x) x (H,y)) = hom((K, z), (¢,x)) - hom((K,z), (H,y)).

Moreover, ¢ € Hom((IC,z), ((G,x) x (H,y)) if and only if there exist a homomorphism
1 € Hom((K, z), (G,x)) and 3 € Hom((K, 2), (H,y)) such that ¢(v) = (¢1(v), p2(v))
forve K.

We will also need another simple observation. By inj((G,x), (H,y)) we denote the
number of injective homomorphisms from (G,x) to (H,y).

LEMMA 3.2 ([19]). Let (G,y) and (H,y) be relational structures with r distin-
guished vertices. If x,y do not have the same equality type, then inj((G,x), (H,y)) = 0.

Factor structures (see page 10) often appear in relation with homomorphisms. If
¢ is a homomorphism from a structure G to a structure #H, then the kernel 6 of ¢,
denoted ker(y), is the equivalence relation on G given by

(a,b) € 0 if and only if p(a) = p(b).

For an equivalence relation 6 on G by homy(G, H) and Homg((G,x), (H,y)) we denote
the number of homomorphisms from G to H (from (G,x) to (H,y)) with kernel 6.
The homomorphism ¢ gives rise to a homomorphism ¢/y from G/gy to H, where
v/o(a/g) = ¢(a), a € G. The homomorphism ¢/ is always injective.

We also define factor structures for structures with distinguished vertices as follows.
Let (H,a) be a structure with & distinguished vertices and 6 an equivalence relation
on H. Then (H,a)/g = (H/o,(a1/e,-..,ar/s))-

The following lemma is straightforward.

LEMMA 3.3. Let (H,aq,...,ax) be a o-structure with distinguished vertices and 6
an equivalence relation on H. Then the mapping p: H — H/g, where p(x) =x /¢ is a
homomorphism from (H,as,...,ax) to (H/e,(a1/e,-..,ax/e))-
13



3.2. p-Reduced form of . We observed in the introduction that a major
complication when studying the complexity of modular counting #,CSP(H) are p-
automorphisms of H. We call a structure H p-rigid if it does not have p-automorphisms.

As was mentioned, p-automorphisms allow for a reduction of #,CSP(H) as follows.
Let 7 be a p-automorphism of H. By 7 we denote the composition 7o ---ox
of ¢ applications of w. For an instance G and any homomorphism ¢ from G to
H the mappings 7¢ o o, £ € [p], are also homomorphisms. This means that the
homomorphism ¢ makes a contribution into hom(G, #) other than 0 (mod p) only if
7o = . This happens only if ¢ maps G to the set of fized points Fix(m) of 7, that
is, Fix(m) = {a € H | 7(a) = a}. By H™ we denote the relational structures obtained
by restricting H to Fix(m).

LEMMA 3.4. If H is a relational structure, and w an p-automorphism of H, then
for any structure G

hom(G,H) = hom(G,H™) (mod p)

Proof. Let H and H™ denote the universes of H and H™ respectively. For a similar
structure G with universe GG, we show that the number of homomoprhisms which use
at least one element of H — H™ is 0 (mod p).

Given any homomorphism ¢ : G — H, consider the homomorphism 7 o . This is
still a homomorphism which is different from ¢ as there is some element v € G such
that p(v) € H— H™, and so 7(¢(v)) # ¢(v). On the other hand 7P o ¢ is just ¢, as
7 is a p-automorphism. So 7 acts as a permutation of order p on the set Hom(G, H).
Moreover, the orbit of 7 containing a homomorphism that has at least one element
from H — HT™ in its range has size p. 0

The binary relation —, on relational structures is defined as follows. For relational
structures # and K, we have H —, K if and only if there exists an automorphism 7 of
‘H, of order p, such that H™ = IC. If there exists a sequence of structures Hy, Ha, ..., Hs
such that H = Hy —, Ho —p -+ —p He = K, we write H —; K and say that H
p-reduces to IC. If IC is p-rigid, it is called a p-reduced form associated with H. The
following lemma is proved in Section 3.3 by a light modification of the proof in [15].

LEMMA 3.5 ([15]). For a relational structure H there is (up to an isomorphism)
exactly one p-rigid structure H*P such that H —, H*P.

3.3. Indistinguishability and isomorphism. In this section we prove a vari-
ation of Lovasz’s theorem about homomorphism counts and graph isomorphisms
[19, 20].

For a set H, let Part(H) denote the poset of partitions of H, where 1 denotes the
single class partition, 0 the partition into 1-element classes, and 1 < 6 means that 7 is
the finer partition of the two.

LEMMA 3.6. Let (G,x) and (H,y) be p-rigid relational structures with r distin-
guished vertices. Then, (G,x) = (H,y) if and only if

(3.1) hom((K,z), (G,x)) = hom((K,z), (H,y)) (mod p)

for all relational structures (IC,z) with r distinguished vertices.

Proof. The proof goes along the same lines as that in [20]. If (G,x) and (H,y)
are isomorphic, then (3.1) obviously holds for all relational structures (K, z).
For the other direction, suppose that (3.1) is true for all (K, z).
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First, we claim that this implies that x and y have the same equality type.
Indeed, if they do not, then without loss of generality there are i,j € [r] such
that ; = z; but y; # y;. Let K be the relational structure with the base set
{z1,...,2,} with empty predicates, and (z1,...,x,) as distinguished vertices. Then
hom((K,x), (G,x)) =1 # 0 =hom((K,x), (H,y)), a contradiction with the assumption
that (3.1) holds for all (I, x).

We show by induction on the number of vertices in K that

(3.2) inj((K,2),(G,%)) =inj((K, 2), (H,y)) (mod p).

for all (K,2z). Let ng = |{z1,...,x-}| = |[{y1,.-.,¥-}| be the number of distinct
elements in x,y. For the base case of the induction, consider a relational structure
(KC,z) such that |K| < ng. If z does not have the same equality type as x,y, then
inj((K,2), (G,x)) = inj((K,2), (H,y)) = 0. If x has the same equality type as x,y, the
only homomorphisms from (K, z) to (G,x), (H,y) are the ones that map z; to x;,y;,
respectively. Therefore, inj((K,z), (G,x)) = inj((K,z), (H,y)).

For the inductive step, let n > ng and assume that (3.2) holds for all (K, z) with
|K| < n. Let (K,z) be a relational structure with |K| = n, and let 6 be an equivalence
relation on K. Then, as is easily seen

hom@((lcv Z)) (gv X)) = inj((]C/g, Z/O)a (g’ X))

and
homy((K,2), (H,y)) = inj((K/¢,2/0),(H,y))-
Then

hom((K,2), (G, x)) = inj((K,2),(G,x)) + > ini((K,2)/s,(G,x))

0ePart(K)—{0}

hom((K,z2), (H,y)) = inj((K,2), (H.y)) + > inj((K.2)/s, (H.¥))
0cPart(K)—{0}

Since hom((K,z), (G,x)) = hom((K,z),(H,y)) (mod p) and inj((K,2)/g, (G,x%))
inj((K,2)/9,(H,y)) (mod p) for all § € Part(K) — {0} we get inj((K,z), (G,x))
inj((K,2), (H,y)) (mod p).

Finally, we prove that (3.2) for (K,z) = (G, x) implies (G,x) = (H,y). An injective
homomorphism from a relational structure to itself is an automorphism. Since (G,x)
is p-rigid, |Aut(G,x)| = inj((G,x), (G,x)) Z 0 (mod p). Therefore inj(G,x), (H,y)) Z0
(mod p), meaning there is an injective homomorphism from (G,x) to (H,y). In a
similar way, there is an injective homomorphism from (H,y) to (G,x). Thus, the two
structures are isomorphic. ]

We give a proof of Lemma 3.5 here.

Proof of Lemma 3.5. Suppose the contrary, that H; and Ho are two different
non-isomorphic p-reduced forms of H. By Lemma 3.4 for any structure G

hom(G,H1) = hom(G, H) = hom(G,H3) (mod p)
By Lemma 3.6 we can conclude H; & Hs. The result follows. 0

3.4. Modbius inversion. We will use the Mdbius inversion formula. Let H be a
set and let M, N : Part(H) — Z be some functions satisfying

M(©6) =" N).
n>0
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Then

OcPart(H)

where the function w : Part(H) — Z is given by:
e w(l) =1,
e for any partition 6 < 1, w(f) = —Zw('y).
>0

The Mobius inversion formula will mainly be used as the following lemmas indicate.

LEMMA 3.7. Let p be prime and let H be a relational structure such that, for
every G, hom(G,H) = ¢ (mod p), where ¢ does not depend on G. Then H has a
p-automorphism.

Proof. We use the following parameters in the Mobius inversion formula: the
set H is the base set of H, M(0) = hom(H /g, M), N(0) = inj(H/s,H). Then clearly
N(0) = Aut(H). By the formula we have

NO) = > w@O®MEO = >  wdhomM/g,H)=c >  w(®)=0 (modp).

OcPart(H) OePart(H) OePart(H)

The second last equality is due to the assumption that hom(G, H) = ¢ (mod p) for every

G. The last equality follows from the definition of w(6), namely, that w(0) = —Zw(*y),
7>0

where v > 0 holds for all v € Part(H) — {0}. Therefore |Aut(#)| =0 (mod p) and H

has a p-automorphism. 0

We call a subset A C H" automorphism-stable if there is a € A such that the set
Stab(a, A) = {7 € Aut(H") | n(a) € A} is a subgroup of Aut(#"). Note that Stab(a, A)
is always nonempty, as it contains the identity mapping. Also, by Stab(ai,...,a;) we
denote the subset of Aut(H") that contains all the automorphisms for which each of
ai,...,a; is a fixed point.

LEMMA 3.8. Let p be prime, H a relational structure.

(1) Let A C H" be an automorphism-stable set. If for every G and x € G,

hom((G,x), (H,A)) = ¢ (mod p), where ¢ does not depend on G and x, then

the structure H" has a p-automorphism w € Stab(a, A) for some a € A.
(2) Let ay,...,a, € H". If for every G and x1,...,25 € G,

hom((gvxlw"vxk)a(Hvalv"‘vak)) =c (mOd p)a
where ¢ does not depend on G and x1,...,x), then the structure H" has a

p-automorphism m € Stab(ay,...,ag).

Proof. (1) Similar to Lemma 3.7 we use the Mdbius inversion formula on Part(H").
Let a € A be the element witnessing that A is automorphism-stable and set M (6) =
hom((H" /9,a/4), (H", A)), N(0) = inj((H"/o,a/g), (H", A)). Then N(0) # 0, as it
includes the identity mapping, and as before we have

NO = > w(@®)M®)

OcPart(H")
= Z w(@)hom((H" /g, 2/9), (H", A)) =c- Z w(@) =0 (mod p).
OcPart(H™) OcPart(H™)
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Note that N(0) = Stab(a, A) and therefore is a subgroup of Aut(H"). As it has order
that is a multiple of p, it contains a p-automorphism.
(2) In this case the argument is essentially the same. |

The way we will apply Lemmas 3.7 and 3.8 is as follows. If H" is p-rigid and A is
an automorphism-stable set, then by Lemma 3.8(1), there is a gadget (G,x) such that
hom((G,x), (H,A)) # 0 (mod p). This means, however, that we can apply Lemma 3.8
only when H" is p-rigid. It is clear that, the p-rigidness of H does not imply that H"
is p-rigid. Hence, for applying Lemma 3.8 we need to study the group Aut(#H").

4. Automorphisms of Relational Structures. The goal of this section is to
study the automorphism group of H¢ where H is a graph-structure. In general, for
arbitrary o-structures H; and Ha, it is known that Aut(H1) x Aut(Hsz) is a subgroup
of Aut(H; x Hz). For the reverse inclusion, it is shown in [24] that for 9R-thin non-
bipartite graphs G and Ga, Aut(G1) x Aut(G2) = Aut(G1 x Gs). The relation Rg
on V(G) for a graph G is defined as follows: vertices x and 2’ are in Rg, if and only
if Ng(z) = Ng(a'), where Ng(z) = {y|(z,y) € E(G)}. Clearly, R¢ is an equivalence
relation. A graph G is called R-thin (aka graph without false twins) if all of its
R-classes have size one. If the graph G is clear from the context we will use R rather
than Rg.

We denote the quotient of G modulo R by G/%. Given z € V(G), let [z] = {2’ €
V(G)|Ng(2') = Ng(x)} denote the R-class containing x. Then V(G/n) = {[z] | z €
V(G)} and E(G/x) = {([z],[y]) | (z,y) € E(G)}. Since R is defined entirely in terms
of E(G), it is easy to see that for an isomorphism ¢ : G — H, we have 2Ry if and only
if p(x)Re(y). Thus, ¢ maps equivalence classes of R to equivalence classes of Ry,
and can be defined to act on V(G/n) by ¢([z]) = [¢(z)]. This observation implies
that for a graph G and ¢ € Aut(G), if for some = € V(G) it holds that ¢(z) € [z],
then ¢([z]) C [z]. In particular, the following statement holds. An automorphism of a
graph G is called local if it is the identity mapping on G/sx.

LEMMA 4.1. Let G be a graph and ¢ € Aut(G). Then the order of ¢ as a permu-
tation of G /s divides the order of ¢ on G. If ¢ is a p-automorphism, then either ¢ is
local, or it gives rise to a p-automorphism of G /.

The definition of SR can be extended to a graph-structure H by applying it on its
underlying graph H. Hence, the P-classes of H are the f-classes of H. Note that the
definition of local automorphism for graph-structures is the same as that for graphs.

Another structural feature of graph-structures we use is prime factorization. A
trivial bip-structure Ky 1 is just an edge: K 1 = {a,b}, EK*1 = {(a,b), (b,a)}, L1 =
{a}, and R¥11 = {b}, and a trivial nonbip-structure is just a vertex with a loop
attached to it. A graph-structure is prime with respect to direct product if it is
nontrivial and cannot be represented as the product of two nontrivial graph-structures.
We call H=H; x --- x H,. a prime factorization of H if all the H;’s are prime.

In Section 4.1 we state Theorem 4.3 about the automorphism group of graph-
structures, which generalizes the result of [24] to also include bipartite graphs. Later
on, we use this theorem to study the reduced form of H¢.

4.1. Automorphisms of bip-structures. We start this section with two results,
Theorem 4.3 and Lemma 4.2, that help us to study the automorphism group of H*
later in the section. These results are known for nonbipartite graphs and therefore for
nonbip-structures, see [24]. We omit proofs for bip-structures here and move them to
Section 8.
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LEMMA 4.2. If G and H are graph-structures and have no isolated vertices, then

(GxH)/x =G/axH/n, and ) : (GXH)/m = G/m x H/w with ¥ ([(x,y)]) = ([=], [y])
is an isomorphism. Also [(z,y)] = [z] X [y].

For an automorphism ¢ of a graph-structure G, let 9™ : G/ — G/ be the
automorphism of G/g induced by .

We will often need to represent mappings on direct powers H¢ of structures. Let

¢ be such a mapping. Every element of H® is a tuple, so we denote by o(ay, ..., as)
the action of ¢ on such a tuple. However, if we also have a prime factorization
H=H; x--- x H,, every element of H is again a tuple. In this case we denote the
action of ¢ as
a1,1 ag.1
<p E P
Q. @y, r
THEOREM 4.3. Let G = Gy x - -+ x G, be a prime factorization of a graph-structure
G, where for v € G, we have v = (v, ...,v.). Then for any automorphism v of G'/x,

there is a permutation w of [€] X [r] such that i can be split into r¢ automorphisms:

V1,1 ([vx1,1)]) Vo1 ([vre,n)])
Y([va]s -, [ve]) = : - ; ’

(I ber([ngem))

where for (i',7') = n(i,7), ¥;; is an isomorphism from the i'th copy of G;//» to the
ith copy of Gj/s.

Although Theorem 4.3 is only stated for graph-structures (graphs), it has impli-
cations for more general relational structures, as well. In particular, if  is a graph
expansion, then every automorphism of H’ is also an automorphism of H¢, where H is
the underlying graph-structure of H, and therefore satisfies the conditions of Theo-
rem 4.3. Often additional predicates impose even stronger restrictions on the structure
of automorphisms. For example, if H has all the constant relations, we obtain the
following result. Recall that ()¢ denotes the £th power of H¢, that is, the structure
H equipped with all the constant relations, and (H)¢/s is the factor-structure of
(H¢)* modulo the relation R. Also observe that H¢/x has all the constant relations,
as Cy = {([a])} on H/x, for any a € H.

PROPOSITION 4.4. Let H be a graph expansion, H its underlying graph-structure,
and let H=H; x ... x H,. be a prime factorization of H. Then for every automorphism

© of (H)" /s there are permutations 1, ..., m, of [{] such that
a1 Qg1 Qry(1),1 Az (0),1
o . _ . . .
ai,r ag,r Qr,.(1),r Ar,.(0),r
where (a;1,...,a;,) is an element of the ith copy of H/m.
Proof. By Theorem 4.3 there are isomorphisms ¢ 1,. .., e, of factors Hy, ..., H,
and a permutation 7 of [¢] x [r] such that
a1 a1 v1,1(ar1,1)) ©0e1(ar(e,1))
@ e = : 7o :
air agr o1,k(ap(1,r)) 0 (Arer)
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Now observe that as /s has all the constant relations, for any a € H/x, where
a=(ay,...,a.), we have

ai a1 a1 ay

(41) ¢ Sl =y(a,...,a)=(a,...,a) = N I

ay a a, a,

Firstly, this implies that every ¢; ; is the identity mapping. This means that ¢ is
basically the permutation 7 of coordinates. Moreover, if for some i € [{],j € [r],
7(i,j) = (¢, ') and j’ # j then choosing any (a1, ..., ax) such that a; # a; we get a
contradiction. The result follows. |

COROLLARY 4.5. If H is a graph expansion and £ < p then every p-automorphism
of (H®)* is local.

Proof. Let ¢ be a non-local p-automorphism of (#¢)¢ and ¢™ the corresponding
automorphism of (H¢)?/x. By Lemma 4.1 ™ has order p and by Proposition 4.4

there are permutations 1, ..., m, of [¢] such that
ai,1 ag,1 Qry(1),1 A7y (0),1
me ) ) = : 3 b . b
ai,r Qg r Ar,.(1),r Ar,.(0),r
for any ((a1,1,--,a1,0),---, (@01, a0.)) € (H)E. As ¢ is a p-automorphism, so is
™. Therefore every 7; is either the identity mapping or has order p. The latter is
impossible as £ < p, and ¢™ has to be the identity mapping. 0

4.2. Reduced form of ‘. As Faben and Jerum showed in [15], the p-reduced
form of (#H¢)* is obtained by removing from a graph or a relational structure vertices
that are not fixed under a p-automorphism. We will often use the p-reduced form of
(H¢)*, and need to make sure that some vertices remain in that p-reduced form. In
this section our goal is to show that if H is p-rigid and equipped with all the constants,
then we can guarantee that at least some vertices from certain specified sets are not
eliminated when constructing the p-reduced form. For elements a,b € H we write
a ~ b if there is 7 € Aut(#) such that 7(a) = b.

Following Remark 2.2 observe that tuples from (H¢)’ that are elements of a
constant relation C’l(;;)z are constant tuples, that is, of the form (a,...,a), where a is
the same as in the relation Cg .. Such tuples are fixed points of any automorphism of
(He)".

LEMMA 4.6. For the structure (H®)¢, a € (H®)¢, any permutation 7 of the R-class
[a] such that every constant tuple from [a] is a fized point of 7, can be extended to
an automorphism of (H®)t. Therefore for a,b € (H®)¢, if a?b and none of a,b is a
constant tuple, then a ~ b.

Proof. Let m be a permutation of [a] such that every constant tuple from [a] is its
fixed point. As is easily seen, the following mapping is an automorphism of (H¢)’.

_J 7m(v) veld,
<‘0(U)_{ v v élal

Indeed, by the assumption on 7 the mapping ¢ preserves all the constant relations.
Moreover, as ¢ preserves the R-classes, it also preserves the binary edge relation of
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H¢. Observe that if a93b and none of a, b is a constant tuple, there is a permutation
of [a] satisfying the conditions of the lemma and such that 7(a) = b, hence there is an
automorphism ¢ such that ¢(a) = b. |

Let (H¢)¢ be a substructure (subgraph) of (H®)¢ obtained by reducing (H¢)¢ by all
the local p-automorphisms. In other words (HC)Z = (He)?, every step in this reduction
is through a local p-automorphism, and (H¢)¢ has no local p-automorphisms. Note

that (He)¢ is NOT the reduced form of (H®)?, as some non-local p-automorphisms
may remain. More formally, for every R-class [a] of (H®)¢ let C? be the set of all the
constant tuples from [a]. We select a subset [a]* C [a] — C® such that |[a]*] < p and
[a] — [a]*] =0 (mod p), and set [a] = C* U [a]*. By Lemma 4.6 (H%)* — 5 (H)E, as
for every fR-class [a] we can choose a permutation of order p such that [ ] is its set
of fixed pomts Let H = Uae(neye [a [ ]. Then clearly (H¢)¢ is the substructure of (H)*
induced by H

LEMMA 4.7. Let H be a p-rigid graph-structure. Then
(1) for every x € HY, |[z]| Z 0 (mod p) and |[/9\c/}| Z 0 (mod p);

(2) (HW/gg is isomorphic to (H°)! /.

Proof. (1) Let © = (x1,...,x¢). Then, as is easily seen, y = (y1,...,y¢) € [z] if
and only if ;Ry; for every i € [¢]. Therefore, |[z]| = [];¢(y |[x]|- Since H is p-rigid,
by Lemma 4.6 |[z;]| Z 0 (mod p), implying the result. Also, since |[z]| — \[;:/H =0

(mod p), we have |m| Z 0 (mod p).
(2) We prove the lemma through the follovvlng claims.

CrAmM 1. The fR-classes of (HC) are the sets [ ].

Proof of Claim 1. If N—,

e 2(a) = N(/H\C)/ (b) then a™/b and a, b are in a same R-class

of (HC) Hence, it suffices to prove that if a,b € [ ], then N(HC)Z( a) = N(Hf;)/z (D).

By the definition, if a,b € [x]7 then a,b € [z], Thus [a] = [b], Hence
/—\C-/ c\ £
¢ € Ngi(a) & (a,0) € B & ([a), [¢]) € B/
c\ £ TTRY)
& ([b],[]) € EMV /% o (be) e EM) o c e Ny @)

CrAIM 2. The function ¢ : (H®)! /s — (H/?)/Z/m where ¢([z]) = fa?] is an isomor-
phism.

Proof of Claim 2. Clearly, the function ¢ is bijective. We just need to prove that
the function ¢ is edge preserving . N

Assume ([a], [0]) € EM)/5 Then, ©([a]) = [a] C [a] and go([b]) = [b] C [b]. So,
there are a € ﬂ and b € [b] such that (a,b) € EH) also, (a,b) € EM)* . Hence there
are a € [ l,be [b] such that (a,b) € E(HC)’7 therefore, ([a], [b]) € B (H)" /o O

We have an isomorphism from (/ch)é /o to (HS)?/s. The result follows. O

THEOREM 4.8. Let H be a p-rigid graph-structure and A C (H') such that A =
U;er Ai where the A;’s are R-classes of (H®)*. Let A=, ; A;. Then

(1) A/x = A/ss.

el
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(2) For any graph-structure (G, z), hom((G, z), ((H%)¢, A)) = hom((G, z), ((He)*, A))
(mod p).

Proof. (1) Tt easily follows from definitions that A/s C A/x, and we just need
to prove that A/ C Z/m, Since H is p-rigid, the size of all its fR-classes are nonzero
modulo p. Therefore, by Lemma 4.2 the size of each -class of H¢ is also nonzero
modulo p. Therefore, A; # ) for all 4 € I. B

(2) Let B be an R-class of (H°)’. Then |B — B| is a multiple of p. By Lemma 3.4

hom((G, z),((H)¢, B))
= Z hom((G, z), (H%)*, a))

acB

= hom((G, =), ((H9)%, B)) + > hom((G,2), ((H)",a)) (mod p)
acB—B

Ehom((G,x),((l-I/\E)/é,é)) (mod p). 0

5. Expanding constraint languages. In this section we show that the standard
ways of expanding relational structures used in the study of the CSP also apply in
modular counting. We consider the following types of expansion: expanding by the
equality relation, conjunctive formulas, constant relations, and by primitive-positive
definitions. In each case we prove that modular counting over the expanded structure
is reducible to that over the original structure. For the first three types of expansion
the result is proved for general relational structures. However, the reduction for
pp-definable structures requires Theorem 4.3, and therefore we can only prove it in
the case of graph expansions.

5.1. The two views on the CSP. We defined the CSP as the problem of
deciding the existence of a homomorphism between two relational structures. There
is, however, another view on the CSP that is widely used in the literature and that
will be very useful from the technical perspective. Firstly, note that for a o-structure
H the collection of interpretations R*, R € o, is just a set of relations. We call
a set of relations over some set H a constraint language over H. Thus, for every
relational structure H there is an associated constraint language I'yy. Conversely, every
(finite) constraint language I' can be converted into a relational structure Hr such
that I'yy. = I in a straightforward way, although in this case there is much room for
the choice of a signature.

The definition of the CSP using constraint languages is as follows. Let I' be
a constraint language on a set H, called the domain. The Constraint Satisfaction
Problem CSP(T") is the combinatorial problem with:

Instance: a pair P = (V,C) where V is a finite set of variables and C is a finite set of
constraints. Each constraint C' € C is a pair (s, R) where

e s = (v1,v2,...,0y,) I8 a tuple of variables from V of length m for some m,

called the constraint scope;

e R eI is an m-ary relation, called the constraint relation.
Objective: Decide whether there is a solution of P, that is, a mapping ¢ : V' — H such
that for each constraint (s, R) € C with s = (v1,...,vs,) the tuple (p(v1),...,o(vm))
belongs to R.

In the (modular) counting version of CSP(I") denoted #CSP(I') (#,CSP(I")) the
objective is to find the number of solutions of instance P (modulo p).
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We will refer to this definition as the standard definition of the CSP.

It is well known, see e.g. [16] and [1] that problems CSP(H) and CSP(I'y) can
be easily translated into each other. The same is true for #CSP(H) and #CSP(I'y).
The conversion procedure goes as follows. Let G be an instance of CSP(#H) and o is
the signature of H. Create an instance P = (V,C) of CSP(T'y) by setting V = G, the
base set of G, and for every R € o and every s € RY, including the constraint (s, R7*)
into C. An instance of CSP(T") can be transformed to an instance of CSP(#Hr) by
reversing this process. Clearly, This transformation can be extended to counting CSPs,
as well. In this paper we mainly use the standard definition of the CSP inside proofs
by assuming that an instance of #,CSP(H) is given by variables and constraints.

5.2. Expanding by the equality relation. Let H be a relational structure with
signature o and H= its expansion by adding a binary relational symbol = interpreted
as =g, the equality relation on H. The following reduction is straightforward.

LEMMA 5.1. For any relational structure H and any prime p, #,CSP(H™) <r
#,CSP(H).

Proof. Here we use the standard definition of the CSP. Let P = (V,C) be an
instance of #,CSP(H™). Clearly, if C contains a constraint « = y for some z,y € V
then for any solution ¢ : V' — H of P, it holds that ¢(x) = ¢(y). Therefore, transform
P as follows: If © = y for some z,y € V, then replace every occurrence of y in
constraints from C with z. Repeat this transformation until we obtain an instance
P = (V',C’) that does not contain equality constraints. We consider P’ to be an
instance of #,CSP(#). Finally observe that if a mapping ¢ : V' — H is a solution of
P then ¢y is a solution of P’. On the other hand, as is easily seen, every solution of
1 of P’ can be extended to a solution of P in a unique way. The result follows. a0

5.3. Expanding by conjunctive definitions. Conjunctive definitions are a
special case of primitive positive definitions that do not use quantifiers. Let H be a
structure with signature o. A conjunctive formula ® over variables {x1,...,z;} is a
conjunction of atomic formulas of the form R(yi,...,y,), where R € o is an ({-ary)
symbol and y1,...,y¢ € {z1,...,2%}. A k-ary predicate Q is conjunctive definable in
H by @ if (ay,...,ax) € Q if and only if ®(aq,...,ax) is true.

LEMMA 5.2. Let ‘H be a relational structure with signature o, R be conjunctive
definable in H, and H + R denotes the expansion of H by the predicate symbol R that
is interpreted as the relation R in H. Then #,CSP(H + R) <p #,CSP(#).

Proof. Let R be defined by a conjunctive formula

Ql(ylla" -7?/1[1) AN /\Qs(ysla' .. 7ysfs)7

where Q1,...,Qs € 0 and y;; € {z1,..., 2} for all 7, j. We use the standard definition
of the CSP. Let P = (V,C) be an instance of #,CSP(H+R). If C contains a constraint of
the form ((z1, ..., xx), R), replace it with ((y11,.--,%16,), @1)ss -+ {(Us1y- -+, Yse,)s Qs)-
As is easily seen, the resulting instance has exactly the same solutions as P. Repeat
this procedure while constraints containing R remain. The resulting instance P’ has
the same solutions as P, and is an instance of #,CSP(H). |

A good example of a conjunctive definable relation is the indicator problem
introduced in [29, 28]. Here we will only need a simple case of the indicator problem.
Slightly rephrasing the construction from [29, 28], let H be a relational structure, o
its signature, and H = {aq,...,a,}. Construct a conjunctive formula Z(H) as follows.
Let vq,,...,0q, be the variables of Z(H). For every R € o (say, f-ary), and any
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(@i, aip) € R™, add the conjunct R(vq, ,»-.-,Va,,). Since endomorphisms of H
are exactly its unary polymorphisms in the terminology of [29, 28], by Theorem 3.5 of
[28] we obtain the following result.

LEMMA 5.3 ([29, 28]). Let H be a relational structure, |H| = n, and let Q be
defined by Z(H). Then Q = Hom(H,H). In other words, (by,...,b,) € Q if and only
if there is an endomorphism ¢ of H such that ¢(a;) = b; for i € [n].

5.4. Expanding by constant relations. Recall that for a relational structure
‘H by H we denote the expansion of H by constant relations. Theorem 2.1 was proved
for exact counting in [5] and for modular counting of graph homomorphisms in [15].
We use a proof similar to that in [5].

THEOREM 2.1. Let H be a p-rigid o-structure. Then #,CSP(HC) is polynomial
time reducible to #,CSP(H).

Proof. We follow the same line of argument as the proof of a similar result in
[5] for exact counting. Let H = {a1,...,a,}, and let Q = {(¢(a1),...,0(an)) | ¢ €
Hom(H,H)} be the relation conjunctive definable by Lemma 5.3 through the indicator
problem. By Lemmas 5.1 and 5.2 we may assume that H has =y and @ as its
predicates.

Let P = (V;C) be an instance of #,CSP(#H). We construct an instance P’ =
(V',C") of #,CSP(H) as follows.

o V' =V U{v,la € H};
e (’ consists of three parts: {C = (x,R) € C| R € o}, {{(vay,---,va,), Q)}, and
{{(@,va), =1} | (2), Cir) € C}.

The number of solutions of P equals the number of solutions ¢ of P’ such that
¢(vg) = a for all a € H. Let U be the set of all such solutions of P/ and T = |U]|.
Then T can be computed in two stages.

Let again Part(H) be the poset of partitions of H. For every partition 6 € Part(H)
we define Py as the instance (V’,Cy), where Cy = C' U {{(va,va’), =)} | a,a’ belong
to the same class of 0}). Note that if ¢ is a solution of P’, then ¢ is a solution of P,
if and only if ¢(v,) = @(ver) for every a,a’ from the same class of 6. Let us denote by
M () the number of solutions of Pj. The number M (#) can be computed using the
oracle #,CSP(H), since we assume that =g and @ are predicates of H.

Next we find the number of solutions ¢ of P’ that assign v,, a € A, pairwise
different values. Let W be the set of all such solutions. Let us denote by N(6) the
number of all solutions ¢ of Py such that ¢(v,) = ¢(vs) if and only if a, b belong to
the same class of 6. In particular, N(0) = |W|. The number N(0) can be obtained
using the Md&bius inversion formula for the poset Part(H). Let w : Part(H) — Z be
defined as in Section 3.4. Also, observe that for any 6 € Part(H)

M(9) =) N(n).

n>0

Therefore,

0€cPart(H)

Thus N(0) can be found through a constant number of calls to #,CSP(H).

Now, we express T via N(0). Let G = Aut(H) be the automorphism group of H.
We show that W = {go y|g € G, € U}. For every solution ¢ in U and every g € G,
g o is also a solution of P’. Moreover, since g is one-to-one, go ¢ is in W. Conversely,
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for every 1 € W, there exists some g € G such that g(a) = 9 (v,), a € H. Note that
g~ € G implies p = g~ ! 04 € U, which witnesses that 1) = g o ¢ is of the required
form. Finally, for every ¢, ¢’ € U and every g,¢" € G, if 0|(v,jacr} # € |{valacH} OF
g# ¢ then gop # ¢ o¢’. Thus, N(0) = |G| T. Since H is p-rigid, |G| £ 0 (mod p).
Therefore T = |G|~! - N(0) (mod p). O

5.5. Homomorphisms, pp-definitions and factorizations. In this section we
discuss several issues related to the use of pp-definitions and the results of Section 4.

Primitive positive definitions have close connections to homomorphisms, see
[16, 32].

LEMMA 5.4. A predicate R(x1,...,xy) is pp-definable in a o-structure H contain-
ing the equality predicate if and only if there exists a o-structure (Gg, (z1,...,Tk))
such that for all (ay,...,ar) € R

hom((ng(xlv"'7xk))7(7-[7(a17"'7ak))) 7&0 Zf and OTLly Zf (alv"'7ak) € R.

Proof. Let R be defined by a pp-formula 3y, ...,y:P(x1,..., 2k, y1,...,ys) and
let ®(z1,...,2k, Y1, - .,Ys) be its quantifier free part. As H has the equality predicate,
® is a conjunction of atomic formulas of the form Q(z1,...,2¢), where Q € o and
Z1y..,20 €{T1,..., Tk, Y1,.--,Ys}- The corresponding o-structure G is constructed
as follows. Its base set is Gg = {x1,...,Zk, Y1,---,Ys}. Then for any @ € o, say, f-ary,
(21,...,20) € Q9% if and only if Q(z1,...,2) is an atom in ®. The result now follows
from the observation that every satisfying assignment of ® is also a homomorphism
from Ggr to H.

Conversely, suppose that there exists a structure Gg such that

hom((Gr, (1,...,2%)), (H, (a1,...,ax))) #0

if and only if (a1,...,ar) € R, and {y1,...,ys} = Gg — {x1,...,2x}. Then the
transition to a pp-formula can be carried out as above only in the reverse direction.O

The results of Section 4 will be intensively used in this section. So, before we
embark on studying the connections between pp-definable relations and modular
counting we need to make two important remarks.

First, let H be a graph expansion and H its underlying graph-structure. We define
the PR-relation on H as that on H. Note however that this does not translate into
the same concept of p-reduction and local p-automorphisms. Specifically, while for H
whenever afRb there is an automorphism that maps a to b, it is no longer true for H, as
it may have additional relations preventing such an automorphism. This means that
R-classes [z] defined in H and in H are different, although [z] for H is always a subset
of that for H. This does not affect the argument in this and subsequent sections, in
particular, Lemma 4.7 and Theorem 4.8 remain true for H, but should be noted.

Second, we are going to use prime factorizations of H. Unfortunately, such prime
factorizations do not necessarily give rise to factorizations of H. This means that
we have to only use structures that avoid such phenomenon. A graph expansion H
will be called factorization-regular if there exists a factorization H = Hy X -+ X H,
such that H=H; x --- x H,., where H,Hy, ..., H, are the underlying graph-structures

of H,Hy,...,Hy, respectively, is a prime factorization of H. In other words H is
factorization-regular if there is a prime factorization H = Hy x --- x H,. of H such that
every relation R of H can be represented as R = Ry X --- X R, for some relations

Ry,...,R, on Hy,..., H,, respectively.
Fortunately, all the structures we use in this paper are factorization-regular.
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LEMMA 5.5. Let H be a factorization-reqular graph expansion. Then
(a) if H is a graph-structure, it is factorization-reqular;

(b) HE is factorization-regular;

(¢) H expanded by the equality relation =p is factorization-regular;
(d) if R is pp-definable in H then H + R is factorization-regular.

Proof. Let H = Hy; x --- X H, be a factorization of H that is also a prime
factorization of H.

(a) is obvious.

(b),(c) It suffices to observe that any constant relation Cy o can be represented as
CHyay X -+ X CH, g, for some a, € Hy, s € [r]. In the same way, the equality relation
=g equals =g, XX =q,.

(d) By Lemma 5.4 if R (say, k-ary) is pp-definable in #, then for some structure
(G, (z1,...,2k)) we have

R={(a1,...,ar) | Hom((G, (z1,...,2x)), (H, (a1,...,ax))) # 0}

Set
R. — (s) Y I H G ey (s) (s) 0
s {(al yoeey A )| om(( a(zla'”a‘rk))v( Sa(al yeeey Qg )))7é }
By Proposition 3.1 R=R; X -+ X R,. a

5.6. Adding Primitive-Positive definitions. The main goal of this section,
Proposition 5.7, is to prove that for a p-rigid relational structure H that is a graph
extension, #,CSP(H + R) for a pp-definable relation R reduces to #,CSP(H). By
Lemma 5.1 we may assume that H has the equality predicate.

We start with an auxiliary claim that shows that if a predicate R is pp-definable in
H, it is always possible to find a pp-definition that somewhat uniformizes the number
of extensions of tuples from R. Let R be pp-definable in H by a pp-formula

R(z1,...yxk) = 3y1, -, YsP(T1, o s Ty Y1y o - Ys)-

For a € R by #extg(a) we denote the number of assignments b € H® to y1,...,Ys
such that ®(a,b) is true.

PROPOSITION 5.6. Let H be a p-rigid structure with equality that is a factorization-
reqular graph expansion and p a prime. Let R be a relation that is pp-definable in HE.
Then there exists a pp-definition

R(xy,...,zk) = Jy1, .., ysP(x1, .., Tk, Y1, - -+, Us)

of R such that for any a € R, #extg(a) =1 (mod p).

Proof. To simplify the notation we assume that H contains all the constant
relations, that is, H = HE.

We use the equivalence between pp-definitions and homomorphisms from Lemma, 5.4.
Let R={ai,...,a;} C H* where a; = (a;1,...,a;), be a relation pp-definable in H.
Our goal is to find a structure G such that for some (x1,...,zx) € G¥,

hom((G, (x1,...,2%)), (H, (ai1,.-.,a;))) =1 (mod p) for 1 <i < ¥,

and
hom((G, (z1,...,2x)), (H, (b1,...,b))) =0 for all (by,...,bx) € R
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Note that by Proposition 3.1 and Fermat’s Little Theorem it suffices to prove that
such a structure exists satisfying hom((G, (z1,...,x)), (H,a)) Z 0 (mod p).

Firstly, observe that if the pp-definition of R uses no existential quantifiers,
then #exty(a) = 1 (mod p) for any a € R, as the empty extension is the only
option. This pp-definition also satisfies the requirements of the proposition. Thus,
it suffices to consider the case when R is given by JyQ(z1,...,zk,y), where Q is a
pp-definable relation in H, and there exists a structure (I, (x1,..., 2, y)) such that
(di,...,dk,e) € Q if and only if,

(5.1) hom((KC, (z1,...,2k,Y)), (H,(d1,...,dg,e))) =1 (mod p),

and
hom((KC, (z1,...,2k,9)), (H,(d1,...,dk,e))) =0

otherwise. Note that the structure K also satisfies the condition

hom((K, (z1,...,2k)), (H,(d1,...,dx))) # 0 if and only if (d1,...,dr) € R.

Consider H¢ = H x --- x H with distinguished vertices a!,...,a*, where a’ =
ai,j
, j € [k]. By Proposition 3.1 for any (G, (z1,...,2x))
ag,j

hom((G, (x1,...,zk)), (’HZ, (al, . 7a’“))) = H hom((G, (x1,...,2k)), (H,a;)),
]

i€l

where a; = (a;1,...,a;).  If (H (al,...,ak)) was prigid, we could apply Mébius
inversion formula in a way similar to Lemma 3.8(2) to infer the existence of a required
G. However, there is no guarantee this is the case, and we need to make one more step.

Note that a',...,a* as well as each of the constant tuples is a fixed point of
any automorphism of (H’,(al,...,a*)). This means that the p-reduced form of
the structure (H, (al,...,a")) contains al,... a* and all the constant tuples. Let
H = (K", (al,...,a*)). Thus

hom((G, (z1,...,z)),(H" (@', ... a")))
= hom((G, (z1,..., 1)), (H, (a",...,a"))) (mod p).

C1
CrAM 1. Thereexistsc= | 1 | € H such that (@i, a5k ¢) € Q for every
Ce
i€ [4].
Proof of Claim 1. First, observe that it suffices to show that the required tuples
[c1]
exist in H/s. Indeed, suppose that there is | : | in the p-reduced form of (H/x)*
[ce]
such that ([a;1],. .., [aik],[ci]) € Q/m. By Lemma 4.1 every p-automorphism of H*
is either local or gives rise to an automorphism of H’/x. By Lemma 4.7, as H is
[c1]
p-rigid, reducing by local automorphisms does not eliminate tuples from - |. By
[ce]
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the assumption this tuple also withstands reducing by automorphisms of the former
kind. Therefore, there are ¢ € [¢;], ¢ € [{], such that (c},...,c}) € H. Moreover, by

the definition of the relation 2R we have (a;1,...,a,%,¢;) € Q for i € [{].
Let H = Hy x -+ X H, be a factorization of H into its prime factors. By
Lemma 4.2 we have H/w = Hi/m X -+ X Hy/n. Let [a; ;] = ([aE}J)}, ce [ag)rj)]), where

i € [l],j € [k]. Observe also that there exist relations Q) on H,, s € [r], satisfying
the following condition. For a tuple (by,...,bry1) € H*¥*!, where b; = (bgl), e bgr))
is the representation of b; in the factorization of H, it holds that (b1,...,bg+1) € Q
if and only if (b(s) b(s) 1) €Q (). Indeed, by Proposition 3.1 a mapping ¢ from
(K, (z1,...,2k,y)) to (7—[ (bl, ..., br+1)) is a homomorphism if and only if there are

homomorphisms ¢1,. .., @, Such that @ : (K, (z1,...,7k,v)) = (Hs, (b§5)7 e bl(:_zl)

for all s € [r]. Thus, Q) can be chosen to be the set of all (b, .. 7b1(:+)1) HEFL such
that there is a homomomorphism from (K, (z1,. .., 2k, y)) to (Hs, (b(s) . bg_l))
Since a; € R for i € [{], there are C(S) € M, such that (a Z(-Sl), . ( ) € Q).

(s) & ()

By the observation above we can choose ¢;”’ in such a way that ¢;”” = e 3 ) for any

s € [r] and 4,7 € [{] whenever ag ]) = az(-,?j for all j € [k]. In other words, if instead of
the matrix (a!,...,a") consisting of elements of # we consider a similar matrix

o) ... d)

A —

fs) = cl(»,s) whenever the rows 7 and i’ of A®®) are equal.
In all other cases the choice of c'*

;18 unrestricted.
We prove that the tuple ([e1],. .., [c¢]) constructed this way is a fixed point of any
automorphism of (H/x)’.
Let ¢ be an automorphism of (H/x)’. Since all the constant tuples are fixed
points of ¢, by Proposition 4.4 there are permutations 7, on [¢], s € [r], such that for

any (di,...,d) € H*

for each s € [r], then we choose ¢

([dv,...,1d") (100 18D
2 : = :
dM),...1d) @), [d7 )

In particular, ¢ acts on every factor H(®) /m separately. Let us consider one of the
factors of H, H(*). The action of ¢ on [A(*)] can be represented as follows

a (s) [ (s)

Oro(1), o aws(l),k]
p([AW]) = : :
(s ) ()
la wim ) [az. ) 1]
As [a'],...,[a¥] are fixed points of ¢, it holds that ¢([A®)]) = [A®)] for every s € [r].
Therefore, if 75(i) = ¢’ it must be that [a (S)] [a (s)z} for all j € [k]. That is, the rows

of [A®)] indexed by an orbit of 7, are equal. By the choice of ¢, if 74(i) = i’, we also

have [cgs)] [c (s)] and the entries [c gs)]’ cee [cés)] are also equal on orbits of 7g. This
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(3)] _ [C(S)

i s (i

Thus, [c] € H/» and the result follows. O

Now, we can continue with the rest of the proof of Proposition 5.6. We apply

~

Mébius inversion to (7, (al,...,a*)). For 6 € Part(7{) we set

M(6) = hom((H/g,(a' /g, ...,a"/9)), (H,(a',...,a")),
N(0) = inj((H/g, (@' /g, ...,a5)), (H,a',... ,a")).

means that [¢ )] for every i € [{] and every s € [r], that is, ¢([c]) = [c].

Then we proceed as in the proof of Lemma 3.8 to conclude that if M (6) =0 (mod p) for

allf € Part(ﬁ), then (7:2, (al,...,a")) has a p-automorphism, leading to a contradiction

with the construction of (H, (al,...,a*)) which is the p-reduced form of H* and is

~

p-rigid. Therefore, there exists § € Part(H) such that

hom((H/o, (a' /o, ..., a"/9)), (H,(a',...,a")) £ 0 (mod p).
It remains to show that for every b = (by,...,b;) € R
hom((H/o, (a'/o, ..., a" /9)), (H,b) = 0.
Suppose the contrary, that is, there is a homomorphism 1 such that
b (Ho, (' g,...,a"/9)) = (H,b).

By Claim 1 there exists ¢ = (¢1,...,¢) € H such that (@i1y.--y0ik,¢) € Q. Let
k

€
q = (al,...,ak c). We make use of the graph-structure K defined in (5.1). By
Proposition 3.1 and Lemma 3.4,

hom((K:v (xlv s Ty y))7 (ﬁvq)) = hom((K:v (xlv s ,Ik,y))7 (Iszq) =1 (HlOd p)'

So, there is a homomorphism ¢1 : (K, (21,...,2%)) = (ﬁ, (al,...,a")).
By Lemma 3.3 we also have the following homomorphism

0ot (H,(a',...,a")) = (H/o, (@l /p,...,a" /o)),

However, the homomorphism

Yowsopr: (K, (x1,...,2k)) = (H,b),
witnesses that for some d € H
Hom((KC, (z1,-..,2ks1)), (H, (b,d)) # 0.
By the choice of (K, (x1,...,7r+1)) this means that (b,d) € Q7, which contradicts
the assumption that b € R. |
We are now in a position to prove the main result of this subsection.

THEOREM 5.7. Let H be a p-rigid relational structure that is a factorization-
reqular graph expansion. If R is pp-definable in H, then #,CSP(H + R) is polynomial
time reducible to #,CSP(H).

Proof. By Lemma 5.1 we may assume that H is with equality. By Proposition 5.6
there exists a pp-definition of R(x1,...,2x) = Jy1,...,ysP(x1, ..., 2k, y1,...,Ys) of R
such that for any a € R, #extg(a) =1 (mod p). Let P = (X,C) be a #,CSP(H + R)
instance. Without loss of generality assume that Ci,...,C,, are the constraints
containing R. Construct a #,CSP(#H) instance P’ = (X’,(’) as follows:
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e For each i € [m] introduce new variables y;1,...,y;s and set X' = X U
Uiemy{wits -5 vis}-

e The set C’ contains every constraint from C — {C1,...,Cy,}. Also, we replace
each C; = {(zi1, ..., ), R) with the definition ®(x;1,..., 2k, Yi1,-- -, Yis) Of
R.

Next, we find the number of solutions of P’. As is easily seen, for every solution ¢ of
P there are

[T #exta(e(@i), ..., o(@ix)) =1 (mod p)

solutions of P’. Therefore if N, N’ denote the number of solutions of P, P’, respectively,
we have N = N’ (mod p). d

One important special case of pp-definable relations that we will use all the time
is unary pp-definable relations or subalgebras. Recall that if a structure H is a graph
expansion, we define the neighbourhood Ny (A) of a set A C H in terms of the
underlying graph.

LEMMA 5.8. Let H be a graph expansion.
1. Let a € H. Then Ny(a) is a subalgebra of HE.

2. Let A C H be a subalgebra of H. Then Ny (A) is a subalgebra of HE.
Proof. Let E be the edge relation of H.

1. Since M€ has the constant relation Cy o, Ny (z) = y(E(z,y) A Cuo(y)) is pp-
definable.

2. In this case the argument is similar. Let the subalgebra A be pp-defined by A(x) =

x
Ty, ysP(, 1, -, ys). Then Q(x) = 323y, ..., ys(E(x, 2) A P(2,y1,...,Ys)) de-
fines Ny (A). |

5.7. Factor structures. An important tool for both decision CSPs and exact
counting is a reduction from factor structures modulo a pp-definable equivalence
relation. Here we prove that a similar reduction works in the case of modular counting.
We start with an auxiliary statement.

LEMMA 5.9. Let H be a graph-structure with vertex set V', and let W C 'V and 0 be
a unary relation and an equivalence relation on W with equivalence classes Ay, ..., Ay,
both primitive positive definable in HE. Then, there exists a structure G and x € G
such that

hom((G,x),(H, A;)) =1 (mod p)
for alli € [r].

Proof. To simplify the notation, we assume that H contains all the constant
relations, that is, H = H®. Let H = H; X --- X Hy be a factorization of H into
its prime factors. By Lemma 4.2, we have H/m = Hi/m X --- X Hp/m. Let [a] =
([a™M], ..., [a®)]).

Cram 1. (a) There exist H} C H, for ¢ € [k] such that W = H} x --- x Hj.

(b) There exist equivalence relations 6() on H, for ¢ € [k], whose equivalence classes
are denoted by Agt), i € [ry], satisfying the following condition:

- For tuples (by,...,bs),(c1,...,¢s) € H*®, where b; = (bz(-l), cee bgk)) and ¢; =
(cz(.l), ce cgk)) represent b; and ¢; in the factorization of H, respectively, it holds that
(b1,...,bs)0(ct, .. cs) if and only if b 9@ ¢\ for all ¢ € [k] and j € [s].
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Proof of Claim 1. We use the equivalence between pp-definitions and homomor-
phisms from Lemma 5.4.

(a) Let (Ko, z) be the structure that defines the subalgebra W. Then a € W if
and only if hom((Ko, ), (H,a)) #0 (mod p). Let

H,={a;|a=(ay,...,a;) € W}.
Since

k
hom((Ko, ), (H,a)) = [ [ hom((Ko, z), (Hs, ar)),

it holds that hom((Ko, z), (H¢, at)) Z 0 (mod p) whenever a € W. For the same reason
if a; € H] for t € [k], then hom((Ko,z), (H,a)) £ 0 (mod p), a = (ay,...,a:) and
aeW.

(b) Let (KC, x,y) be the structure that defines the relation 6, that is,

hom((K, z,y), (H,a,b)) #0 (mod p)
if and only if (a,b) € 6. Define 0¢) C H2, i € [k], by the condition
(a;,b;) € 69 if and only if hom((K,z,y), (Hi,as, b)) 0 (mod p).

By Proposition 3.1 for a = (ay,...,ax),b= (b1,...,bx) € H, (a1,...,a;)0(b1,...,bx)
if and only if a;0Vb; for all i € [k]. Tt remains to show that every () is an equivalence
relation. This however is straightforward from the property above and the reflexivity,
symmetricity, and transitivity of 6. 0

Claim 1 and Proposition 3.1 imply that it suffices to find a structure (G, z) such

that
hom((G, x), (Ht,AEt))) =1 (modp)

for every t € [k] and every i € [r¢]. In order to simplify notation, in the sequel we
will assume that (Hs, AES)), (’Ht,Agt)) are not isomorphic for any s,¢ € [k] and any
i € [rs],j € [re]. Indeed, otherwise the congruence above for one of them implies that
for the other, and only one of the isomorphic structures is included in the construction
below. We construct a relation J as follows:

T =H x - X HE,
and a set M C J as
M:Agl) X o xAg”) xAél) X o xA,(Cl) X oo xA,(CT’“).
By Proposition 3.1, and Fermat’s Little Theorem it suffices to find (G, x) with
hom((G,z),(J,M) #0 (mod p).
It will be convenient to denote the components of tuples a € J using two parameters,
say, alt,i], that is, a = (a[l,1],...,a[l,r],...,a[k,1],...,a[k, rg]).

If (J, M) were p-rigid, and M were automorphism-stable, we could apply the
Mobius inversion formula, similar to Lemma 3.8(1), to conclude the existence of the
required G. However, there is no guarantee this is the case, and a few more steps
are needed. Let 67 denote a binary relation on J given by (a,b) € 07 if and only if
(a[s,i],b[s,i]) € ) for all s € [r] and i € [ry]. As is easily seen 7 is an equivalence
relation on a subset of J and M is a 6 7-block.

CramM 2. Let ¢ be an automorphism of J and a,b € J such that (a,b) € 6.

Then (¢(a), ¢(b)) € 07.
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Proof of Claim 2. The claim follows from the fact that 6 is pp-definable in J.
Indeed, let (K,z,y) be the structure that defines # and all the (), s € [k]. Then, as
(a,b) € 0 if and only if hom((K, z,y), (Hs,a,b) # 0, we also have (a,b) € 0 if and
only if hom((K,z,y),(J,a,b)) # 0. Let (a,b) € 7 and ¢ : (K,z,y) — (J,a,b) a
homomorphism mapping x to a and y to b. Then ¢ o % is also a homomorphism from
(K,z,y) to (T, ¢(a), p(b)) witnessing that (¢(a), (b)) € 67. |

Next, we show that M is automorphism-stable for 7. In fact, if this holds, then
the reduced form of M will be automorphism-stable in J*P.

CLAIM 3. The set M is automorphism-stable for J and M/« is automorphism-stable
for J/o.

Proof of Claim 3. Pick an arbitrary a € M and let G be the set of automorphisms
¢ of J such that p(a) € M. It suffices to show that G is a subgroup of Aut(J).
As G contains the identity automorphism, we only need to verify that G is closed
under composition. Let ¢1,92 € G and ¢1(a) =b € M. As po(a) € M, by Claim 2
p2(b) € M, as well, implying 2 0 ¢1(a) € M and w2 0 @1 € G. For M /s and J /s a
proof is similar. 0

By Theorem 4.8, J and M can be replaced by J and M , respectively, obtained
by reducing 7 using local p-automorphisms, such that J /s = J/m and M/, = M /.
Moreover, for any (G, x)

hom((G, ), (J, M)) = hom((G, z),(J, M)) (mod p).

Note that J is not p-rigid yet; in fact, it is possible to reduce it even further. The
crucial point here is that M will survive after 7 is completely p-reduced. To conclude
this, we need to prove the following claims.

CLAIM 4. M is a union of R-classes and M is automorphism-stable in J.

Proof of Claim 4. Note that, as J/w = J/m, M/w = M/x, and J is ob-
tained from J by local automorphisms, it suffices to show that M is a union of
R-classes. Let a € M and b € J such that aRb. As 67 is an equivalence relation
hom((G,z,y),(J,a,a)) # 0, let ¢ : G — J with ¢(z) = ¢(y) = a. Since a and b
have the same neighbors, the mapping ¢’ that is equal to ¢ except ¢'(y) = b is a
homomorphism from G to J, witnessing that (a b) € 67 and therefore b € M.

Similar to Claim 3 pick an arbitrary a € M and let G be the set of automorphisms

¢ of J such that p(a) € M. It suffices to show that G is a subgroup of Aut(J7).
As G contains the identity automorphism, we only need to verify that G is closed
under composition. Let ¢1,¢2 € G. By Lemma 4.1 @1, ps induce automorphisms
©1/m, 02/ of T /. By Claim 3 s /s 0 1 /s maps M /g to itself. Therefore, since
(p20p1)/n = p2/9 © 1/, and by what is proved above, @3 0 1 maps M to itselfO

Finally, we show that (j , M ) has no non-local automorphisms.

CrLam 5 (7, M ) has no non-local p-automorphisms.

Proof of Claim 5. Suppose that ¢ is a non-local p-automorphism of (j , M ). Then
/9 is a nontrivial p-automorphism of (J /s, M /x). By Proposition 4.4 we have

o([a]) = o(([a[1,1]};. .., [a[l,m]],..., [alk,1]],. .., [alk, 7&]]))
((falt,m (D], [a [1,7T1(7"1)H7~-~,[a[kﬂfl(l)]]v---Ja[kﬂfk(?’k)]]))
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for a € 7. If for some i € [k] the mapping m; is not identity, say, m;(j) # j for j € [r;]
then for any a € M it holds that a[i, m;(j)] € Agz) N Af:i)(j), and this cannot be true for

any a € M , because A;i) #+ AS:)(J.). This implies that every m; is the identity mapping,
/9 is the identity mapping, a contradiction with the choice of ¢. ]

Now, we apply Lemma 3.8(1) to (J*7, M) and obtain the desired (G, ). 0

THEOREM 5.10. Let H be a p-rigid relational structure that is a factorization-
reqular graph expansion. If W is a subalgebra of H® and 0 is an equivalence relation on
W pp-definable in H, then #,CSP(H’/g) is polynomial time reducible to #,CSP(H),
where H' is the substructure of H induced by W.

Proof. We use the homomorphism formulation of the CSP. Also, for every R (say,
k-ary) from the vocabulary of H, let Ry be defined by

k
Ro(x1,...,2k) = Jy1,. .,y R(z1,...,z5) A /\ 0y, x;).

i=1

By Theorem 5.7 we may assume that W, 6 and all the Ry are in the vocabulary of
H,H/g, and 0 is the equality relation in H/y. Then R;{/" is the same as R*/¢, and

Rit = | all]/p x -~ x a[k]/s,

acRM

where a/p denotes the #-class containing a.

Let J be an instance of #,CSP(#/y) and N = hom(J,#H/¢). By the observation
above we may assume that 7 only uses predicates of the form Ry, that is, the remaining
predicates are interpreted as empty relations. Our goal is to construct an instance 7’
of #,CSP(H) such that hom(J’,H) = N (mod p). Note that there is no guarantee
that J itself works as J’, because every homomorphism to H/g blows up to an
unpredictable number of homomorphisms to H. Therefore, 7 needs to be modified.

Let G and = € G be as in Lemma 5.9. We construct an instance J' of #,CSP(H)
as follows:

e For every vertex y € J of J create a copy (Gy,y) of (G, ) (thus identifying y
and the distinguished vertex of G) and set J' = JUJ,c; Gy-

e For every Ry from the vocabulary of H set R‘97 = R9‘7 .
e For every R from the vocabulary of # that is not of the form Ry set RY =
UyEJ ng'

Next, we analyze the number of homomorphisms from J’ to H. Note that for every
homomorphism ¢ : J — H the mapping ¢/g : J — H /¢ given by ©/a(y) = ©(y)/e
is a homomorphism from J to H/g. Therefore, it suffices to fix a homomorphism
¥+ J — H/g and evaluate the number N, of homomorphisms ¢ : J' — H such
that (¢)7)/o = 1. We show that N, =1 (mod p), thus proving that the reduction is
parsimonious modulo p. Since all the predicates involved in J are of the form Ry, any
mapping ¢’ : J — H such that ¢'(y) € ¥(y) for y € J is a homomorphism from J to
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H. Therefore
Nw = H H hom((gy7y)7 (H7(l))

yeT a€y(y)

[T hom((Ty. ). (H. 4 (y)
yeJ

=1 (mod p),

where the last congruence is by Lemma 5.9. The result follows. O

5.8. Nested subalgebras. In this section we prove an auxiliary statement that
will be instrumental later on.

LEMMA 5.11. Let p be a prime number and let H be a p-rigid structure. Suppose
that A, B C H are nonempty sets such that A and AU B are subalgebras of HE. Then
there exists a structure IC with a distinguished vertex x such that

hom((KC, x), (H, A)) #0 (mod p),
hom((K,z), (K, B)) 20 (mod p),
hom((K, z), (H,a)) =0 (mod p) foralla ¢ AU B.

Proof. For reasons that will be clear shortly we consider two cases: p > 2 and
p=2.

CASE 1. p > 2.

Set J = (H)?, M = (Ax B)U (B x A), and M’ = (AUB) x (AU B). As we
demonstrate in Claim 4, it suffices to show that for some (G, z) it holds that

hom((G,x),(J,M))#0 (mod p).
Indeed, if this is the case, by Proposition 3.1 we would conclude that
2hom((G, ), (H®, A)),2hom((G, z), (H,C)) #0 (mod p),

and (G’, ) with the required properties can be easily constructed from (G, x).

We will apply Lemma 3.8(1) to prove the existence of such a structure. However,
in order to apply Lemma 3.8(1) the set M needs to be automorphism-stable, and
there must be no p-automorphism ¢ of J such that ¢(a) € M for some a € M.
Unfortunately, J and M do not satisfy any of these conditions. We will modify them
to enforce the conditions. B .

Firstly, by Theorem 4.8, J, M can be replaced by J and M, respectively, obtained
by reducing J using local p-automorphisms, such that J /i = J/m, M/m = M /.
Moreover, for any (G, x)

hom((G, ), (7, M)) = hom((G, ), (J, M)) (mod p).

CLAIM 1. J is p-rigid.

Proof of Claim 1. Since p > 2, by Corollary 4.5 every p-automorphism of J is
local. As J/m = J/m the same holds for J. By the construction J does not have
local p-automorphisms. The claim follows. ]

CLAIM 2. M is a union of R-classes.
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Proof of Claim 2. For any a € AUB and b € H such that afRb, the map swapping
a and b (and fixing everything else) is an automorphism of A and hence must preserve
the subalgebra A U B. This implies that A U B is a union of fi-classes.

Since A is also a subalgebra, the same argument applies to it: A is automorphism-
stable and hence a union of R-classes. Now, since AN B = (), and both A and AU B
are unions of R-classes, it follows that B is also a union of R-classes.

We now turn to the structure of M. By construction, M = (A x B) U (B x A).
Since both A and B are unions of 9i-classes, Lemma 8.7 and Lemma, 4.2 imply that
both A x B and B x A are unions of R-classes. Therefore, so is their union M. ]

CrLAIM 3. The set M is automorphism-stable for j .

Proof of Claim 3. We need to show that for some a € M7 Stab(a, ]T/f) is a subgroup
of Aut(7). In fact we show that for any a € M, Stab(a, M) = Aut(J7). In order to
do that, it suffices to prove that for any ¢ € Aut(J) it holds that ¢(a) € M. Also, it
suffices to prove this for M / o by Claim 2.

We first argue that no element of M / 9 18 isomorphic to an element of M M’ /m—M / %,
that is, no automorphlsm of j/m can map an element of M/m into M’/m — M/m
Note that M’/m - M/m = A%/ U B?/s.

Assume for contradiction that there exists an automorphism ¢ € Aut(j /m) and a
pair (a/m,b/n) € M/m such that

@(a/m,b/m) c Az/m UBz/m

Note that by Proposition 4.4, since J /o3 is R-thin, we actually have ¢(a/m,b/n) =
(p1(a/m), p2(b/:)) for some automorphisms @1, o of H /9. Without loss of generality,
suppose that (a/n,b/m) € A/m X B/m, so

(5.2) a/w € A/w,  b/n € B/x.

Now consider two cases:

Case 1: Suppose (¢1(a/n), 2(b/n)) € A%/%. Then both p1(a/s) and po(b/s) are
in A/p. Apply the inverse automorphism 1 = ;' € Aut(J /). Since a(b/n) € A/,
we conclude that b/ = ¥(p2(b/n)) € V(A/x) = A/m, because A/x is a subalgebra.
But this contradicts (5.2), which says b/ € B/m, and A/ N B/» = () by assumption.

Case 2: Suppose (¢1(a/m), ¢2(b/m)) € B2/s. Then both 1 (a/n) and @a(b/m)
are in B/;. However, as A is a subalgebra, we should have ¢1(a/n) € A/m, a
contradiction.

Therefore, no automorphlsm pE Aut(J ) can map a pair in M to an element of

M — M. Hence, M is closed under automorphisms of J.
Next, we show that M'is a subalgebra of J. Since AU B is a subalgebra of H, it
is pp-definable. By Proposition 5.6, there exists (G, x) such that

hom((G,z),(H,a)) 20 (mod p) if a € AU B,

and 0 otherwise. Then, by Proposition 3.1(2), the same (G, z) shows that M’ is a

subalgebra of 7. Consequently, the image M M’ under reduction is a subalgebra of j
and thus automorphism-stable. The claim follows. ]

CrLAaM 4. For any (G, z),
hom((G, z), (7, M)) = 2hom((G, z), (H, A)) - hom((G, z), (H,B)) (mod p).
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Proof of Claim 4. By Theorem 4.8 it suffices to prove the claim for J and M.
By Proposition 4.4 every homomorphism ¢ : G — J can be represented as ¢(y) =
(01(),v2(y)), where @1, are homomorphisms G — HC¢. Conversely, if o1, 92 :
G — M are homomorphisms, then the mapping given by ¢(y) = (p1(y), v2(y)) is a
homomorphism from G to J. Finally, p(z) € M if and only if ¢1(z) € A, p2(x) € B
or 1(x) € B, pa(x) € A. Since swapping coordinates of 7 is an automorphism of J
the number of homomorphisms of the two kinds is the same. 0

By Lemma 3.8(1) there is (G, x) such that
hom((G, ), (7, M)) #0 (mod p).
Then by Claim 4 we also have
hom((G, x), (H®, A)),hom((G,x),(H,C)) Z0 (mod p).

To obtain a required gadget (K,x) we need to ensure that hom((K, ), (H, a)) =
0 whenever a ¢ AU B. Since AU B is a subalgebra, there is (G’,z) such that
hom((G’,x), (H¢ a)) =1 (mod p) whenever a € AU B, and hom((¢’,x), (H ,a)) =0
(mod p) otherwise. The structure (K,z) = (G,z) ® (G',z) satisfies the required
conditions.

CASE 2. p=2.
Let H=H; x---xHg be a prime factorization of H, the underlying graph-structure
of H. By Proposition 4.4 every automorphism ¢ of (H)? has the form

() ) () ()
azy)’ 7 \azk Az (2),1 Y A7y (2),k '

where (@i 1,...,a;,) is an element of the ith copy of H and y,...,m; are permu-
tations of [2], that is, either identity mappings or involutions. Let J, = {i € [k] |
7; is an involution}.

We plan to use Lemma 3.8(1), and for that we need to find

a= ((11’1,...,alﬁk,ag,l,...,agyk) € Ax B

such that Stab(a, A x B) is as small as possible. Suppose that for some a € A x B and
an automorphism ¢ of (H€)? we have p(a) € A x B. If ¢ is not an identity mapping,
J, # (. Choose a and ¢ such that J, is maximal possible. Without loss of generality,
J, = [s], that is,

o (o) () = (G o Cre) G) o (2))
2,1 a2k ail ai,s a2 s+1 a2k

Note that J, # [k], because in this case (ai,...,a;) € AN B, which is impossible, as
A and B are disjoint.
By the choice of a and ¢ we have (az1,...,02,,01,5+1,---,01,%) € A. Therefore,

by (5.3)
b= (920) L (92, (M) (M) ) eAx B
az.1 B a2, s ’ a2 541 B az. k

is a fixed point of . Let H? denote the structure (%¢)? reduced using the automorphism
©. In other words, H? is the induced structure on the set

01,1 ai,k 2 '
S = 1l IR cny gy ic .
{<<a2,1) (ag,k)> | aii=az;, i [s]}
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Also, let M = (A x B)N S. Note that M # ) because b € M.

CrLAIM 5. For any ¢ € M, the only automorphism 1 of H? such that 1 (c) € M is
the identity mapping.

Proof of Claim 5. Any nontrivial homomorphism 1 of (H¢)? has the form

o))~ () ()

az1)’ " \agk ary2),1/) "\, (2)k

Suppose that 7; is an involution for some i € {s+ 1,...,k} and there is ¢ € M such
that 1 (c) € M. But then for the automorphism 1’ of (H)? given by

W a1,1) a1,k> _ (%;(1),1 Ari (1),k
az1)’ 7 \azk amp21) T \ar2)k) )
where 7}, ..., 7, are involutions and 7} = m; for i € {s+1,...,k} we have ¢)'(c) € AxB.
Since I, C Iy we get a contradiction with the choice of a and . 0

Claim 5 implies that Stab(c, M) contains only the identity mapping, and therefore
is a subgroup of Aut(H?). Therefore M is automorphism stable. By Lemma 3.8(1)
there is (G, z) such that hom((G, z), (H?, M)) =1 (mod 2). Therefore

1 =hom((G,z), (H?, M)) = hom((G,z), ((H)?, A x C))
= hom((G,z), (H°), A)) - hom((G, =), (H°), C)).

Since AU B is a subalgebra we obtain a structure (I, z) satisfying the conditions of
Lemma 5.11. O

6. Bipartite graphs. In this and the next sections we apply the results of
Sections 5.2-5.6 to advance along the chain of reductions from Fig. 2.1. As this chain
splits into two, for bipartite and nonbipartite graphs, we also consider two cases. This
section tackles bipartite graphs.

6.1. Searching for a thick Z-graph. In this subsection we prove Lemma 2.4
as well as a stronger result that will be needed for the hardness proof.

LEMMA 6.1. Let ‘H be a bipartite graph expansion such that its underlying bip-
structure H is connected but not a complete bipartite graph. Then there are subsets
A CC i”, B,D C RM such that AUC, BUD are subalgebras of HE, and the subgraph
induced by AU BUCUD is a thick Z-graph. Moreover, AUC,BU D are unions of
R-classes of H.

Proof. Let E be the binary predicate of H defining the underlying bipartite graph.
We proceed by induction on the number of vertices in #. If |[L*| = |[R*| = 2, bip-
structure H = (H,E,Ii,f%) is either disconnected, or complete, or a Z-graph. For
the inductive step it suffices to show that if H is not complete and H is also not a
thick Z-graph, then there are L' C L* B’ C R™ such that L/, R’ are subalgebras of
‘H, one of the inclusions is strict, and the subgraph induced by L' U R’ is connected
and not complete. If a connected bip-structure H is not complete, then either it is a
thick Z-graph, or there are v,w € H (assume v, w € L") such that Ny(v) # R" and
0 # Nu(v) N Ny(w) # Nu(v). Then R = Ny(v), L' = Ny(Ny(v)) are subalgebras of
‘H, and the subgraph induced by L’ U R’ is connected and is not a complete bipartite
graph. O

Recall that by H? we denoted the expansion of the structure H¢ by a thick Z-graph.
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COROLLARY 6.2. If H is an expansion of a connected non-complete bipartite graph
then there exists a thick Z-graph Z such that #,CSP(H?*) <t #,CSP(H°).

One potential difficulty with the Z-graph we have found is that the subsets involved
in it may have sizes divisible by p, in which case it is not suitable for a hardness result.
Next, we show that the Z-graph satisfies certain additional conditions.

Recall that for a bipartite graph (or a bip-structure) G by LS, RS we denote the
two parts of its bipartition. Consider the structure H? constructed in above. As a part
of its signature it contains the two parts of a thick Z-graph Z. Let A, B,C, D be the
components of Z. The graph Z is said to be non-degenerate if there exist structures
with distinguished vertices (K, x), (Kg, ) such that

hom((Kr,z), (H%, A)) =a; 0 (mod p),
(6.1) hom((Kyr,z),(H?,C)) =ay 0 (mod p),
' hom((Kg, ), (7—[2, D)) =p1 #0 (mod p),
hom((Kr, ), (H*, B)) = 2 #0 (mod p),
and
(6.2) hom((Kp,z), (H%,v)) =0, forve L™ — (AU C),
- hom((Kg,x), (H*,v) = 0 for v € R* — (BU D).

Note that the non-degeneracy of Z is a property of the entire structure H?, and not
only of the graph Z itself.

PROPOSITION 6.3. H contains a non-degenerate thick Z-subgraph.

Proof. Let Z be the thick Z-subgraph found in Lemma 6.1. In particular, A, B, C, D
are such that AUC, BUD are subalgebras of H and are unions of fi-classes. We need to
prove the existence of structures (Kr,, x), (Kg, x) from the definition of non-degeneracy.
Applying Lemma 5.11 it suffices to show that B and C are also subalgebras of H°.
This however is witnessed by the following pp-definitions (inside the Z-graph) where
ac€AbeB,ceC,deD

B(l‘) = Hy,z (E(x,y) A E(ZJS7Z) A CH,a(y) A CH,C(Z))7
=3y, z (E(z,y) NE(z,2) ANCrp(y) A Cr,a(2)). d

6.2. Weighted #BIS and thick Z-graphs. To prove the hardness of #,CSP(#?)
we reduce the Weighted #,BIS problem to #,CSP(#?%). For a graph G let IS(G) denote
the set of its independent sets. Let o, 8 # 0 (mod p). Then #,BIS(, §) is the problem
defined as follows: given a bip-structure G, find the value

g 3G
Za,ﬁ(G) — Z a|IﬁL | _/B\IﬂR |
I€15(G)

modulo p. The problem of computing the function Z, 3(G) is proven to be #,P-hard
in [20].

We show that if Z is non-degenerate, then #,BIS(a, 8) for some o, 8 # 0 (mod p)
is polynomial time reducible to #,CSP(H?). Together with Proposition 6.3 this gives
the hardness result for bipartite graphs.

37



THEOREM 6.4. Let there exist an induced subgraph of H that is a non-degenerate
thick Z-graph with parameters aq, as, 51, P2, then #pBIS(alaz_l, B1By ) (multiplication
and inversion here are modulo p) is polynomial time reducible to #,CSP(H).

Proof. Let G = (fG U RG,E) be a bip-structure, an instance of #,BIS. We
construct a structure G', an instance of #,CSP(H?) as follows:
e For each vertex 2 € L® and each vertex Yy € RS, we introduce vertices [* and
r¥, respectively. If (x,y) € F, then we add an edge between [* and r¥ in G'.
e For z € LS let K1 (z) denote a copy of Ky, attached to I, that is, z in (Kp,z)
is identified with [*. For y € RC a copy Kr(y) is attached in the same way.

b \ 4 K (e‘r C’CR(?J')

Fig. 6.1: The structure of G'.

The vertices from A and D will help to encode independent sets of G. Specifically,
with every independent set I of G we associate the set of homomorphisms ¢ : G/ — H?
such that for every vertex z € LS, z € I if and only if ¢(I*) € A (recall that z is
also a vertex of G’ identified with I in (K1 (z),1%)); and similarly, for every y € RS,
y € I if and only if p(y) € D. Finally, the structure of H? makes sure that every
homomorphism from G’ to H is associated with an independent set. Note that just
an association of independent sets with collections of homomorphisms is not enough,
the number of homomorphisms in those collections have to allow one to compute the
weight of an independent set in #,BIS.

For each ¢ € Hom(G’, H), define

I,={zeL®: p(®) e A}U{yec R®: p(¥) € D}.

CramM 1. I, is an independent set of G.

Proof of Claim 1. Assume that for some ¢ € Hom(G',H) the set I, is not an
independent set in G, i.e. there are two vertices a,b € I, such that (a,b) € EC.

Without loss of generality, let a € LS and b € RS. By the construction of I,
¢(a) € A and p(b) € D and by definition of H? there is no edge between A and D,
that is ¢ is not a homomorphism, a contradiction. 0

Let = be the relation on Hom(G’, ) given by ¢ = ¢’ if and only if I, = I,». Obviously
= is an equivalence relation on Hom(G’, H). We denote the class of Hom(G', H)/~
containing ¢ by ¢/~. Clearly, the =-classes correspond to the independent sets of G.
We will need the corresponding mapping

§:Hom(G', ")/~ —1S(G), where F(p/=)=1I,
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First, we prove that § is bijective, then compute the cardinalities of classes ¢/-~.
CrLAIM 2. The mapping § is bijective.

Proof of Claim 2. By the definition of §, it is injective. To show surjectiv-
ity let I € IS(G) be an independent set. We construct a homomorphism ¢ €
Hom(G’, H) such that I, = I. Pick arbitrary a € A,b € B,c € C,d € D such that
hom((Kr,z), (H?,a)),hom((Kr, ), (H?, ¢)),hom((Kg,z), (H%,b)),
hom((Kg,z), (H%,d)) # 0, and

e For every vertex z € I N LS set o
e For every vertex 7 € LE — I set (I
e For every vertex y € I N RS set <p(ry
e For every vertex j € RS — I set o(r¥) =

By the construction of ¢, if (z,y) € E® and ¢(I*) € A, then ¢(r¥) € B. Similarly,
if p(r¥) € D, then ¢(I*) = C. If none of the endpoints of an edge (z,y) belongs to I
then ¢(I*) € C and ¢(r¥) € B. By the assumption on (K, ), (Kg,z) and the choice
of a,b, ¢, d, the mapping ¢ can be extended to a homomorphism from G’ to H. Hence
§ is surjective. ]

I) a
) =c,
) =d,
b.

_ |L®nr Le—1 RenI RC—1
CLAIM 3. |p/=| = ol el QIF7 =11 glEnIel glR= =11

mod p).

Proof of Claim 3. We find the number of homomorphisms ¢’ € ¢/~. The struc-
ture G’ consists of copies of (Kr(x),1*) and (Kgr(y),rY). By Claim 2, and by (6.2) and
(6.1)

/ol =( TI hom((Kr(@).i7), (3, AD) - ( TI hom((Kp(@),t?), (1. C))

$EEGOI¢ $EEG—L,;
(T hom((Kaw). ). (4.0)) - (- TT hom((Kn(w).r"). (%, B)))
yeRSNI, yeRG—1I,

LenI Le-r1 ReNI RC—T
EOéll «0‘ a‘g ol Bll ol B|2 ol (modp) 0O

Assume that = has M classes and ¢; is a representative of the i-th class. Note that
there is no homomorphism ¢ such that p(I*) € AUC or p(r¥) € BUD.

Lenr Lé—1,. RénI,, RC—1I,,
|H0m(g,7H)|=Z\% 1‘—2 | il ‘2 il ,8‘1 ol 6‘2 @il

=1
|[LenI| |LS—1I| ,|R°nI| ,|RC—1I|
E 251 Qg By B3
I€lS(G)
|LS| 5| RE| |LSnI|  —|L®| |LS—I| A|R°NI| p—|R| 5|R°—1|
ay’ By E Qa; Qy Qo By By By
I€1S(G)

Eagﬁl@ﬁzcl Z (ala2—1)\i‘3m| (5162—1)|R%1|

I€1S(G)

L® RG
‘ lﬂ‘ alagl),(glggl)(G) (mod p),

as required. 0

7. Non-bipartite graphs. We now consider nonbipartite graphs. As we are
going to use different methods, this case is split into two subcases. The first one
concerns irreflexive, i.e. simple graphs, in which case we reduce the problem of counting
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satisfying assignments to a 3-CNF to #,CSP(#¢), and the second one concerns graph
with loops, in which case we reduce either #,BIS or the similar problem of counting
independent sets in arbitrary graphs.

7.1. Irreflexive nonbipartite graphs. In this subsection we prove Lemma 2.6,
that is, we show that if H is a nonbipartite graph then H¢ pp-defines a 3-SAT
structure (as introduced in Section 2.5), and obtain the reduction #,CSP(H3S4T) <t
#,CSP(#H®) as an immediate consequence. This result is (almost) readily available
from [3], and we only need to combine those results in the right way. What [3]
proves can be stated as follows. Recall that a relational structure G is a core if every
homomorphism of G into itself is an automorphism.

THEOREM 7.1 ([3]). If H is simple non-bipartite graph that is a core, then there
exists a subalgebra K of HE, a binary symmetric relation E' on K pp-definable in HE,
and an equivalence relation 0 on K pp-definable in HE such that K/g is KS, that is,
a complete 3-element graph with all the constant relations, where K is the relational
structure with the base set K, edge set E', and unary relations Co, C1,Cy that are the
O-classes (these relations become the constant relations of K$).

This theorem does not immediately prove Lemma 2.6. Firstly, it requires that H
is a core. However, a thorough analysis of proofs in [3] shows that the only reason
to require that H is a core is to be able to add constant relations to the signature
of H. Since we are seeking pp-definitions in H¢, the requirement of being a core
is not needed if in Theorem 7.1 H is replaced with H¢. Secondly, as HE contains
all the constant relations and 6 is pp-definable in H€, the relations Cy, Cy,Cy are
also pp-definable in H¢. Indeed, to pp-define C;, i = 0,1,2, pick a € C;, then
Ci(xz) =3y (E(z,y) A Cu(y)). Thirdly, Theorem 7.1 allows us to define K§ rather
than a 3-SAT structure. Overcoming this requires a bit more work.

COROLLARY 7.2 (Lemma 2.6). If H is a simple nonbipartite graph that is not a
complete graph or a single vertex, then HC contains a pp-definable 3-SAT structure.

Proof. Using the standard algebraic techniques, see, e.g. [7, 1], it can be shown
that K§ pp-defines any relation on its set of vertices. More specifically, we employ the
notion of polymorphisms. The following statements can be found e.g. in [1]:

(1) If H is a complete graph, then every polymorphism of H¢ is a projection.

(2) If every polymorphism of a relational structure H is a projection, any relation on
H is pp-definable in H.

Rename the vertices of K§ so that 0, 1 are among them; suppose that these vertices
correspond to the sets Cp,C1 in HC. Then the relations R}, = {0,133 — {(4,4,k)},
1,7,k € {0, 1}, are pp-definable in K§ (see Section 2.5). Let ¥, ; ; be a pp-definition
of R};;. Let also ® be a pp-definition of E' in H® and use O, I to denote Cp, Cy. Then,
as is easily seen, replacing in W;j, ¢, j, k € {0,1}, every occurrence of E(z,y) with
®(x,y) and every occurrence of Cy(z), Cy(z) (constant relations) with Cy(x), Cy (z)
(relations of H€), we obtain a pp-definition of R;j. d

By Theorem 5.7 Lemma 2.6 follows.

COROLLARY 7.3. Let H35AT be the expansion of HE by a new unary predicate OUI
and the relations Rijx,i,j, k € {O,1}, as in Corollary 7.2. Then #,CSP(H3S4T) <r
#,CSP(H°).

We are now in a position to prove Theorem 1.4 in the case of simple non-bipartite
graphs.
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Proof of Theorem 1.4 for non-bipartite graphs. By Corollary 7.2, there exists a
subalgebra K = O U I and pp-definable relations R;jx, 4,7,k € {O, I}, such that K
with these relations is a 3-SAT structure. Also, there exists a pp-definable equivalence
relation 6 on K such that K/ is isomorphic to S = ({0, 1}, R}, 4,4, k € {0,1}) and
R =A{0, 1}® — {(i,j,k)}. By Theorems 5.7 and 5.10

#,CSP(S) < #,CSP(K/y) < #,CSP(H).

It remains to observe that CSP(S) is the 3-SAT problem. 0

7.2. Nonbipartite graphs with loops. In this section we consider the case
when H has loops. First, similar to the bipartite case and thick Z-graphs we find a
subalgebra of H¢ that induces a subgraph with certain properties. This construction in
part is similar to the argument from [11] only using Theorem 5.7. Then we show that
this special induced subgraph is non-degenerate in the same sense as thick Z-graphs
from Section 6 and show how to reduce #,BIS or #,IS to #,CSP(#°).

We start with introducing two special types of graphs. A reflexive graph G = (V, E)
is called a thick star if there is a partition of V into Vo, V1,..., Vi, k > 2, such that
G|y, is a clique with all loops present, every vertex from Vj is connected with an edge
with every other vertex, and there are no other edges. A graph G = (V, E) is said to
be an independent 3-path if there is a partition of V' into Vj, Vi, Vo such that G|y, is
an independent set and contains no loops, G|y, is a disjoint union of complete graphs
Vi, ..., VF with all loops present, G |V0Uv17: is a complete graph with all loops present
for i € [k], every vertex of V4 is connected with all the vertices of V;, but to no vertex
of V1, see Fig. 2.4.

LEMMA 7.4. Let H be a connected graph that is not a clique and contains a loop.
Then there exists a subalgebra W of HE such that H|w is a thick star or an independent
3-path.

Proof. Suppose first that H = (V, E) is reflexive. In this case we prove that if H
is neither a clique nor a thick star, then there is a subalgebra W C V of H¢ such that
H|w is not a clique. Then the result follows, as H is finite.

Let Vo C V be the set of all vertices v such that N(v) = V. As H is connected
but not a complete graph, there are u,v € V, (u,v) ¢ E, such that (w,u), (w,v) € E
for some w € V. If w ¢ Vj, then N(w) is a subalgebra, N(w) C V, and H|y(,) is not
a complete graph. Therefore, H |y, is as required.

Let V1,...,V} be the connected components of the graph H’ obtained by removing
Vo from H. If all of them are complete graphs, then k& > 2 (as H is not complete),
and H is a thick star. Suppose H|y, is not a complete graph. As before, H' contains
u,v € Vi, wv ¢ E and w € V; such that (w,u), (w,v) € E. Since w ¢ Vj, the graph
H | n(w) satisfies the conditions of the lemma.

Next, suppose that H contains both reflexive (with a loop attached) and irreflexive
vertices. As H is a connected graph, there is uv € F such that u is reflexive and v
is irreflexive. If u can be chosen such that N(u) # V then the graph H|y(, still
satisfies the conditions of the lemma. Therefore, we can assume that N(u) =V for
every reflexive u € V' such that uv € E for some irreflexive v € V', and that a reflexive
u € V with N(u) =V exists. If there is uv € E such that both u, v are irreflexive,
then N(u) C V and H|y () still satisfies the conditions of the lemma. Therefore, we
can assume that the set V5 of all irreflexive vertices is an independent set. As shown
before, vertices from the set Vj of neighbors of irreflexive vertices are connected to
every vertex of V. Finally, let V; =V — Vj — V5. This set only contains reflexive
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vertices. Suppose that H|y, does not satisfy the conditions of independent 3-paths.
Then there are u,v € V4 with (u,v) ¢ E and w € V; such that (w,u), (w,v) € E. The
graph H |y, is reflexive but not complete. 0

Next, we show that the problem of counting the number of independent sets either
in bipartite or general graphs is reducible to #,CSP(H¢) whenever H has a loop but
is not a complete graph. Recall that #,IS is the problem of computing the number
of independent sets in a given (not necessarily bipartite) graph. This problem is
#,P-hard as it follows from [14].

PROPOSITION 7.5. Let H be graph that has a loop and is not a complete graph
with all loops present. Then #,BIS(1,1) or #,IS is polynomial time reducible to
#,CSP(H).

Proof. By Lemma 7.4 H has a subalgebra W such that H' = H|y is either a
thick star or an independent 3-path. Let H' = (W, E’). In both cases there is a
partition of W into several sets: Vy, V1,..., V) in the case of a thick star and Vj, V7, V5,
where V; = Vi! U--- UV}, in the case of an independent 3-path. We unify the notation
by setting A = Vj in both cases, B = Vi, C = Ufzzm- if H' is a thick star, and
B=V}!, C=WU U?:z Vi if H' is an independent 3-path. Observe that both A and
AU B are subalgebras of H¢. Indeed, pick u € B and v € C, then A, AU B are defined
by the following formulas

(AUB)(x) =3y (W(z) ACu(y) ANE(z,y)), Alz) =3y (AUB)(x) ACy(y) NE(2,y))-

Let H' denote the expansion of H¢ with subalgebras W, A, AU B. Since both A and
AU B are subalgebras, by Lemma 5.11 there exists a structure 7 (z) that satisfies the
conditions of Lemma 5.11 for A, B. Similarly, since both AUB and W = AUBUC are
subalgebras, by Lemma 5.11 there exists a structure 'z («) that satisfies the conditions
of Lemma 5.11 for AU B and C.

First, we consider the case when H' is a thick star or an independent 3-path with
V1 # 0. In this case we reduce #,BIS(1,1). Let G = (EG URS, F') be a bipartite graph,
an instance of #,BIS. We construct a new graph G’, actually, a graph expansion,
which is an instance of #,CSP(H), as follows:
e Include all the vertices and edges of G.
e For each z € LS, attach p — 1 copies of K’ (x) to x, denoting them by Kr(z)
and identifying x in the gadget with the vertex x.
e For each y € RC, attach p — 1 copies of K% (y) to y, denoting them by Kr(y)
and identifying y in the gadget with the vertex y.
Let F’ denote the edge set of G'.
Now note that for any homomorphism ¢ : G’ — H' and any edge xy € F’ we have
o if p(x) € B, then ¢(y) is any vertex in A U B, because there are no edges
between B and C
e if p(x) € A, then there are no restrictions on ¢(y) apart from ¢(y) € W.
With this observation the following table summarizes the possible combinations of
©(z) and ¢(y), along with whether a homomorphism exists in each case (indicated by
1) or not (indicated by 0)

y—A y—B y—C

T—A 1 1 1
r—B 1 1 0
z—C 0 0 0
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Note that due to the properties of K, no homomorphism maps = € LS to C. The
sets B and C are used to encode independent sets of G. More precisely, for each
@ € Hom(G',H1), define the set

I,={zreL®: p(x)e ByU{ye R®: ¢(y) € C}.

We now show that this encoding gives rise to a reduction from #,BIS(1, 1).
CrLAamM 1. I, is an independent set of G.

Proof of Claim 1. Assume that for some ¢ € Hom(G', H') the set I, is not an
independent set in G, i.e. there are two vertices a, b € I, such that (a,b) € E¢. Without
loss of generality, let a € LS and b € RS. By the construction of I,, ¢(a) € B and
¢(b) € C and by definition of H' there is no edge between B and C, that is ¢ is not a
homomorphism, a contradiction.

Let = be the relation on Hom(G',H') given by ¢ = ¢’ if and only if I, =
I,,. Obviously = is an equivalence relation on Hom(G’, H'). We denote the class
of Hom(G’,HT)/~ containing ¢ by ¢/~. Clearly, the =-classes correspond to the
independent sets of G. We will need the corresponding mapping

3 :Hom(G',H)/~ —IS(G), where F(p/=)=1I,.

First, we prove that § is bijective, then compute the cardinalities of classes ¢/-.

CLAM 2. The mapping § is bijective.

Proof of Claim 2. By the definition of §, it is injective. To show surjectivity let
I € IS(G) be an independent set. We construct a homomorphism ¢ € Hom(G’, H) such
that I, = I. Since K, and K consist of p — 1 copies of K and K'; respectively, by
Fermat’s Little Theorem

hom((Kr(x),x), (?—[T,A))7 hom((Kr(z),x), (HT, B)) =

1 (mod p),
hom((Kg(z),x), (HT, AU B)),hom((Kg(x),z),(H,C)) =1 (mod p),

there are a € A,b € B,c€ C,d € AU B such that

hom((K(x),z), (H',a)), hom((KL(x),z),(H',b)) 0 (mod p),
hom((Kr(z), x), (H',d)),hom((Kgr(z),z),(H',¢)) #0 (mod p).

Then
e for every z € I N LC set p(z) = b,
o for every z € L® — I set op(z) =
e for every y € I N RS set p(y) =
o for every y € R® — I set p(y) =
By the construction of ¢, if (z,y) € F and ¢(x) € B, then ¢(y) € AU B. By the
assumption on (Kr(x),z), (Kr(z),z) and the choice of a,b, ¢, d, the mapping ¢ can
be extended to a homomorphism from G’ to H!. Hence § is surjective. ]

)

—~

a

)

d.
F

CrLAM 3. |p/=| =1 (mod p).

Proof of Claim 3. We find the number of homomorphisms ¢’ € ¢/~. The struc-
ture G’ consists of copies of (Kr(z),z) and (Kr(y),y). By Claim 2, and by the choice
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of /CL,/CR

/ol =( TI hom((Kr(@)a).(1.B))-( TI hom((Kp(w).), (3, 4))

z€LCNI, z€LC—1I,

<(TI hem(Kr@).y.(H.0)) - ( TI  hom((Kaly),y). (. AUB)))
yERCNI, yERS T,

=1 (mod p). d

Assume that = has M classes where each class represents an independent set in G,
hence

M
[Hom(G", 11)| = " |¢i/=,| = M = #,BIS(1,1)(G)  (mod p).

i=1
as required.

Now suppose that H' is an independent 3-path and V; = (). We reduce the problem
#,IS to #,CSP(H°). Let G = (U, F) be an input for #,IS, and construct a structure
G’ as follows:

e Include the vertices and edges of G into G’.

e Since both A= AU B and AU B UC are subalgebras, by Lemma 5.11 with
parameters AU B = A and C a gadget (K'(x), z) satisfying the conditions
of Lemma 5.11 exists. Attach p — 1 copies of (K'(z),z) to each € U and
denote it by (K(x), z).

Suppose ¢ : G’ — H' is a homomorphism. For any edge (z,y) € F, the possible
combinations of the images of x,y are

o If p(x) € A, then (y) can be in either A or C.

o If p(x) € C, then ¢(y) must be in A.

This results in the following table

y—A  y—C
z—A 1 1
z—C 1 0

In this construction, the set C' encodes independent sets of G. For a homomorphism
¢ : G — HT, we interpret = € I if and only if ¢(z) € C.

This construction ensures that adjacent vertices cannot both map to C, and thus,
each homomorphism corresponds to an independent set in G.

Moreover, due to the design of the gadgets, each such assignment contributes
1 mod p to the total homomorphism count. Therefore, we can recover the value of
#,1S on the input graph G, completing the reduction. ]

8. Omitted proofs. In this section, we give a full proof of Theorem 4.3. To
avoid confusion and utilize the existing results, we demote bip-structures to merely
bipartite graphs with fixed left and right sides and use the appropriate terminology.

We denote the disjoint union of graphs G and H by G + H. It will also be
convenient to use the standard graph theory notation, and denote graphs in regular
font and use V(H), E(H) for the sets of vertices and edges. The neighborhood of
a vertex v € V(G) or a set A C V(G) in G is denoted Ng(v), Ng(A), respectively.
However, we will use (a,b) to denote edges, because sometimes vertices will have a
complicated structure.
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8.1. Graph Products. We will need three types of graph products. For Carte-
sian product we use the results of Chapter 6 of [24], which are valid for arbitrary
graphs.

The Cartesian product of two simple graphs A, B is the graph A [0 B with the
vertex set V(A) x V(B) and the edge set E(A O B) = {{(a,b),(a’,V))|(a,a’) €
E(A)and b=V, ora=ad" and (b,0') € E(B)}.

A graph G is called prime with respect to Cartesian product if whenever G =
G1 0O Gs, one of G, Gy contains only one vertex.

THEOREM 8.1 (Lemma 6.7, Theorem 6.8, [24]). Let G, H be isomorphic connected
graphs G =G, O ... OGg and H = Hy O ... O H;, where each factor G; and H;
is prime with respect to Cartesian product. Then k = [, and for any isomorphism
¢ : G — H, there is a permutation © of [k] and isomorphisms ¢; : Gy — H; for
which

<p(a?1, v axk) = (801 (xﬂ'(l))7 Yy ka(xﬂ'(k:)))

The direct product of two graphs A, B is defined in the regular way, as the
graph A X B with the vertex set V(A) x V(B) and the edge set F(A x B) =
{{(a,b),(a’,0))]{a,a’) € E(A) and (b,b') € E(B)}.

The diamond product is defined with bipartite graphs in mind. For a bipartite
graph G = (LU R, E), we denote the two parts of the bipartition by L = L and
R = R.

DEFINITION 8.2. The diamond product of two simple bipartite graphs G = (LE U
R% E(G)) and H = (Ly U Ry, E(H)) is defined as follows:

V(GoH)= (L% x L¥)U (R® x RM)
E(Go H) = {{(a,b),(d',V))|(a,a’) € E(G) and (b,b') € E(H)}

REMARK 8.3. An alternative way to view the diamond product is to consider it as
the product of two relational bip-structures.

REMARK 8.4. The diamond product for simple graphs G and H is commutative and
associative up to an isomorphism, meaning GoH =2 HoG, and (GoH)oK = Go(H oK)
The following statement is straightforward by Remark 8.3

ProrosiTION 8.5. Let G, H, K be simple bipartite graphs with r distinguished
vertices X,y,z respectively. Then

hom((K,G o H) = hom(K,G) - hom(K, H),
hom((K,z), ((G,x) ¢ (H,y)) = hom((K,z),(G,x)) - hom((K,z), (H,y)).

We denote the k-th diamond power of H by H*.

8.2. R-thin Graphs. We recall the definition of $R-thinness for graphs here.
Relation Rg on V(G) for a graph G is defined as follows. Vertices x and 2’ are in R,
written Rz, if and only if Ng(z) = Ng(a'). Clearly, R is an equivalence relation.
Normally we will omit the subscript G.

We denote the quotient of G modulo R by G/,. Given z € V(G), let [z] = {2’ €
V(G)|x'Rx} denote the MR-class containing x. Then V(G/x) = {[z] | x € V(G)} and
E(G/x) = {{z],ly]) | {x,y) € E(G)}. Since R is defined entirely in terms of E(G),
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it is easy to see that for an isomorphism ¢ : G — H, we have z9i¢y if and only if
o(z)Rge(y). Thus, ¢ maps equivalence classes of R to equivalence classes of Ry,
and can be defined to act on V(G/n) by ¢([z]) = [¢(x)].

We need the following lemmas from [24].

LEMMA 8.6 (Proposition 8.4, [24]).  Suppose G,H are simple graphs. Then
G = H if and only if G/ = H/, and there is an isomorphism ¥ : G/s — H /9y with
[[z]| = |¥([x])| for each [x] € V(G/%n). In fact, given an isomorphism ¢ : G/w — H/x,
any map ¢ : V(G) = V(H) that restricts to a bijection ¢ : [x] — ¥ ([z]) for every
[z] € G/n is an isomorphism from G to H.

LEMMA 8.7 (Proposition 8.5, [24]). If graphs G and H are simple graphs and
have no isolated vertices, then V((G x H)/m) = {(z,y)|lz € V(G/m),y € V(H/n)}.
In particular, [(z,y)] = [z] x [y]. Furthermore, (G x H)/x = G/x x H/%, and
Y: (Gx H)/m — G/ x H/w with ¢¥([z,y]) = ([=], [y]) is an isomorphism.

REMARK 8.8. If G = H ¢ K, then Ng((h,k)) = Ny (h) x Nk (k) for any (h,k) €
V(HoK). Recall however that if G and H are bipartite, then for any (h, k) € V(HoK)
either h € Lg,k € Lx or h € Rg,k € Ri.

LEMMA 8.9 (Lemma 4.2 rephrased for bipartite graphs). If graphs G and H are

simple bipartite graphs and have no isolated vertices, then (Go H)/m = G/m © H/m,
and Y : (GoH)/sw — G/ © H/sx with ¥([x,y]) = ([z], [y]) is an isomorphism. Also

[(z, 9)] = [a] < [y].
Proof. Consider a vertex [(z,y)] of (G o H)/x, By Remark 8.8, we have

(@' y') € [(z,y)] & Neon((2',y')) = NGo ((z,y))
© Ng(2') x Nu(y') = Na(z) x Nu(y)
& Ng(2') = Ng(z) and Ny (y') = Ny (y)
&2’ € [z] and ¢ € [y]
& (2/,y') € [z] x [y].

Thus [(z,y)] = [z] x [y]. To complete the proof, we show that ¢ ([(z,y)]) = ([z], [y])
is an isomorphism.

(=, )], [(«",y)]) € E(G o H)/m) & ((x,y), (z',y)) € E(G o H)
& (z,2') € E(G) and (y,y') € E(H)
& ([z],[2]) € E(G/x) and ([y], [y']) € E(H/n)
< (([2, [2'D], (Y], [v']) € E(G) /s o E(H) /). 0

8.3. Cartesian Skeleton. In this subsection we prove a result similar to Theo-
rem 8.1 only for direct products of bipartite graphs. First, we introduce several defini-
tions and results similar to those in Chapter 8 of [24]. The Boolean square of a graph
G is the graph G* with V(G*) = V(G) and E(G®) = {(z,y) |Ng(z) N Ng(y) # 0}.

LEMMA 8.10. If Gy, ..., Gy are bipartite graphs, then (G10- - -0G)® = Gio- - -0Gj.

Proof. Observe that ((z1,...,zk), (Y1,...,yx)) € E((G1¢--- o Gg)®) if and only
if there is a walk of length 2 joining (z1,...,zx) and (y1,...,yx) in Gy ¢ --- o Gy.
By definition of ¢ such a walk exists if and only if each G; has a walk of length 2

between x; and y;. The latter is equivalent to (x;,y;) € F((G;)?) for each i € [k]
which happens if and only if ((z1,...,2%), (¥1,...,yx)) is an edge of G5 o --- o GJ.
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Next, following [24] we introduce Cartesian skeleton of a bipartite graph. While
this concept is not very intuitive, if the graph G under consideration is a direct
product of two bipartite graphs, the construction aims to eliminate ‘diagonal’ edges
like ((h,k), (W', k")) from the Boolean square of G, thereby making it similar to a
Cartesian product.

Given a factorization G = H ¢ K, we say that an edge ((h,k), (h', k")) of the
Boolean square G* is Cartesian relative to the factorization if either h = b’ and k # K/,
or h#h' and k =k'. An edge (x,y) of the Boolean square G* is dispensable if it is a
loop, or if there exists some z € V(@) for which both of the following statements hold:

1. Ng(z) N Ng(y) C Ng(x) N Ng(z) or Ng(x) C Na(z) C Na(y),
2. Ne(y) N Ne(x) C Na(y) N Ng(z) or Ne(y) C Na(z) C Ne(w).

DEFINITION 8.11. The Cartesian skeleton S(G) of a graph G is the spanning
subgraph of the Boolean square G* obtained by removing all dispensable edges from G*.

The following statements are from [24].

LEMMA 8.12 (Proposition 8.11, [24]). Any isomorphism ¢ : G — H, as a map
v : V(G) = V(H), is also an isomorphism ¢ : S(G) — S(H).

LEMMA 8.13 (Proposition 8.13, [24]). Suppose a graph G is connected.
1. If G has an odd cycle, then S(G) is connected.
2. If G is bipartite, then S(G) has two connected components whose respective
vertex sets are the two parts of the bipartition of G.

If G is bipartite, we denote the connected component of the S(G) corresponding
to the left part of G by SL(G) and the one corresponding to the right part of G by
Sr(G). Note that if G = H ¢ K, by Remark 8.8 Ng((h,k)) = Ng(h) x Nk (k). This
implies the following;:

LEMMA 8.14 ([24]). If G is an R-thin bipartite graph with an arbitrary factoriza-
tion G = H o K, then every edge of S(G) is Cartesian relative to this factorization.

Observe that in the case of bipartite graphs the Cartesian skeleton is restricted
to the left and right parts of the bipartition of the graph. Hence, we can modify
Proposition 8.10 of [24] for diamond product.

ProposITION 8.15. If A, B are R-thin bipartite graphs without isolated vertices,
then

S(AOB) = SL(A) O SL(B) + SR(A) O SR(B)

Proof. As is easily seen, S(A ¢ B) has two connected components Sy, and Sg. We
prove that the Sy (A ¢ B) is equal to S.(A) O Sr(B). The proof for the right part is
similar.

First, we show E(SL(A) O S (B)) C E(SL(AeB)). Take an edge in E(SL(A) O S(B)L),
say {(a,b), (a’,b)) with (a,a’) € E(SL(A)). We must show that ((a,b), (a’,b)) is not dis-
pensable in (Ao B)®. Suppose it is. Then there is a vertex z = (¢/, ") in G = S (Ao B)
such that the dispensability conditions (1) and (2) hold for z = (a,b),y = (a’,b), and
z = (c/,"). The various cases are considered below. Each leads to a contradiction.

Suppose Ng(x) C Ng(z) C Ng(y). This means Ny(a) x Ng(b) C Na(cd) x
Np(c') € Na(a') x Ng(b), so Ng(c") = Np(b). Then the fact that N (b) # 0 permits
cancellation of the common factor N (b), so Ng(a) C Na(¢') C Na(a’), and {(a,a’) in
A? is dispensable. We will reach the same contradiction if Ng(y) C Ng(z) C Ng(x).

Finally, suppose there is a z = (¢, ¢”") for which both Ng(z) N Na(y) C Ng(z) N
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N¢g(2) and Ng(y) N Ng(z) C Ne(y) N Ng(z). Rewrite this as

Ne((a,0)) N Ne((d',5) € Ne((a.0)) N Na ("),
Ne((@',5) N No((a,b)) € Na((a',b)) N Na(( <),

which is the same as

(Na(a) N Na(a')) x Np(b) C (Na(a) N Na(c) x (Np(b) N Np(c")),
(Na(a') N Na(a)) x Np(b) € (Na(a') N Na(c)) x (Np(b) 0 Np(c")).

Thus Np(b) C Np(b) N Ng(c”), so Ng(B) = Ng(b) N Np(c), whence

NA(a) N NA(CL,) C NA(a) N NA(C/),
NA(a’) n NA(G,/) C NA(a’) n NA(C/).

Thus (a,a’) in A® is dispensable, a contradiction.

We now show that E(Lga.p)) € E(SL(A) O SL(B)). By Lemma 8.14, all edges
of Lg(a.p) are Cartesian, so we just need to show that ((a,b), (a’,b)) € E(Lg(a0B))
implies (a,a’) € E(S(A)) (The same argument will work for edges of the form
((a,5), (a, ).

Suppose for the sake of contradiction that{(a,b),(a’,b)) € E(Lgaop)), but
(a,a') ¢ E(S(A)), Thus (a,a’) is dispensable in Ly4s, so there is a ¢ € V(A) for
which both of the following conditions hold:

1. Na(a)NNa(a') € Na(a) N Na(c) or Na(a) C Na(c) C Na(a'),

2. Na(a')NNg(a) C Na(a')N Na(e) or Na(a') C Na(e) C Na(a).

There are no isolated vertices, so Np(d) # (). Now, we can multiply each neighborhood
N4 (z) in Condition 1 and 2 by Np(d) on the right and still preserve the proper
inclusions. Then the fact that N(4.p)((a,b)) = Na(a) x Np(b) (a € L4 and b € Lp)
yields the dispensability conditions (1) and (2), where = (a,b) and y = (a’,b) and
z = (¢,b). Thus ((a,b), (¢/,b)) € E(Ls(aop)), a contradiction. d

8.4. Diamond product factorization. A bipartite graph G is said to be prime
with respect to diamond product if for any G =2 H ¢ K one of H, K is an edge. The
following lemma is the core technical statement of this section.

LEMMA 8.16. Consider any isomorphism ¢ : G1 o+ oGy — Hy o--- o Hy, where
oz, .. zk) = (p1(z1, -, Tk)y - -y pe(1, ..., 2k)) (recall that ¢ preserves the left
and right parts of the graphs) and all the factors are connected and R-thin. If a factor
G, is prime, then exactly one of the functions o1, pa, ..., p¢ depends on x;.

Proof. By grouping and permuting the factors we may assume that £ = ¢ = 2 and
G is prime. We prove the lemma by showing that if it is not the case that exactly
one of 1 and ¢y depends on x1, then G is not prime. More specifically, we represent
the Cartesian skeletons of G1,Gs, H1, Hy as Cartesian products of prime graphs and
show that if both ¢; and 5 depend on x1, than those Cartesian products can be
rearranged in such a way that G can be further decomposed into a direct product.

We denote the connected components of S(G; ¢ G2) by Sp, and Sg, and the
connected components of S(H; ¢ Hy) by Cr, and Cr which correspond to the left and
right parts of the bipartition.

By Lemma 8.12 ¢ is also an isomorphism for Cartesian skeletons:

(8.1) @ :8L+Sr — Cr +Chp,
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which gives us isomorphisms on each connected component:
QOLtsL—>CL, @RZSR%CR.

Note that although G; is prime with respect to diamond product, S(G1) as well
as Sy, Sk are not necessarily prime with respect to Cartesian product. Take prime
factorizations of each component with respect to Cartesian product, when both G and
H are bipartite:

Sp(G)=A,0...04,, Sg(Gy)=B,0 ... 0B,
S.(Gy) =Dy 0 ...0D,, Sp(G)=FE O...0E,,
C,=C,0...0C,, CR=C,0...0C".

As  is an isomorphism, we have

o (A 0...0A4)0(D;0...0D,) = (C, O ... OCp),
er:(B10...0B)O(EO...0E)—~(C,0...0C).

We relabel the vertices of Gy with V((4; O ... O A) + (B1 O ... O By)), and those
of Go with V(D O ... O D, + E; O ... OE,). We relabel vertices of H; ¢ Hy with
vic:O...0C,+C;O ... OC)). By Proposition 8.15 the isomorphism ¢ can be
represented as follows:

(Ay0...0A, 0D, 0O ... ODy)
er: (B0 ...0B,)0O(E, O ... OE,)
)

%
O(Ap1 O ... OA, O Dy O ... ODy,),
4)

(B,0...0B,0E, 0...0E.)O

(By41 O ...0B,0E,,, 0 ... OF,).

To simplify the notation we will denote a left vertex (ai,...,ay,ap41,...,a¢)
of G1 by (xr,yr), where z;, = (a1,...,a¢) and yr, = (ay+1,...,a¢), and right
vertex (by,...,bs,bs41,...,bs) of G1 by (zr,yr), where zg = (b1,,...,bs) and

yr = (bs'11,...,bs). Similarly, we denote a left vertex (di,...,dw ,dwt1,...,dw)
of Gy by (ur,vr), where ur, = (dy,...,dy ) and vy = (dyr41,...,dy), and a right
vertex (e1,...,€m,€41,...,6.) of Go by (ugr,vgr), where ug = (e1,...,e) and
vr = (ep141,.-.,¢r). By Theorem 8.1, isomorphism ¢ is represented as follows

er((zr,yr), (ur,vr)) = ((zr,ur), (yr,vL)),
@R((l’R,yR)y (uvaR)) = (('TRauR)’ (?JR7 UR))'

Since this holds for both left and right parts G; ¢ Gs, we can represent the isomorphism

like o((z,y), (u,v)) = (2, u), (y,v)).
Now we find a nontrivial factorization G; = S ¢ S’. Define S and S’ as follows:

V() = {acl ((wr.vp), (ur, o)) € V(Gro Ga)}
U {$R| ((HJR,yR)7 (uR7UR)) € V(Gy <>G2)}7
E(S) = {<ILa$R> | <(($L,yL)a (UL,UL))v ((xRayR)a (URaUR))> € B(Gy <>G2)} :
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and

v(s') = {uul ((wr.0). (ws,vn)) € V(GroGa) |
U {yR| (($R7yR)a (UR,UR)) €V(Gro Gz)} ;

(') = {twe.ym) | {(@r.pn). (ur,0n)). (@), (urivr) ) ) € B(Gro Ga)}

We need to prove that ((x,y), («',y")) € E(G1) if and only of {(z,y), (2/,y')) €
E(SoS). If {((z,y),(a,y)) € E(Gl) then for some w,v,u’,v’" there is an edge
I

<<(m7y)7 (u, v)), ((JC y'), ( ’))> € E(G1 ¢ G2), and hence there is an edge S S’

which is ((z,y), (z/,y")) € E(S ¢ S’). Next, suppose that ((x,y), (z/,y)) € E(SoS").
Then, (z,z') € E(S) and (y,y') € E(S’). By the construction of S and S’ we have
that there exist a, b, u,v,u’, v’ such that

<((x,a), (u,v)), ((x’,b), (u',v'))> € B(Gy o Ga),

and there exists ¢, d, v, v"”, v, v"", such that

(. @), ([dy). (" v")) € B(Gr o Ga).

Now, apply the isomorphism ¢

<((x,u),(a,v)),( >> € E(H, ¢ Hy),
(((esu”), (0™, (@), (/")) ) € B(Hy o Ha).

gence, {(z,u), (2',u')) € E(Hy) and also {(y,v""), (y/,

<((:v,u)7 (y,v"’)), ((mﬂu’)7 (y’,v’”))> € E(H, o Hy). Applying ¢~ ! we get

((@w). (w,0™), (@), W) ) € B(GroGa).
ThllS, <(CE, y)7 (xl7 yl)> € E(Gl) o
Let G°¢ denote the diamond product of G to itself for ¢ times, i.e. G =G o...0G.

COROLLARY 8.17. Let G be a prime R-thin graph and let @ be an automorphism
of G°¢. Then there is a permutation © such that

v"")) € E(Hs). Therefore, we

o(@1, . z0) = (P1(Tr1))s - Pe(Tr(e))
where each @; is an automorphism of G.
8.5. Proof of Theorem 4.3.

THEOREM 8.18 (Theorem 4.3, the bipartite form). Suppose ¢ is an automorphism
of G, Let 1 : G°“/sx — G°Y/s be the automorphism induced by o, and let G =
G1 ¢+ oGy be a prime factorization of G. Then there is a permutation 7 of [€] x [k]
such that every automorphism of G°/x can be split into kf automorphisms:

N ) N (CORY(CHORT) RPN ) R

(Wer (e ) Yea(omei)) )
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We start with two auxiliary lemmas.

LEMMA 8.19. Let G be a simple connected bipartite graph such that G/, = HioHa.
Then every vertex (x,y) € V(Hy o Hz) corresponds to a unique R-class of G, denote
its cardinality by |(x,y)|. If there are functions wy : V(Hy) = Nywy : V(Hs) = N
such that |(z,y)] = w1 (x) - wa(y), then there are bipartite graphs H] and H) such that
G = H{o H), and H{ /s = Hy and H} /s = Hs.

Proof. By Lemma 4.2 Hy, Hy are R-thin. Define H] as follows. Take a family
{A; | * € V(H1)} of disjoint sets such that |A,| = wy(z) for each z € V(H;). Set
V(H]) = Usev(m,) Az and E(H{) = {(a,b)|a € A;,b € Ay and (z,y) € E(H:1)}.
A graph H) is constructed in the same way by choosing sets B, with |B,| = ws(x)
for each @ € V(H2). Set V(H3) = Uycy (sr,) Bo, and E(H3) = {{(a,b) |a € By,b €
By and (z,y) € E(B)}.

CramMm 1. The R-classes of Hy, H) are the sets A,, B, respectively.

Proof of Claim 1. Tt suffices to prove that if a,b € A, then Ng; (a) = Ny, (d).
If there is a ¢ such that {(a,c¢) € E(Hy), then there is z such that ¢ € A, and
(x,z) € E(Hy), then by the definition of F(H]) we have (b,c) € E(H}). For H} the
proof is analogous. ]

By Claim 1 there are isomorphisms 1 : H; — Hy/m and vy : Hy — H)/m, hence,
there is a isomorphism v : Hy ¢ Hy — Hj /9w © Hy/s. Therefore, (H| o H)) /o =

H{/w o H)/m = Hy © Hy =2 G/%. By Lemma 8.6 we have H{ o Hj) = G. a
LEMMA 8.20. Suppose there is an isomorphism ¢ : G100 G — H1 o0 Hy
where p(x1,...,2k) = (p1(z1,...,Tk)s- .., pe(T1,..., 7)) and all factors are con-

nected and such that G;/w, H;/m are nontrivial. Let ¥ : G1/m ¢ -+ 0 G/ —
Hy/s oo Hy/o be the induced isomorphism

P([als s few]) = allwds o fand)s s rllands o f2nd))-

If some G; is prime, then at most one of the functions 1; depends on [x;].

Proof. Grouping and permuting factors, it suffices only to prove the lemma in the
case when G is prime and k = [ = 2. We rewrite ¢ : G1 © Go — Hy o Hy as p(z,y) =
(p1(x,y), p2(x,y)). As a consequence we have ¢ : G1/m ¢ Ga/sn — Hi/m © Ha/m,
where ¥([z], [y]) = (¥1([z], [¥]), ¥2([2], [y])). As G1,Ga, Hy, Hy are connected, each
of G1/s,Ga/o, Hi/w, Ha/m is connected and PR-thin. We prove that if ¢ and s
depend on [z], then G is not prime, a contradiction with the assumption made.

Lemma 8.16 implies that if both v¢; and vy depend on [z], then G;/x is not
prime. Take a prime factorization G1/i = A1 ¢ -+ o A,. This gives a labeling
[z] = (a1,...,a,) of R-classes of G; with vertices of A; ¢---¢ A,. Then 1 can be
viewed as an isomorphism ¢ : Ay o---0 A, © Ga/sx — Hi/m © Ha/s. Note that when
we switch from G;/s to its prime factorization, the connection between individual
vertices of G; and the vertices of the prime factors disappear. This means that [z]

has nothing to do with ([a1],...,[ay]). By Lemma 8.16 for each i € [n], exactly one of
11 and 19 depends on a;. We order the factors of G1/;m; = A1 0---¢ A, so that i1
depends on ay,...,as, but not on asy1,...,a,, and ¥y depends on asy1,...,a, but
not on aq,...,as. Then we have

7/)(6117 ey Qg QgylyyeeeyAny [y]) = (1/J1(a1» ceey Qg, [y])va(as+17 ceey Ap, [y])
We know that (ai,...,a,) = [z] € V(G1/x) is an R-class of Gy, so it makes sense

to speak of its cardinality |(a1,...,a,)|. By Lemma 8.19 graph G; has a nontrivial
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factorization (i.e., is non-prime) if we can define functions w; : A; ¢ -0 Ay - N
and wo : Agy10---0 A, — N, for which |(a1,...,as,a511,...,a,)| = wi(ay,...,as) -
wa(Ast1,---,an). Let [y] € V(G2/m) be an R-class of Go. Observe that the isomor-
phism ¢ : G1© Gy — Hy o Hy maps each R-class ((aq, ..., an, [y]) of G1 ¢ G2 bijectively
to the R-class (¥1(a1,...,as,[y]), Y2(ast1y .-, an,[y])) of Hy o Hy. Therefore

(@1, .5 Gy Qsg1, ey p)| = W}l(al"“’as’[y])||.[5]p|2(as+l""’a"’[ym.

Since |(a1,...,as,as41,-..,0a,)| is an integer, d = |[y]| divides |¢1(aq, ..., as, [y])] -
[o(astt, .- an,[y])]. So there are di and dy such that dy - do = d and d; di-
vides |[¢1(aq,...,as,[y])| and do divides |2(@st1,- .., an, [y])]- Set wi(ai,...,as) =
Wl(mdilas[y})l and wo(Gsy1,...,an) = w It is easy to see that functions
w1,wsy are as required. 0

Proof of Theorem 4.3. Let G = Gy ¢ --- o Gy, be a factorization of G into prime
factors. It will be convenient to represent G/ as

(8.2) G/n = (Gra/mo- - 0Grp/n) o0 (Gri/mo - 0Goi/n),

where G, ¢+ = G; for all i, j € [¢],t € [k]. Relabel each vertex (v1,...,v,) € V(G®) as
(v1,...,00) = ((vl’l, e UL (Ve ,Ugyk)).

Also, we can write the isomorphism 1) as follows:

qul]’ R [Uz]) = "l}(([vl,l]v B [U17k])7 R ([’U@,lL s ['Uf,k]))
- (1/}171(([01,1], o forkD) s (el - [0es])s

Yo (il i), (weal, - - [W]))),

By Lemma 8.20, since all G;; for all ¢ € [], t € [k] are prime, each 1;; depends only
on one of G;,’s. Also, note that G;; = G, for all i,j € [¢], t € [k]. Thus, there exists
a permutation 7 of [¢] x [k] such that ¢) can be split into k¢ automorphisms:

Y([v1], -5 [ve]) = (o, -5 vigl)s - ([veals - -5 [ver]))
= (Wl,l([vw(l,l)])v s Uk([vem]),

(ea(onen)s - Yen(vnen)) )

where the equality follows by putting together all ¢, ; for j € [k] to obtain the
automorphism ©; on G;/x. O
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