
Constraint Satisfaction problems and global cardinality
constraints

Andrei A. Bulatov
School of Computing Science, Simon Fraser

Univerity
8888 University Drive
Burnaby, BC, Canada

abulatov@cs.sfu.ca

Dániel Marx
School of Computer Science

Tel Aviv University
Tel Aviv, Israel

dmarx@cs.bme.hu

ABSTRACT
In a constraint satisfaction problem (CSP) the goal is to find
an assignment of a given set of variables subject to specified
constraints. A global cardinality constraint is an additional
requirement that prescribes how many variables must be
assigned a certain value. We study the complexity of the
problem CCSP(Γ), the constraint satisfaction problem with
global cardinality constraints that allows only relations from
the set Γ. The main result of this paper characterizes sets Γ
that give rise to problems solvable in polynomial time, and
states that the remaining such problems are NP-complete.

1. CONSTRAINT PROBLEMS

1.1 Constraint Satisfaction Problem
Among formalisms unifying and classifying various com-

binatorial problems the Constraint Satisfaction Problem (or
CSP) is one of the most successful ones. In this problem we
are given a set of variables and a collection of restrictions —
constraints — on the allowed combinations of values of the
variables; the goal is to find an assignment to the variables
so that all constraints are satisfied. Usually constraints are
imposed on small sets of variables, thus, the CSP formalizes
the idea of finding a global solution bound by local restric-
tions. The Sudoku puzzle gives a popular toy example of
CSP. We need to assign values — numbers from 1 to 9 —
to variables — entries of the puzzle so that the values of
variables in a row, column, or 3× 3 block are different. An-
other toy example whose CSP encoding is less obvious is the
8-Queen problem: place 8 queens on a 8 × 8 chessboard so
that they do not hit each other [15]. To represent it as a CSP
we consider the columns {a, b, c, d, e, f, g, h} (see Fig. 1) as
variables that can be assigned values from the set of rows,
and the assigned value shows the position of a queen in this
column.
Many combinatorial problems readily fall into this frame-

work. For example, in the Graph 3-Coloring problem the
vertices of a given graph are variables to receive one of the
three colors, and assignments are constrained by the require-
ment that adjacent vertices receive different colors. Thus,
this problem is a CSP. The list of examples can be extended

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

Figure 1: The 8-Queens problem

by other combinatorial problems like Satisfiability, problems
in scheduling, temporal and spatial reasoning, and many
others.

Constraint satisfaction problems have been studied from
both practical and theoretical perspectives. On the practi-
cal side the expressive power of the CSP allows to model a
wide range of real-world problems from planning [24] and
scheduling [35], frequency assignment problems [17], to im-
age processing [32], to programming language analysis [33],
to natural language understanding [1]. A number of com-
mercial and freeware solvers exist capable of solving a wide
range of CSPs of nearly industrial scale, and methods of solv-
ing constraint problems are developing rapidly [15]. On the
theoretical side researchers focus on several directions such
as: the complexity of CSPs problems, efficient algorithms
for CSPs, where such algorithms exist, and connections of
CSPs with other combinatorial problems [34, 18, 26, 8, 10,
13, 22, 3, 21, 31].

1.2 Global constraints
The ‘pure’ constraint satisfaction problem described above

is sometimes not enough to model practical problems, as
some constraints that have to be satisfied are not ‘local’ in
the sense that they cannot be viewed as applied to only a
limited number of variables. Constraints of this type are
called global. Global constraints are very diverse, the cur-
rent Global Constraint Catalog (see http://www.emn.fr/x-

info/sdemasse/gccat/) lists 313 types of such constraints. In
this paper we focus on global cardinality constraints [6, 14].

CSP
Let D be a (finite) set (the domain). Every instance
I = (V, C) of the problem CSP(Γ) consists of:

• a set V of variables, and

• a set C of constraints. Every constraint is a pair
⟨s, R⟩, where

– s = (v1, . . . , vk) is a tuple of variables from V ,
not necessarily distinct, and

– R is a k-ary relation over D.

A solution of I = (V, C) is a mapping φ : V → D such
that for any constraint ⟨s, R⟩, we have φ(s) ∈ R.

CCSP
A global cardinality constraint for an instance I = (V, C)
is a mapping π : D → N such that

∑
a∈D π(a) = |V |.

Solution φ satisfies π if |φ−1(a)| = π(a) for every a ∈
D. The question is whether or not there is a solution
satisfying one of the given cardinality constraints.

CSP(Γ) and CCSP(Γ)
Let Γ be a set (finite or infinite) of relations onD, called a
constraint language. The problems CSP(Γ) and CCSP(Γ)
include those instances of CSP and CCSP, respectively,
that use only relations from Γ.

Figure 2: Formal definition of CSP and CCSP

Some of the global constraints such as the surjectivity of
a solution, that is, the requirement that all variables take
distinct values (cf. the Sudoku puzzle), allow simulation by
local constraints. Surjectivity can be enforced by requir-
ing that every two variables receive distinct values. How-
ever, sometimes it is not possible. In this paper we focus on
one type of such ‘truly’ global constraints, cardinality con-
straints, that impose restrictions on the number of variables
assigned certain values, see Fig. 2. For instance, in the 3-
Coloring problem a cardinality constraint may require that
at least half of the vertices of the graph are colored red.

1.3 Complexity of constraints
As the general CSP is NP-hard, the study of its complex-

ity focuses on considering restricted versions of the problem.
There are two principal ways to restrict the constraint satis-
faction problem, both of them can be applied to CSPs with
cardinality constraints as well.
The first approach restricts the way constraints interact.

The interaction of constraints can be represented by the pri-
mal graph whose vertices are variables, and two vertices are
connected if and only if they belong to the scope of a con-
straint. This approach was motivated by the observation
that if the primal graph is acyclic or close to acyclic in a
well-defined sense (has bounded treewidth), then CSP be-
comes polynomial-time solvable [20]. Interestingly, attempts
to characterize conjunctive queries to databases that can be
processed efficiently led to the same question [26]. After a
series of recent breakthrough results [21, 31] the structure
of polynomial-time solvable CSPs of this type is largely un-
derstood.
The second approach to restrict the CSP is to limit the

allowed types of constraints. It can be expressed formally as

follows. Let the possible values of variables in the problem
be taken from a set D (the domain). In this paper we always
assume D to be finite. Then every constraint that can be
imposed on a set of k variables is a list of all allowed com-
binations of values these variables can take simultaneously,
that is, a k-ary relation on D. If now we fix a set Γ of such
relations on D and allow constraints to be chosen only from
Γ, we arrive to the problem denoted CSP(Γ). In this context
Γ is often called a constraint language. Same restrictions can
be applied to problems with cardinality constraints. We use
CCSP(Γ) to denote such problem.

Problems of the form CSP(Γ) and CCSP(Γ) spans a wide
range of combinatorial problems such as ones listed below,
in Fig. 3, and many others.

Graph 3-Coloring. Let R̸=3 denote the disequality rela-
tion on a 3-element set, that is, the binary relation contain-
ing all pairs (a, b) of elements from the set such that a ̸= b:

R̸=3 =

(
1 1 2 2 3 3
2 3 1 3 1 2

)
.

(Observe that we write pairs, and later longer tuples of el-
ements vertically, so members of the relation are the columns
of the matrix.) Then the 3-Coloring problem equals CSP(Γ3−Col)
where Γ3−Col = {R ̸=3}.
2-Satisfiability. Recall that a literal is a propositional
variable or its negation. A disjunction of literals (of 2 liter-
als) is called a clause (a 2-clause). A propositional formula
that is a conjunction of clauses (2-clauses) is said to be a
conjunctive normal form, or a CNF (2-CNF) for short. In
the 2-Satisfiability problem, given a 2-CNF, the goal is to
find an assignment to its variables that makes the formula
true. If the set of variables of the CNF is V then every
clause defines a constraint on a pair of variables that forbids
exactly one combination of values. Let Γ2−SAT be the follow-
ing set of 4 binary relations, each of which omits a certain
pair:

Rx∨y =

(
1 0 1
0 1 1

)
Rx̄∨y =

(
0 0 1
0 1 1

)
Rx∨ȳ =

(
0 1 1
0 0 1

)
Rx̄∨ȳ =

(
0 1 0
0 0 1

)
Then CSP(Γ2−SAT) represents 2-Satisfiability and it is known
to be polynomial-time solvable.

3-Satisfiability. Analogously to 2-SAT, let Γ3−SAT be
the set consisting of 8 ternary relations on {0, 1}, each of
which omits a certain triple. Then CSP(Γ3−SAT) represents
3-Satisfiability and it is NP-complete.

Independent Set. An independent set in a graph is a set
of vertices, no two of which are connected with an edge. In
the Independent Set problem, given a graph and a natural
number k, the question is whether or not there exists an
independent set of size k. Let

RIS =

(
0 0 1
0 1 0

)
,

that is, RIS = excludes only (1, 1), and ΓIS = {RIS}. Now, to
reduce Independent Set to the CSP the vertices of a given
graph are treated as variables and the constraint RIS is im-
posed on every pair of adjacent vertices. For any solution
of such CSP the variables (vertices) assigned 1 form an in-
dependent set in the graph. To express the restriction on

the size of an independent set we can use a cardinality con-
straint that requires that exactly k variables are assigned 1.
Therefore Independent Set is equivalent to CCSP(ΓIS). The
Independent Set problem is well known to be NP-complete.

Bipartite Independent Set. We say that a graph is
bipartite if the vertices can be partitioned into two classes
X and Y such that every edge connects a vertex of X and
a vertex of Y . In the Bipartite Independent Set problem,
we are looking for a independent set containing exactly
kX vertices of X and kY vertices of Y . This problem is
equivalent to a CCSP over the domain {0X , 0Y , 1X , 1Y }
where each edge is represented by the binary relation

RBIS =

(
0X 0X 1X
0Y 1Y 0Y

)
and we require kX variables with value 1X and kY vari-
ables with value 1Y in the solution. Bipartite Indepen-
dent Set is known to be NP-hard. The variant of the
problem, where we require an independent set of size k
in a bipartite graph (without specifying the number of
vertices in each class) is polynomial-time solvable; how-
ever, this variant cannot be expressed as a CCSP.

Linear Equations. In the regular Linear Equations
problem the question is, given a system of linear equa-
tions over a finite field, decide whether it is consistent
or not. The version of this problem allowing global car-
dinality constraints asks whether such a system has a
solution that assigns each of the elements from the field
to a prescribed number of variables. While Linear Equa-
tions without cardinality constraints is polynomial-time
solvable, cardinality constraints make it NP-complete [5],
even if the variables are over the two element field and
every equation is of the form x+ y + z = 1. This means
that CCSP({RODD−3}) is NP-complete, where

RODD−3 =

 0 0 1 1
0 1 0 1
1 0 0 1

is the ternary relation satisfied by an odd number of 1s.

Figure 3: More examples of CSPs and CCSPs

Despite such expressive power, problems of the form CSP(Γ)
probably cannot capture all combinatorial problems. As is
easily seen, all CSPs belong to the class NP. Some of them,
such as 3-Coloring or 3-SAT are NP-complete, while others,
for example, 2-SAT, belong to the class P, that is, solvable
in polynomial time. If P̸=NP, there is an infinite hierarchy
of complexity classes between P and NP such that problems
from different classes are not reducible to each other in a nat-
ural sense [28]. However, all known problems CSP(Γ) turn
out to be either in P or NP-complete. This phenomenon is
known as complexity dichotomy [18]. The dichotomy phe-
nomenon was first discovered by Schaefer [34] for CSPs with
2-element domain, and was later confirmed in many partic-
ular cases [7, 9, 3]. This caused Feder and Vardi to pose
a conjecture, called the Dichotomy Conjecture, that every
problem CSP(Γ) is either solvable in polynomial time or is
NP-complete. The Dichotomy Conjecture remains opens till
now.
Remarkably, the phenomenon of complexity dichotomy

extends inside P, although a weaker notion of reduction is
needed for this. To date only four complexity classes and a
series of very similar classes inside P are known such that
CSP(Γ) can be complete in [2, 29]. In some cases the lack of
problems CSP(Γ) of intermediate complexity is shown [29].

In this paper we report on a dichotomy theorem for CSPs
with cardinality constraints. The next section describes a
dynamic programming algorithm that solves CCSPs when-
ever it can be solved efficiently. In Section 3 we outline the
algebraic approach to the CSP and CCSP and show how
it can be used to formulate the dichotomy theorem for the
CCSP. Finally, in Section 4 we present the main ideas be-
hind the hardness result. A longer version of the paper can
be found in [12].

2. EASY CASES OF CCSP

2.1 Boolean CCSP
To gain some intuition we start with the Boolean CSP and

CCSP, in which values are taken from the set {0, 1}. The
dichotomy result for Boolean CSPs [34] identifies 6 types
of tractable relations, that is, those which give rise to a
CSP solvable in polynomial time. Among these relations
are those representable by a 2-CNF, solution spaces of sys-
tems of linear equations over the 2-element field, and some
others. If a constraint language Γ is not composed from re-
lations of one of these 6 types, CSP(Γ) is NP-complete. For
CCSPs a dichotomy result was proved in [14]. The structure
of tractable CCSPs is much simpler. Let R=2 and R̸=2 de-
note the equality and disequality relations on {0, 1}. Then
CCSP(Γ) is solvable in polynomial time if and only if every
relation from Γ can be expressed by a conjunction of R=2

and R̸=2 clauses, and the two constant constraints 0 and
1. Otherwise the Bipartite Independent Set or Linear Equa-
tions problems can be reduced to CCSP(Γ), and the problem
is NP-complete.

The polynomial-time solvable cases can be handled by
a standard application of dynamic programming. Suppose
that the instance is given by a set of binary equality/disequality
clauses (see Fig. 4 for a concrete example). Consider the
graph formed by the binary clauses. There are at most two
possible assignments for each connected component of the
graph: setting the value of a variable uniquely determines
the values of all the other variables in the component. Thus
the problem is to select one of the two assignments for each
component. Trying all possibilities would be exponential
in the number of components. Instead, for i = 1, 2, . . . , we
compute the set Πi of all possible pairs (x, y) such that there
is a partial solution on the first i components containing ex-
actly x zeros and exactly y ones. It is not difficult to see that
Πi+1 can be efficiently computed if Πi is already known.

2.2 Generalizations
We generalize the results of [14] for arbitrary finite sets

and arbitrary constraint languages. As usual, the charac-
terization for arbitrary finite domains is significantly more
complex and technical than for the 2-element domain. As a
straightforward generalization of the 2-element case, we can
observe that the problem is polynomial-time solvable if every
relation can be expressed by graphs of bijective mappings.
For a mapping φ : A → A, the graph of φ is the binary rela-
tion consisting of pairs of the form (a, φ(a)), a ∈ A. In this
case, setting a single value in a component uniquely deter-

mines all the values in the component. Therefore, if the do-
main is D, then there are at most |D| possible assignments
in each component, and the same dynamic programming
technique can be applied (but this time the set Πi contains
|D|-tuples instead of pairs).
One might be tempted to guess that the class described

in the previous paragraph is the only class where CCSP is
polynomial-time solvable. However, it turns out that there
are more general tractable classes. First, suppose that the
domain is partitioned into equivalence classes, and the bi-
nary constraints are mappings between the sets of equiv-
alence classes. This means that the values in the same
equivalence class are completely interchangeable. Thus it
is sufficient to keep one representative from each class, and
then the problem can be solved by the algorithm sketched in
the previous paragraph. Again, one might believe that this
construction gives all the tractable classes, but the example
in Fig. 5 shows that there are more complicated constraint
languages, where CCSP is polynomial-time solvable, but we
have to do two-level dynamic programming on the subcom-
ponents of each component. It is not difficult to make this
example more complicated in such a way that we have to
look at sub-subcomponents and perform multiple levels of
dynamic programming. This suggests that it would be diffi-
cult to characterize the tractable relations in a simple com-
binatorial way.

2.3 Algorithm for the tractable CCSP prob-
lems

In this section, we present a general algorithm for solv-
ing CCSP. We prove our dichotomy theorem by showing
that for every finite constraint language Γ, either this al-
gorithm solves CCSP(Γ) in polynomial time, or CCSP(Γ) is
NP-complete. In this section, we cannot give a full char-
acterization of those constraint languages Γ for which the
algorithm works: we postpone it to Section 3.3, as it can be
done most conveniently using the algebraic tools introduced
in the next section.
The first condition that we require is that every relation

in Γ is defined by its binary projections. Formally, we say
that r-ary relation R is 2-decomposable, if there are binary
relations Rij (1 ≤ i < j ≤ r) such that (a1, . . . , ar) ∈ R
if and only if (ai, aj) ∈ Rij for every 1 ≤ i < j ≤ r. For
example, the relation R in Fig. 5 is 2-decomposable, as it is
shown by the relations

R12 =

(
1 1 a d
2 4 b e

)
R13 =

(
1 1 a d
3 5 c c

)

R23 =

(
2 4 b e
3 5 c c

)
.

On the other hand, relation RODD−3 of Fig. 3 is not 2-
decomposable: all three of the corresponding relations R12,
R13, R23 should contain the pair (0, 0), but tuple (0, 0, 0) is
not in R.
If a constraint is 2-decomposable, then it can be expressed

by a set of binary constraints. Thus in the following, we can
assume that every constraint of the CCSP instance is binary.
The algorithm finds all cardinality constraints that are

satisfied by solutions of the instance. First, given an in-
stance, we make sure that every variable v is associated with
a domain Dv that contains all the values that are useful for
this variable. That is, if ⟨(v, w), R⟩ is a constraint, then Dv

Example 1. Let Γ = {=2, ̸=2} contain the binary
equality and disequality relations. Consider the following
instance of CSP(Γ) with 15 variables and 13 constraints:

Each component has exactly two satisfying assignments:
either the “black” variables have value 0 and the “white”
variables have value 1, or vice versa. Let set Πi contain
all possible pairs (x, y) such that the union of the first i
components have a solution with x 0’s and y 1’s. Then

Π1 = {(2, 3), (3, 2)}
Π2 = {(3, 5), (4, 4), (5, 3)}
Π3 = {(4, 7), (5, 6), (6, 5), (7, 4)}
Π4 = {(5, 10), (6, 9), (7, 8), (8, 7), (9, 6), (10, 5)}

If component Ci has bi black and wi white vertices, then
clearly a pair (x, y) is in Ci if and only if either (x−bi, yi−
wi) ∈ Πi−1 or (x− wi, yi − bi) ∈ Πi−1. This gives us an
efficient way of computing Πi if Πi−1 has been computed.

Figure 4: Using dynamic programming to solve
Boolean CCSP with binary equalities and disequal-
ities.

is exactly {x | (x, y) ∈ R}, or in other words, Dv is exactly
the set of values that the pairs of R contain at the posi-
tion corresponding to v. This is achieved by the standard
propagation algorithm, see, e.g. [19].

A binary ⟨(v, w), R⟩ constraint is trivial if R = Dv ×Dw,
allowing any combination of values from the domains of v
and w. Let G be the graph formed by the nontrivial binary
constraints of the problem. If graph G is disconnected, then
arbitrary satisfying assignments for the connected compo-
nents can be combined to obtain a satisfying assignment for
the instance. Therefore, the algorithm recurses on the prob-
lems induced by connected components, and then merges the
solutions using the same dynamic programming approach as
for Boolean CCSP (Fig. 4). If G is connected, the algorithm
chooses an arbitrary variable v and tries to substitute ev-
ery possible value of Dv into v. This way, we get |Dv| new
instances and it is clear that the original problem has a so-
lution satisfying a cardinality constraint if and only if one of
the new instances has such a solution. Thus in this case the
problem can be solved by recursively solving |Dv| instances
and taking the union of the set of cardinality constraints
satisfied by these instances.

Example 2. We claim that CCSP({R}) is polynomial-
time solvable for the relation

R =

 1 1 a d
2 4 b e
3 5 c c

 .

Consider the graph on the variables where two variables
are connected if and only if they appear together in a
constraint. As in Fig. 4, for each component, we com-
pute a set containing all possible cardinality vectors, and
then use dynamic programming. In each component, we
have to consider only two cases: either every variable is in
{1, 2, 3, 4, 5} or every variable is in {a, b, c, d, e}. If every
variable of component K is in {1, 2, 3, 4, 5}, then R can
be expressed by the unary constant relation 1, and the
binary relation R′ = {(2, 3), (4, 5)}. The binary relations
partition componentK into sub-componentsK1, . . . , Kt.
Since R′ is the graph of a mapping, there are at most 2
possible assignments for each sub-component. Thus we
can use dynamic programming to compute the set of all
possible cardinality vectors on K that use only the values
in {1, 2, 3, 4, 5}. If every variable of K is in {a, b, c, d, e},
then R can be expressed as the unary constant relation
c and the binary relation R′′ = {(a, b), (d, e)}. Again,
binary relation R′′ partitions K into sub-components,
and we can use dynamic programming on them. Ob-
serve that the sub-components formed by R′ and the
sub-components formed by R′′ can be different: in the
first case, u and v are adjacent if they appear in the sec-
ond and third coordinates of a constraint, while in the
second case, u and v are adjacent if they appear in the
first and second coordinates of a constraint.

Figure 5: A two-level dynamic programming algo-
rithm for CCSP

There is no question that the scheme described above
finds every cardinality constraint satisfied by the instance.
The only issue is whether the running time is polynomial:
branching into |Dv| directions in the case when G is con-
nected can create an exponentially large recursion tree. We
identify a useful special case that guarantees a polynomial
bound on the size of the recursion tree. After substituting
a value into v, we can rerun the propagation algorithm to
reduce the domains of the variables by throwing away those
values that are no longer useful. The key property that we
require is the following:

Key Property: If G is connected, then no mat-
ter what value we substitute, propagation strictly
decreases the domain of every variable.

If this property is true, then the algorithm has to terminate
after at most |D| substitutions, and therefore the height of
the recursion tree is at most |D|, which is constant for a fixed
constraint language. This gives us a polynomial bound on
the size of the recursion tree.
Are there constraint languages Γ for which the key prop-

erty described above holds? Yes, there are: for example, if
every binary relation is the graph of a bijective mapping and
G is connected, then substituting any value to a variable v
decreases the domain of every other variable to a single ele-

ment. As mentioned earlier, it is not easy to give a simple
combinatorial characterization of those sets Γ for which the
algorithm works (in the next section, we charcterize them
in a more algebraic way). We can at least give some nec-
essary conditions that show what kind of generalizations of
mappings should we deal with.

Let R be a binary relation from a set A to set B, that
is, R ⊆ A × B. Relation R is said to be a thick mapping if
whenever pairs (a, c), (a, d), (b, c) belong to R, the pair (b, d)
also belongs to R. As is easily seen, any thick mapping R
has two associated equivalence relations α and β on A and
B, respectively, such that R can be thought of as a mapping
from the set of equivalence classes of α to that of β.

To give some intuition why it is a problem if a relation is
not a thick mapping, consider the relationR = {(a, c), (a, d), (b, c)}.
Suppose that there are only two variables v, w and there is
a single constraint ⟨(v, w), R⟩. In this case, the domains are
Dv = {a, b} and Dw = {c, d}. The constraint is nontrivial,
thus the graph G is connected. But if we assign value a to
variable v, then the domain size of w does not decrease: b
and d are both possible. Thus for this relation, the algorithm
does not have the property that every substitution decreases
every domain, and we cannot guarantee a polynomial bound
on the recursion tree.

Unfortunately, requiring that every relation is a thick map-
ping is not sufficient for tractability, as thick mappings can
interact with each other in a way that makes CCSP hard.
Therefore in order to the problem CCSP(Γ) for a set Γ of
thick mappings to be easy, more restrictions have to be im-
posed on Γ. Such a condition called non-crossing requires
that if two thick mappings induce equivalence relations α
and β on a certain set, then for any equivalence class C of
α and a class D of β that are not disjoint, either C ⊆ D or
D ⊆ C. We need even stronger conditions: not only rela-
tions from Γ must be non-crossing thick mappings, but also
certain relations derived from them. A detailed explanation
is given in the next section.

3. ALGEBRAIC APPROACH
One of the main difficulties in studying problems CSP(Γ)

and CCSP(Γ) is: How can one describe or characterize a con-
straint language (possibly infinite)? A combinatorial char-
acterization is very often impossible, so two alternative ap-
proaches have been widely used; one through logic, and an-
other one through algebra. Here we use the algebraic one.

3.1 Primitive positive definitions
In a CSP possible combinations of values of certain vari-

ables can be constrained even if there is no explicit con-
straint imposed on them, see Fig. 6. That is, we can use
the constraints in Γ to build “gadgets” that enforce a con-
straint relation on a certain set of variables. Note that, as in
Fig. 6, the constraint relation expressed by the gadget does
not necessarily belong to Γ. This means that for every con-
straint language Γ, there is a set of implicit constraints that
do not belong to Γ, but can still be expressed by instances
of CSP(Γ).

How can we characterize all the implicit constraints of a
constraint language Γ? It turns out that the implicit con-
straints that can be expressed in instances of CSP(Γ) admit a
simple logic representation. Treating relations in Γ as pred-
icates one can construct logic formulas from them, and use
these formulas to express other predicates (relations). The

type of formulas that is just right for representing implicit
constraints is called primitive positive. Primitive positive
(pp-) formulas include predicates from Γ (atomic formulas)
and the equality, conjunctions of atomic formulas, and ex-
istential quantifiers. Relations (or predicates) that can be
expressed by using pp-formulas with predicates from Γ are
said to be pp-definable in Γ.

Example 3. ([8]) Let Γ be a constraint language
containing a single binary relation R over the set
D = {0, 1, 2}, where R is given by R =
{(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (2, 2)}. Consider the in-
stance of CSP(Γ) with the set of variables {v1, v2, v3, v4}
and set of constraints {C1, C2, C3, C4, C5}, where C1 =
⟨(v1, v2), R⟩, C2 = ⟨(v1, v3), R⟩, C3 = ⟨(v2, v3), R⟩, C4 =
⟨(v2, v4), R⟩, C5 = ⟨(v3, v4), R⟩. There is no explicit
constraint on the pair (v1, v4). However, by consider-
ing all solutions to the instance, it can be shown that
the possible pairs of values which can be taken by this
pair of variables are precisely the elements of the relation
R′ = R ∪ {(1, 1)}. Thus this instance can be considered
as a “gadget” implementing R′ using only the relations
R.

The relation R′ can be expressed as the following primi-
tive positive (pp-) definition:

R′(x, y) = ∃z, t(R(x, z)∧R(x, t)∧R(z, t)∧R(z, y)∧R(t, y)).

Figure 6: Implicit constraints.

Jeavons et al. [23] proved that pp-definitions give rise to
reductions between CSPs: If Γ and ∆ are constraint lan-
guages on the same set such that ∆ is finite and every rela-
tion in ∆ is pp-definable in Γ, then CSP(∆) is polynomial-
time reducible to CSP(Γ) (can be improved to logarithmic-
space reducibility). Thus, when proving hardness of con-
straint satisfaction problems one can use any relations pp-
definable in the given constraint language. Very often ‘gad-
gets’ used in complexity proofs can be expressed as pp-
definitions, so primitive positive definitions generalize and
unify gadget reductions.
In CSPs with cardinality constraints, it is not obvious

that adding pp-definable relations to the constraint language
does not increase hardness. The difficulty is that introduc-
ing gadgets (like the one in Fig. 6) means adding auxiliary
variables, and the values appearing on these variables can
affect the cardinality constraints. Nevertheless, we can show
that adding a new constraint R′ to the constraint language
of a CSP with cardinality constraints does not change the
complexity if R′ is pp-definable without using the equality
relation. Relations expressible in such a weaker way are

called pp-definable without equality. In fact, relations that
are pp-definable in a certain Γ with or without equality can
only be different by certain redundant parts that are not so
important for constraint problems. Therefore, we can es-
sentially assume that Γ is closed under pp-definitions, and
hence we can use the algebraic framework discussed in the
next section.

3.2 Polymorphisms and Invariants
Although pp-definitions are helpful in hardness proofs,

they do not resolve the main difficulty of studying the com-
plexity of CSPs, as they do not help much in describing con-
straint languages. However, pp-definitions provide a bridge
to a tool that allows to do that. Polymorphisms can be
viewed as a sort of extended symmetries of relations. Let R
be a relation on some set D and f a function on the same
set that may depend on more than one variable; let f be
n-ary, that is, depends on n variables. The function f is
a polymorphism of R if for any choice of tuples a1, . . . , an

from R the tuple f(a1, . . . , an) obtained by component-wise
application of f also belongs to R. Relation R in this case is
said to be an invariant of f . Polymorphisms and invariants
naturally extend to constraint languages and functions: A
function is a polymorphism of a constraint language if it is
a polymorphism of every relation in it, and a relation is an
invariant of a set of functions if it is an invariant of every
function in the set. For constraint languages Γ, and set of
functions C, by PolΓ we denote the set of all polymorphisms
of Γ, and InvC the set of all invariants of C, see Fig. 7.

Sets of the form PolΓ and InvC have a number of inter-
esting properties, see, e.g., [16]. For any set C of functions
InvC is a relational clone, that is, constraint language ∆
such that every relation pp-definable in ∆ also belongs to
∆. Therefore Jeavons’ result (and this paper’s analogous
result) can be stated in terms of polymorphisms: If Γ and ∆
are constraint languages on the same set such that ∆ is finite
and every polymorphism of Γ is also a polymorphism of ∆,
then CSP(∆) is polynomial-time reducible to CSP(Γ). For
CCSP we only have to add the requirement that relations
in ∆ do not contain redundancies.

For any constraint language Γ the set PolΓ is a clone,
that is, a set of functions that contains the identity func-
tions, and closed under compositions. Clones have been a
subject of intensive study in algebra for decades; the results
of those studies are readily available to be applied to con-
straint problems.

Clearly, large constraint languages have few polymorphisms.
Thus, a number of important properties of relations can be
inferred merely from the existence of polymorphisms of cer-
tain types. A ternary function h on a set D is said to be ma-
jority function if h(x, x, y) = h(x, y, x) = h(y, x, x) = x for
any x, y ∈ D. If a constraint language has a polymorphism
that is a majority function, then the constraint language is
2-decomposable. A ternary operation m is called Maltsev if
m(x, y, y) = m(y, y, x) = x for any x, y ∈ D. Any binary
relation having a Maltsev polymorphism is a thick mapping,
see Fig. 8.

For regular CSPs, complexity questions are usually re-
duced one step further, to universal algebras and their va-
rieties. Most of the strong complexity results about CSPs
are obtained this way [7, 9, 3]. Moreover, research on CSP
complexity have revolutionized certain fields of algebra, see,
e.g., [4]. For our result however we do not need more algebra

Figure 7: Pol and Inv

than polymorphisms.

3.3 Easy cardinality constraints: the full re-
sult

We can finally explain the main result in details. A func-
tion f is said to be conservative if it always equal to one of
its arguments. For instance, a ternary function f is conser-
vative if f(a, b, c) ∈ {a, b, c} for any a, b, c. The main result
can be stated compactly the following way:

Main Theorem Let Γ be a finite constraint language. If
Γ has a majority polymorphism and has a conservative Malt-
sev polymorphism, then CCSP(Γ) is polynomial-time solv-
able. Otherwise, the problem is NP-complete.

We can show that if a constraint language Γ satisfies the
conditions above, then the problem can be solved in polyno-
mial time by the algorithm presented in Section 2.3. Let ∆
be the set of binary relations pp-definable in Γ. Since Γ has
a majority polymorphism, it is 2-decomposable, hence, ev-
ery constraint with a relation R ∈ Γ can be replaced with a
collection of binary constraints, the ‘projections’ of R, which
are pp-definable in Γ and thus belong to ∆. Therefore we
only need to verify that the Key Property (Section 2.3) al-
ways hold. Due to 2-decomposability, Γ can be replaced with
∆. This constraint language has a Maltsev polymorphism,
and this makes its relations thick mappings. Suppose now
that the graph G of a problem from CCSP(∆) is connected.
For any two variables v, w the set of all allowed combina-
tions of their values is a binary relation, denoted Rvw and
an implicit constraint. Since ∆ contains all binary relations
pp-definable in ∆, we have Rvw ∈ ∆. Thus Rvw is a thick
mapping from Dv to Dw. The connectedness of G and the
fact that all relations in ∆ are non-crossing can be used to
show that Rvw is a non-trivial thick mapping. Let α and β
be equivalence relations it induces on Dv and Dw, respec-
tively. If we fix a value a ∈ Dv then the possible values of w
are restricted to one equivalence class of β, a proper subset
of Dw. As this is true for all variables w, the key property
follows.
The Main Theorem also leads to a more combinatorial

characterization of tractable problems CCSP(Γ): Such a prob-
lem is tractable if and only if Γ is 2-decomposable, and
the binary relations pp-definable in Γ are non-crossing thick
mappings.
What remains now is to show that otherwise the problem

Majority implies 2-decomposability.
Let R be a ternary relation and h a majority function,
which is a polymorphism of R. We show that any triple
(a, b, c) such that each of (a, b), (b, c), and (a, c) is ex-
tendible to a triple from R, belongs to R. This means the
2-decomposability of R in this case. By the assumption,
there are (a, b, z), (a, y, c), (x, b, c) ∈ R for some x, y, z.
Since h is a majority polymorphism of R we have

h

 a
b
z

,
a
y
c
,
x
b
c

 =

 a
b
c

 ,

and (a, b, c) belongs to R.
Maltsev implies thick mapping.
Let R be a binary relation and m its Maltsev polymor-
phism. We have to prove that for any (a, c), (a, d), (b, c) ∈
R the pair (b, d) also belong to R. It follows from a single
application of the Maltsev polymorphism:

m

(
a
d

,
a
c
,
b
c

)
=

(
b
d

)
.

Linear equations.
As another example of a property of relations expressible
by a polymorphism, we consider relations that are solu-
tion spaces of systems of linear equations over a finite
field F . Then if a relation R has such representation it is
an invariant of the affine function f(x, y, z) = x− y + z,
where +,− are operations of the field F . Indeed, let
A · x = b be the system defining R, and x,y, z ∈ R.
Then

A · f(x,y, z) = A · (x−y+ z) = A ·x−A ·y+A · z = b.

In fact, the converse can also be shown: if R is invariant
under f then it is the solution space of a certain system
of linear equations.

Figure 8: Examples of polymorphism.

is hard.

4. HARD CSPS WITH CARDINALITY CON-
STRAINTS

If one of the three conditions on a constraint language
Γ: (a) 2-decomposability, (b) all binary pp-definable rela-
tions are thick mappings, and (c) all such binary relations
are non-crossing, does not hold, we show that either the Bi-
partite Independent Set, or Linear Equation is reducible to
CCSP(Γ), thus showing that CCSP(Γ) is NP-complete. This
part is technical, but we outline the intuition behind the
technique.

Suppose first that a binary relation R is pp-definable in
Γ, but is not a thick mapping. This means that for some
a, b, c, d pairs (a, c), (a, d), (b, c) belong to R while (b, d) does
not. If a, b, c, d are distinct values, then R contains a frag-
ment that looks like RBIS. We exploit this fact to reduce
Bipartite Independent Set to CCSP(Γ) and conclude NP-
hardness in this case. In general, it is possible that some
of a, b, c, d coincide. However, a case analysis shows that
reduction from Bipartite Independent Set is possible in all
cases.

If there exist two thick mappings pp-definable in Γ that

are not non-crossing, then there are also two equivalence
relations with this property; denote them α and β. Since
they are not non-crossing, some α-class and some β-class
overlap, but are not subsets of one another. Hence for some
a, b, c, we have (a, b) is in α but not in β, and (b, c) is in
β but not in α. If we can restrict α and β onto {a, b, c}
somehow, then the product of binary relations α◦β given by
a pp-formula ∃z α(x, z)∧β(z, y), contains (a, a), (a, c), (c, c),
but does not contain (c, a). Again, this fact can be used to
reduce Bipartite Independent Set to CCSP(Γ).
Finally, let R ∈ Γ be non-2-decomposable. For simplic-

ity assume R ternary. There is a triple (a, b, c) such that
(a, b, z), (a, y, c), (x, b, c) belong to R for some x, y, z, but
(a, b, c) does not. We show that either a binary relation
which is not a thick mapping can be pp-defined in Γ, or two
thick mappings that are not non-crossing, or all the tuples
can be chosen such that a = b = c = 0, x = y = z = 1 (we
assume 0 and 1 are elements of the domain we can use here),
and R restricted to {0, 1} is RODD−3. Therefore a reduction
of Linear Equation to CCSP(Γ) can be found.

5. CONCLUSIONS
We have completed the study of CSP extended with cardi-

nality constraints, and proved a dichotomy theorem charac-
terizing the complexity of the problem for every constraint
language Γ over an arbitrary finite domain D. Dichotomy
theorems over non-Boolean domains are notoriously hard
to prove, but possibly due to the rather restrictive nature
of the CCSP problem, we managed to obtain a complete
characterization. One can think of several natural variants
with more expressive power: for example, the domain is
{1, 2, 3, 4}, and we have upper bounds on the cardinalities
of 1 and 2, while there are lower bounds on the cardinalities
of 3 and 4. Therefore, upper and/or lower bounds instead of
exact cardinality requirements, bounds only on a subset of
values, bounds on the total cardinality of a subset of values,
etc. give lots of interesting problems to look at. However,
some of these questions seem to be very difficult, as a di-
chotomy result would immediately imply the Feder-Vardi
Dichotomy Conjecture (after all, we do not fully understand
CSP even without cardinality constraints).
Another natural direction is to consider optimization vari-

ants (minimize/maximize the number of times certain values
appear) and determine the approximability of the resulting
problems. In the Boolean case, the approximability of the
MinOnes/MaxOnes problems, where the task is to find a
satisfying assignment minimizing/maximizing the number
of variables receiving value 1, was classified by Khanna et
al. [25]. Again, not being able to solve the Feder-Vardi con-
jecture limits what immediate progress we can expect in the
study of non-Boolean domains.
Finally, one can look at CCSP from the viewpoint of pa-

rameterized complexity. The basic issues of parameterized
complexity is whether an algorithm of running time f(k) ·nc

exists, where k is some parameter of the input (for example,
the size of the solution we are looking for), f(k) is an arbi-
trary function depending on k, and c is a universal constant
independent of k. For example, in Boolean CCSP, one can
answer in time nO(k) whether there is a solution with ex-
actly k variables set to 1, but it would be preferable to find
an algorithm with running time of the form f(k) · nc, i.e.,
where the combinatorial explosion is restricted to k and the
exponent of n is independent of k. We can ask what those

Boolean constraint languages Γ are for which the problem of
finding a solution with exactly/at most/at least k variables
having 1 can be solved in such running time. These ques-
tions have been investigated and completely answered in [30,
27]. Generalization of some of these results to arbitrary non-
Boolean domains have been obtained very recently by the
authors [11].

6. REFERENCES
[1] J. Allen. Natural Language Understanding. Benjamin

Cummihgs, 1994.

[2] E. Allender, M. Bauland, N. Immerman, H. Schnoor,
and H. Vollmer. The complexity of satisfiability
problems: Refining Schaefer’s theorem. J. Comput.
Syst. Sci., 75(4):245–254, 2009.

[3] L. Barto and M. Kozik. Constraint satisfaction
problems of bounded width. In FOCS, pages 595–603,
2009.

[4] L. Barto and M. Kozik. New conditions for Taylor
varieties and CSP. In LICS, 2010. to appear.

[5] C. Bazgan and M. Karpinski. On the complexity of
global constraint satisfaction. In ISAAC, pages
624–633, 2005.

[6] C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. The
complexity of global constraints. In AAAI, pages
112–117, 2004.

[7] A. Bulatov. Tractable conservative constraint
satisfaction problems. In LICS, pages 321–330, 2003.

[8] A. Bulatov, P. Jeavons, and A. Krokhin. Functions of
multiple-valued logic and the complexity of constraint
satisfaction: A short survey. In ISMVL, pages
343–351, 2003.

[9] A. A. Bulatov. A dichotomy theorem for constraint
satisfaction problems on a 3-element set. J. ACM,
53(1):66–120, 2006.

[10] A. A. Bulatov, A. A. Krokhin, and B. Larose.
Dualities for constraint satisfaction problems. In
Complexity of Constraints, pages 93–124, 2008.

[11] A. A. Bulatov and D. Marx. Constraint satisfaction
parameterized by solution size. Manuscript.

[12] A. A. Bulatov and D. Marx. The complexity of global
cardinality constraints. In LICS, pages 419–428, 2009.

[13] A. A. Bulatov and M. Valeriote. Recent results on the
algebraic approach to the csp. In Complexity of
Constraints, pages 68–92, 2008.

[14] N. Creignou, H. Schnoor, and I. Schnoor. Non-uniform
boolean constraint satisfaction problems with
cardinality constraint. In CSL, pages 109–123, 2008.

[15] R. Dechter. Constraint processing. Morgan Kaufmann
Publishers, 2003.

[16] K. Denecke and S. Wismath. Universal algebra and
applications in Theoretical Computer Science.
Chapman and Hall/CRC Press, 2002.

[17] N. Dunkin, J. Bater, P. Jeavons, and D. Cohen.
Toward high order constraint represenations for the
frequency assignment problem. Technical Report
CSD-TR-98-05, Department of Computer Science,
Royal Holloway, University of London, Egham, Surrey,
UK, 1998.

[18] T. Feder and M. Vardi. The computational structure
of monotone monadic SNP and constraint satisfaction:

A study through datalog and group theory. SIAM J.
Computing, 28:57–104, 1998.

[19] E. Freuder. Synthesizing constraint expressions.
Communications of the ACM, 21:958–966, 1978.

[20] E. C. Freuder. Complexity of k-tree structured
constraint satisfaction problems. In Proc. of AAAI-90,
pages 4–9, Boston, MA, 1990.

[21] M. Grohe. The complexity of homomorphism and
constraint satisfaction problems seen from the other
side. J. ACM, 54(1), 2007.

[22] P. Hell and J. Nesetril. Colouring, constraint
satisfaction, and complexity. Computer Science
Review, 2(3):143–163, 2008.

[23] P. Jeavons, D. Cohen, and M. Gyssens. Closure
properties of constraints. J. ACM, 44:527–548, 1997.

[24] H. A. Kautz and B. Selman. Planning as satisfiability.
In ECAI, pages 359–363, 1992.

[25] S. Khanna, M. Sudan, L. Trevisan, and D. P.
Williamson. The approximability of constraint
satisfaction problems. SIAM J. Comput.,
30(6):1863–1920, 2001.

[26] P. Kolaitis and M. Vardi. Conjunctive-query
containment and constraint satisfaction. J. Comput.
Syst. Sci., 61:302–332, 2000.

[27] S. Kratsch, D. Marx, and M. Wahlström.
Parameterized complexity and kernelizability of Max
Ones and Exact Ones problems. Submitted, 2010.

[28] R. Ladner. On the structure of polynomial time
reducibility. Journal of the ACM, 22:155–171, 1975.

[29] B. Larose and P. Tesson. Universal algebra and
hardness results for constraint satisfaction problems.
In ICALP, pages 267–278, 2007.

[30] D. Marx. Parameterized complexity of constraint
satisfaction problems. Computational Complexity,
14(2):153–183, 2005. Special issue “Conference on
Computational Complexity (CCC) 2004.”.

[31] D. Marx. Tractable hypergraph properties for
constraint satisfaction and conjunctive queries. In
STOC, 2010. to appear.

[32] U. Montanari. Networks of constraints: Fundamental
properties and applications to picture processing.
Information Sciences, 7:95–132, 1974.

[33] B. Nadel. Constraint satisfaction in Prolog:
Complexity and theory-based heuristics. Information
Sciences, 83(3-4):113–131, 1995.

[34] T. Schaefer. The complexity of satisfiability problems.
In STOC, pages 216–226, 1978.

[35] P. van Beek. Reasoning about qualitative temporal
information. Artificial Intelligence, 58:297–326, 1992.

