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Abstract. In a nutshell, a duality for a constraint satisfaction problem
equates the existence of one homomorphism to the non-existence of other
homomorphisms. In this survey paper, we give an overview of logical,
combinatorial, and algebraic aspects of the following forms of duality
for constraint satisfaction problems: finite duality, bounded pathwidth
duality, and bounded treewidth duality.

1 Introduction

The constraint satisfaction problem (CSP) provides a framework in which it
is possible to express, in a natural way, many combinatorial problems encoun-
tered in artificial intelligence, computer science, discrete mathematics, and else-
where [14,28,54]. An instance of the constraint satisfaction problem is repre-
sented by a finite set V of variables, a (finite) domain D of values for each
variable, and a set of constraints {(31, R1),..., (34, Rq)}. Each constraint con-
sists of a constraint scope 3;, which is an m;-tuple of variables, and a constraint
relation R; € D™:. The aim is then to decide whether there is an assignment
h :V — D that satisfies the constraints, i.e., h(s;) € R; for all 1.

It has been observed [22] (see also [36]) that the constraint satisfaction prob-
lem can be recast as the following fundamental problem: given two finite rela-
tional structures A and B, is there a homomorphism from A to B? One of the
most studied restrictions on the CSP is when the structure B is fixed, and only
A is part of the input. The obtained problem is denoted by CSP(B). Examples
of such problems include various versions of k-SAT, GRAPH COLOURING, and
SYSTEMS OF EQUATIONS (see [12,28,36,44]). Strong motivation for studying
this framework was given in [22] where it was shown that such problems can be
used in attempts to identify a largest subclass of NP that avoids problems of
intermediate complexity.
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The two main general classification problems about the class of problems of
the form CSP(B) are:

1. classify the problems CSP(B) with respect to computational complexity, that
is, for a given complexity class /C, characterise (under suitable complexity-
theoretic assumptions) structures B such that CSP(B) is in K;

2. classify the problems CSP(B) with respect to descriptive complexity, that
is, for a given logic L, characterise structures B such that CSP(B), as the
class of all structures admitting a homomorphism to B, is definable in L.

In addition, there is a so-called meta-problem:

3. Determine the (computational) complexity of deciding whether, for a given
structure B, CSP(B) has a certain (computational or descriptive) complex-
ity.

A variety of mathematical approaches to study problems CSP(B) has been
recently suggested. The most advanced approaches use logic (e.g., [42]), combi-
natorics (e.g., [26, 28, 46]), universal algebra (e.g., [6,9, 10, 12, 35,44]), or combi-
nations of those (e.g., [2,7,16,22,48]). In this survey, we will discuss a combi-
natorial idea that has a bearing on all the above problems, and has strong links
with the three approaches — the idea of homomorphism duality.

The concept of duality has been much used to study homomorphism prob-
lems. In essence, a duality equates the existence of one homomorphism to the
non-existence of some other homomorphism(s). The idea is to provide a set Op
of obstructions for B such that, for any relational structure A, A homomorphi-
cally maps to B if and only if A does not admit a homomorphism from any
structure from Og. Of course, the set Op can always be chosen to consist of
all structures that do not homomorphically map to B, but this choice does not
give any information about CSP(B). If, however, O can be chosen so that it
has certain nice properties then this can tell us much about the computational
or descriptive complexity of CSP(B).

Most of the early studies of dualities were restricted to the case of (di)graphs
(see survey [30], also [28,29,32,33,43]). For general relational structures, the
main forms of duality that have been considered in the literature are finite du-
ality, bounded pathwidth duality, and bounded treewidth duality. We give the
necessary combinatorial, logical, and algebraic preliminaries in Section 2, and
then consider the three dualities in Sections 3, 4, and 5, respectively. Sections 6
and 7 contain some remarks and a list of open problems concerning dualities.

2 Preliminaries

2.1 Basic definitions

Most of the terminology introduced in this section is fairly standard. A wvocab-
ulary is a finite set of relation symbols or predicates. In what follows, 7 always
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denotes a vocabulary. Every relation symbol R in 7 has an arity r = p(R) > 0
associated to it. We also say that R is an r-ary relation symbol.

A 7-structure A consists of a set A, called the universe of A, and a relation
RA C A" for every relation symbol R € 7 where r is the arity of R. Let p(A)
denote the maximum arity of a relation in A. Unless specified otherwise, all
structures in this paper are assumed to be finite, i.e., structures with a finite
universe. Throughout the paper we use the same boldface and slanted capital
letters to denote a structure and its universe, respectively.

Let A and A’ be 7-structures. We say that A’ is a substructure of A, denoted
by A’ C A, if A’ C A and for every R € T, RA C RA.If A is a T-structure and
I C A, then A|; denotes the substructure induced by A on I, i.e., the T-structure
I with universe I and R' = RA N 1" for every r-ary R € .

A homomorphism from a 7-structure A to a 7-structure B is a mapping
h : A — B such that for every r-ary R € 7 and every (ai,...,a,) € R*, we
have (h(a1),...,h(a,)) € RB. We denote this by h : A — B, and the set of
all homomorphisms from A to B is denoted by hom(A,B). We also say that
A homomorphically maps to B, and write A — B if there is a homomorphism
from A to B and A 4 B if there is no homomorphism. Now CSP(B) can be
defined to be the class of all structures A such that A — B. The class of all
structures A such that A - B will be denoted by co-CSP(B).

Ezample 1. 1f By, is a digraph H then CSP(H) is the much-studied problem, H-
COLOURING, of deciding whether a given digraph admits a homomorphism (i.e.,
an adjacency-preserving mapping) to H [28]. If H is the complete graph K;, on
k vertices then it is well known (and easy to see) that CSP(By,) is precisely the
k-COLOURING problem.

Example 2. If By is a structure obtained from a digraph H by adding, for each
non-empty subset U of H, a unary relation U then CSP(By;.) is exactly the
LisT H-COLOURING problem, in which every vertex v of the input graph G gets
a list L, of vertices of H, and the question is whether there is a homomorphism
h : G — H such that h(v) € L, for all v € G (see [28]).

Ezample 3. 1f By, is the Boolean (i.e., with universe {0, 1}) structure with one
binary relation Fq, which is the equality relation, and two unary relations {0}
and {1} then CSP(B,,) is the (undirected) UNREACHABILITY problem where
one is given a graph and two sets of vertices in it, S and 7', and the question is
whether there is no path in the graph from any vertex in S to a vertex in 7.

Ezample 4. In the PATH SYSTEM ACCESSIBILITY problem [25], one is given a
relational structure A with one ternary relation P4, and two unary relations S*
and T#. The unary relations represent “source” and “terminal” nodes, respec-
tively. The question is whether there is an “accessible” terminal node, where a
node x is accessible if x € SA or (a,b, ) € PA for some accessible a,b € A.

Let B, be the Boolean structure with one ternary relation PBrs = {(z,y, 2) |
Ay — z} and two unary relations SB»s = {1} and TB»+ = {0}. Then it is easy to
verify that the PATH SYSTEM ACCESSIBILITY problem is precisely co-CSP(B;).
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Ezample 5. Let Bsy be the structure with universe {0, 1}, one unary relation
UBs# = {1} and two ternary relations PBs# = {0,1}3\ {(1,1,0)} and NBs# =
{0,133\ {(1,1,1)}. It is easy to see that every Horn 3-CNF formula ¢ can be
represented as a structure A, with universe {z ...,z,} and relations U4,
PA¢ NA¢ where U7+ is the set of all unit clauses (in ¢), PA¢ is the set of all
clauses of the form (—x V =y V z), and N2« is the set of all clauses of the form
(mzV -y V-z). Clearly, we have A, — By if and only if ¢ is satisfiable. Hence
HORN 3-SAT is precisely CSP(Bsn).

Ezample 6. Let B, be a structure with universe {0,1}, one ternary relation
{(z,y,2) | £+ y+ 2z = 1(mod 2)}, and one unary relation {0}. It is well known,
and easy to verify, that CSP(B,.) is the problem of solving systems of linear
equations (with at most 3 variables per equation) over the two-element field.

For any subset I of A, any homomorphism from A/; to B is called a partial
homomorphism from A to B. A projective homomorphism from A to B is a
partial mapping h from A to B such that, for any R € 7 (say, of arity n) and
any tuple (ay,...,a,) € R®, there exists a tuple (by,...,b,) € R such that
h(a;) = b; for every a; in dom(h), the domain of h. Clearly, every projective
homomorphism is also a partial homomorphism.

A retract of a structure B is an induced substructure B’ of B such that there
is a homomorphism g : B — B’ with g(b) = b for every b € B’. In this case we
(trivially) have that CSP(B) and CSP(B’) coincide. A structure is called a core
if it has no homomorphism to any of its proper substructures. A retract of B
that has minimal size among all retracts of B is called a core of B. It is well
known that all cores of a structure are isomorphic, and so one speaks of the core,
core(B), of a structure B.

2.2 Obstructions and dualities

In order to define some of our dualities, we will need the notions of pathwidth
and treewidth of relational structures.

Definition 1. For 0 < j <k, a 7-structure A is said to have treewidth at most
(j, k) if there is a tree T, called a tree-decomposition of A, such that

1. the nodes of T are subsets of A of size at most k,

2. adjacent nodes can share at most j elements,

3. nodes containing any given element of A form a subtree,

4. for any tuple in any relation in A, there is a node in T containing all ele-
ments from that tuple.

If T is a path then it is called a path-decomposition of A, and A is said to
have pathwidth at most (4, k).

Ezxample 7. 1. Consider the graph G from Fig. 1. The top-left decomposition
shows that G has treewidth at most (1,3), the top-right and the bottom
decompositions imply that G has pathwidth at most (1,5) and at most (2,4),
respectively.



Dualities for constraint satisfaction problems 5

e

G has treewidth G has pathwidth
at most (1,3) at most (1,5)

Fig. 1. Examples of pathwidth and treewidth.

2. Any cycle has pathwidth at most (2,3). Indeed, assume that the nodes of the
cycle are 0,1,...,n—1 and the edges are (4,74 1), where addition is modulo
n. Consider a path with nodes Sy, Ss,...,S,—2 where S; = {0,¢,i+1}. It is
easy to check that this is a path-decomposition of the cycle.

3. Any tree has treewidth at most (1,2). Indeed, take T to have the edges of
the original tree as nodes and the adjacency relation given by the incidence
relation of edges in the original tree.

Note that we use two numbers to parameterise treewidth and pathwidth, as
is customary in the study of CSPs [16, 22,49] (rather than one as is customary in
graph theory [28]), for the following reason. The first parameter j gives a more
convenient parameterization of CSPs, since the second parameter k is bounded
from below by the maximum arity of a relation in a structure, and hence it is
less convenient to use for uniform treatment of structures of different vocabu-
laries that behave essentially in the same way with respect to homomorphisms.
Nevertheless, the notions of pathwidth and treewidth of relational structures are
closely related to the corresponding notions from graph theory, as follows. The
Gaifman graph G(A) of a structure A is defined to have the same universe (set
of vertices) as A and the edges of G(A) are the pairs (a, a’) of distinct elements
such that a and a’ appear in the same tuple in some relation in A. Then it is
not hard to check (or see [16,22]) that the following numbers are equal:

— the minimum k such that A has pathwidth (treewidth) at most (k, k + 1),
— pathwidth (treewidth, respectively) of G(A) in the sense of graph theory.

Definition 2. A set O of T-structures is called an obstruction set for B if, for
any T-structure A, A — B if and only if A" /£ A for all A’ € O.
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Note that sometimes such sets are called “complete obstruction sets”.

Definition 3. A structure B is said to have finite duality if it has a finite
obstruction set.

Ezxzample 8. Let T,, be the transitive tournament on n vertices, that is, the

universe of T, is {0,1,...,n — 1}, and the only relation is the binary rela-
tion {(7,5) | 0 < i < j < n — 1}. Also, let P,, be the directed path on
n 4 1 vertices, that is the structure with universe {0,1,...,n} and the relation

{({,i +1) | 0 < i <n—1}. It is well known (see, e.g., Proposition 1.20 of [28])
and easy to show that, for any digraph G, G — T, if and only if P, /4 G.
Hence, {P,,} is an obstruction set for T,,, and T,, has finite duality.

Definition 4. A 7-structure B is said to have (j, k)-pathwidth duality? if it has
an obstruction set consisting of structures of pathwidth at most (j, k). In other
words, B has (j, k)-pathwidth duality if, for any T-structure A, we have A — B
if and only if C — A implies C — B for every 7-structure C of pathwidth at
most (4, k).

We say that B has j-pathwidth duality if it has (j, k)-pathwidth duality for
some k > j, and B has bounded pathwidth duality if it has j-pathwidth duality
for some 7 > 0.

Ezample 9. Tt is well known that a graph G is 2-colourable if and only if it
contains no odd cycles, which is the same as to say that G does not admit
a homomorphism from any odd cycle. Since the 2-COLOURABILITY problem is
the same as CSP(Ks), we obtain that the family of all odd cycles forms an
obstruction set for Ky. By Example 7, any cycle has pathwidth at most (2,3),
so the structure Ky has (2,3)-pathwidth duality. It is easy to see that Ko does
not have finite duality.

Definition 5. By replacing “pathwidth” with “treewidth” throughout Definition 4,
one obtains the corresponding definitions of treewidth dualities.

Ezxample 10. The structure B, from Example 4 has (1,3)-treewidth duality. To
prove this, we need to show that, for any structure A € co-CSP(B,,), there
exists a structure C € co-CSP(B,,) such that C — A and C has treewidth at
most (1,3). If A € co-CSP(B,;) then we can choose some terminal node in A
that can be “accessed” (or “derived”) from the source nodes. It is clear that this
derivation procedure can be represented as a “tree”, as shown in Fig. 2. The
substructure A’ of A (corresponding to the derivation) is shown on the right;
d and e are source nodes, t is a terminal node, and every oval depicts a unit
derivation via a triple from the relation P”. Now modify the structure A’ as
follows: for every element 2 € A’, give new names to the occurrences of x in A’
so that each element in the obtained structure appears either in a single oval or
else in two ovals such that this element is the intersection of the two ovals, and
then modify the set of source nodes accordingly. Let C be the obtained structure

* Called (4, k)-path duality in [16].
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(see Fig. 2, left). It is clear that C has treewidth at most (1,3). Furthermore,
we have C € co-CSP(B,;) because a terminal node is still accessible from the
source nodes, and we also have that C — A because the reverse renaming of
elements is a homomorphism from C to A’, and hence to A.

Fig. 2. (1,3)-treewidth duality for the structure B,.

2.3 Datalog and infinitary logics

For logical descriptions of the three dualities, we use first-order logic, the logic
programming language Datalog, and its restriction, linear Datalog, and also some
infinitary finite-variable logics. We assume that the reader is familiar with first-
order logic, and we now briefly describe the basics of Datalog (for more details,
see, e.g., [39]).

Fix a vocabulary 7. A Datalog program is a finite set of rules of the form
to : — t1,...,t, where each t; is an atomic formula R(x;,,...,x;, ). Then tg
is called the head of the rule, and the sequence t1,...,t, the body of the rule.
The predicates occurring in the heads of the rules are not from 7 and are called
IDBs (from “intensional database predicates”), while all other predicates come
from 7 and are called EDBs (from “extensional database predicates”). One of
the IDBs, which is usually 0-ary in our case, is designated as the goal predicate
of the program. Since the IDBs may occur in the bodies of rules, each Datalog
program is a recursive specification of the IDBs, with semantics obtained via
least fixed-points of monotone operators. The goal predicate is assumed to be
initially set to false, and we say that a Datalog program accepts a T-structure
A if its goal predicate evaluates to true on A.

For 0 < j <k, a (4, k)-Datalog program is a Datalog program with at most
j variables in the head and at most k variables per rule. A Datalog program is
called linear if every rule in it has at most one occurrence of an IDB in its body.
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A class C of structures is said to be definable in (linear) (4, k)-Datalog if there is
a (linear) (j, k)-Datalog program which accepts precisely the structures from C.

Note that, for any Datalog program, the class C of all structures accepted by
the program is closed under extension (that is, if a structure A has a substructure
A’ which is in C then A is also in C). Every class of the form co-CSP(B) has
this monotonicity property, but it is not the case for CSP(B). Hence, when using
Datalog to study CSPs, one usually speaks of definability of co-CSP(B) in (some
version of) Datalog.

FExzample 11. Consider the structure Bsy from Example 5. It is well known that
HORN 3-SAT can be solved by the unit propagation algorithm which can be
represented as the following Datalog program.

T(X):-U(X)
T(Z) : — P(X,Y,2), T(X), T(Y)
unsat : — N(X,Y,2),T(X), T(Y),T(Z)

Hence, co-CSP(B3y) is definable in (1,3)-Datalog.

Ezample 12. The following linear (2,4)-Datalog program accepts a graph (as a
structure with one binary relation F) if and only if the graph is non-2-colourable

0dd(X,Y): — E(X,Y)
0dd(X,Y) : — Odd(X, Z), E(Z,T), E(T,Y)
non2col  :— Odd(X,X)

It is easy to see how to modify this program so that it accepts a digraph if
and only if the digraph is not 2-colourable (just add all rules obtained from the
second rule by permuting Z,T, and Y in the part E(Z,T), E(T,Y)). Hence,
co-CSP(K3) is definable in linear (2,4)-Datalog.

Our definitions of infinitary logics are inspired by [16,39,41]. Let Lo, be
the first-order logic extended with infinitary conjunctions A and infinitary dis-
junctions \/. For every k > 0, let AL be the existential positive (i.e., without
negation and universal quantifiers) fragment of L., with at most k different
variables. A (possibly infinitary) conjunction A @ of Lu,-formulas is said to be
j-restricted if every formula from @ that contains more than j free variables is
quantifier-free, and it is said to be strongly j-restricted if, in addition, at most
one formula in @ having quantifiers is not a sentence. Then IL%*  is the fragment
of ALY obtained by using atomic formulas, existential quantification, arbitrary
disjunctions, and j-restricted conjunctions. The logic IMZF is defined similarly,
but with strongly j-restricted conjunctions.

We will also need the infinitary counting logics. Let Cu (see [3,50]) be
the logic whose formulas are obtained from atomic formulas by using negation,
infinitary conjunction and disjunction, and counting quantifiers (3'z for any
i > 0). The fragment C*  consists of those formulas of C..,, in which at most
k distinct variables appear, and C%,, = Uye, CE,,.
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2.4 Pebble games

We will now define two pebble games, the pebble-relation game and the ex-
istential pebble game, which have proved to be very useful in the analysis of
pathwidth and treewidth dualities. These games have been introduced in [16]
and [40], respectively.

Let 0 < j <k, and let A and B be 7-structures. The (j, k)-pebble-relation
(or (j,k)-PR) game on (A,B) is played between two players, the Spoiler and
the Duplicator. A configuration of the game consists of a subset I C A with
|I] < k and a collection of partial homomorphisms 7" C hom(A;,B). If T C
hom(A,;,B) then we say that [ is the domain of T'. For a subset J C I, let T};
denote the set {f|; | f € T}.

Initially 7 = @ and T contains the (unique) homomorphism from Ay to B.
Each round of the game consists of a move of the Spoiler and a move of the
Duplicator. Intuitively, the Spoiler has control on the domain I of T', which can
be regarded as placing some pebbles on the elements of A that constitute I,
whereas the Duplicator decides the content of T after the domain I has been
set by the Spoiler. There are two types of rounds: shrinking rounds and blowing
rounds.

Let T™ be the configuration after the n-th round. The Spoiler decides whether
the following round is a blowing or shrinking round.

— If the (n + 1)-th round is a shrinking round, the Spoiler sets I"*! to be
a non-empty subset of the domain I™ of T™. The Duplicator responds by
restricting every function in 7" onto I"*!, that is, T+ = T{fnsa-

— A blowing round only can be performed if |I"| < j. In this case the Spoiler
sets I"T1 to be a superset of I"™ with |[I"*1| < k. The Duplicator responds
by providing a 7"*! C hom(A ;n+1,B) such that TG;H cT.

The Spoiler wins the game if the response of the Duplicator sets 7" to §, i.e.,
the Duplicator cannot extend successfully any of the partial homomorphisms
from T". Otherwise, the game resumes. The Duplicator wins the game if he has
a strategy that allows him to play “forever”, i.e., if the Spoiler can never win
a round of the game. The notion of winning strategy for the Duplicator can be
conveniently formalised as follows.

Definition 6. Let 0 < j < k, and let A and B be 7-structures. We say that the
Duplicator has a winning strategy for the (j, k)-pebble-relation game on (A,B)
if there is a non-empty family H of sets of partial homomorphisms such that:

1. for every T € H, T C hom(A|;,B) for some I C A, [I| <k, and) & T,

2. H is closed under restrictions: for every T € H with domain I and every
I' C I, we have that T;, € H,

3. H has the (j, k)-forth property: for every T € H with domain I, |I| < j, and
every superset I' of I with |I'| < k, there exists T' € H with domain I' such
that Tl’I cT.
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The intuition behind the definition of a winning strategy is that every set T’
in a winning strategy corresponds to a winning configuration for the Duplicator
in the game.

If we impose the restriction that every configuration in the (j, k)-PR game
consists of a single function (i.e., in every round, the Duplicator commits to
a particular partial homomorphism) then the obtained game is known as the
existential (7, k)-pebble game. The notion of a winning strategy for the Duplicator
in this game is obtained in a natural way from the one in Definition 6, by
restricting each set T" to consist of a single partial homomorphism.

Note that if we have a homomorphism h : A — B then the Duplicator
always has a winning strategy in any PR~ or existential pebble game on (A, B):
to win, the Duplicator only has to always include the suitable restriction of the
homomorphism h in his response. However, the converse does not always hold.
That is, the existence of a winning strategy for the Duplicator on (A, B) does
not, in general, imply that A — B (see Example 13 below). Thus, the structures
B, for which the converse also holds (for a particular type of game), must have
some special properties. These properties are closely related with dualities, as
we will discuss in Sections 4 and 5.

Ezample 13. Let A be the undirected cycle with 5 nodes and B the undirected
cycle with 6 nodes. Obviously, we have A 4 B, but the Duplicator still wins
the existential (1,2)-pebble game. Indeed, fix any two adjacent elements, b; and
by in B, and let the winning strategy simply contain all partial homomorphisms
that have at most two-element domains and range {b,b2}. It is straightforward
to check that this is indeed a winning strategy. However, it is not hard to verify
the Spoiler wins the existential (2,3)-pebble game on (A, B).

2.5 Algebraic background

The algebraic approach to constraint satisfaction (see, e.g., [10-12,44]) has
proved to be extremely successful. It provides a convenient dual language to
analyse CSPs, and, more importantly, allows one to use powerful machinery
from universal algebra.

First, let us formally define polymorphisms of relations and structures.

Definition 7. Let f be an n-ary operation on B, and R a relation on B. Then
f is said to be a polymorphism of R (or R is invariant under f) if, for any tuples
ai,--.,a, € R, the tuple obtained by applying f componentwise also belongs to
R.

An operation is called a polymorphism of a relational structure if it is a
polymorphism of every relation in the structure. Let Pol(B) denote the set of all
polymorphisms (of all arities) of a structure B.

For r-structures By, ..., B,,, define the direct product structure C = [[;_, B;
to be a 7-structure with base set C = By X ... X By, and, for any m-ary R € T,
let (ay,...,a,) € RC if and only if (a;[i],...,a,[i]) € RBi for each 1 <i < n.
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As usual, the direct product of n copies of a structure B is called the n-th power
of B, and is denoted B". It is easy to check that the n-ary polymorphisms of B
are precisely the homomorphisms from B" to B.

Example 14. Tt is straightforward to verify that the Boolean relation OR =
{0,1}2\ {(0,0)} is invariant under the binary operation maxz on {0,1}, but is
not invariant under the operation min.

One nice feature of the polymorphisms is that they allow one to simultane-
ously deal with structures over different vocabularies. For example, it is known
(see [10] or [36]) that if 7-structure B; and 7o-structure Bo have the same uni-
verse and Pol(B;) C Pol(B3) then every relation in Bz can be defined by a
primitive positive first-order formula in B, and hence the problem CSP(Bs) is
polynomial-time (even logarithmic-space) reducible to CSP(B;). In particular,
if Pol(B1) = Pol(B2) then CSP(B;) and CSP(By) are equivalent. Hence, it is
very convenient to group relational structures according to their polymorphisms.
Note that sets of operations of the form Pol(B) are clones of operations, they
are well-studied objects in universal algebra (see, e.g., [56]).

We will now define some types of operations which will be useful in the
subsequent sections.

Definition 8. An n-ary operation f on B is called idempotent if it satisfies the
identity f(x,...,x) = x.

— A binary commutative idempotent operation f is called a 2-semilattice oper-
ation if it satisfies the identity f(x, f(x,y)) = f(z,y).

— An n-ary (n > 2) idempotent operation f is called TSI (totally symmet-
ric idempotent) if f(x1,...,2n) = f(y1,...,Yn) whenever {x1,...,2,} =
{yla s ayn}

— An n-ary (n > 3) operation is called an NU (near-unanimity) operation if it
satisfies the identities

f(y,x,...,x,x):f(x,y7...,x7x):...:f(w,m,...,m,y)=:U.

— A ternary NU operation is called a majority operation.
— Ann-ary (n > 2) idempotent operation is called a WNU (weak near-unanimity)
operation if it satisfies the identities

f(y7x7"'7:177x):f(x’y7""x7z):"':f(x71‘7"""1:7y)'

Example 15. 1. For any binary idempotent operation f, the following condi-
tions are equivalent: (a) f is a TSI operation, (b) f is a WNU operation,
and (c) f is commutative.

2. A binary operation g is called conservative if g(a,b) € {a,b} for all a,b. Any
binary commutative conservative operation is a 2-semilattice operation.

3. Let f be a binary idempotent commutative associative operation (for exam-
ple, the operation maz on a totally ordered set). Then f is called a semi-
lattice operation. It is easy to see that f is also a 2-semilattice operation,
and, for any n > 2, the operation f(x1, f(xa, f(..., f(xpn_1,2n)...) is a TSI
operation.
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4. Tt is easy to check that the (ternary) median operation on a totally ordered
set is a majority operation.

5. Any TSI operation and any NU operation is a WNU operation. Also, the
Boolean affine operation f(z,y,z) = x + y + z(mod 2) is a WNU operation.

Ezxample 16. Schaefer’s celebrated dichotomy theorem for Boolean CSP can be
restated (see, e.g., [10,12,44]) as follows. For a Boolean core structure B, if
B has a semilattice polymorphism, or a majority polymorphism, or the affine
polymorphism, then CSP(B) is in PTIME. In all other cases, CSP(B) is NP-
complete. A refinement of this theorem, including a classification for definability
in Datalog and its restrictions, can be found in [48].

The subsequent definitions in this subsection are sketchy, for more details see
survey [11] in the same volume or monograph [34].

Definition 9. A finite algebra is a pair A = (A, F') where A is a finite set and
F = (fi)icr is a family of finitary operations on A. For a relational structure B,
the algebra Ag = (B, Pol(B)) is called the algebra associated with B.

Definition 10. A variety is class of algebras closed under taking homomorphic
images, subalgebras, and (possibly infinite) direct products. The variely gener-
ated by finite algebra A, denoted var(A) consists of all homomorphic images of
subalgebras of direct powers of A.

Every finite algebra A can be assigned a set of types. The types are numbers
from 1 to 5, and they correspond to different possible basic “local behaviours”
of the algebra. The correspondence is as follows:

type 1 — unary algebra,

type 2 — vector space over a finite field,
type 3 — 2-element Boolean algebra,
type 4 — 2-element lattice,

type 5 — 2-element semilattice.

A variety is said to admit a type i if this type occurs in some finite algebra in
the variety, and it omits type i otherwise.

It is known (see [10, 11,44]) that if, for a core structure B, the variety var(Ag)
admits type 1 then CSP(B) is NP-complete. Moreover, all core structures B
that are known to give rise to NP-complete problems CSP(B) do satisfy this
condition. It has been conjectured that all other core structures give rise to
problems in PTIME, and this conjecture has been confirmed in many important
cases (see, e.g., [6,9-11]). For other results about the correspondence between the
type set of var(Ag) on one side and the computational and descriptive complexity
of CSP(B) on the other side, see [3,11, 48].
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3 Finite duality

Arguably, the simplest case of duality is that of finite duality. In this section,
we outline several characterisations of constraint satisfaction problems with this
property. We shall address, in particular, questions about the relationship of fi-
nite duality to definability in first-order logic (FO), the nature of the obstruction
set of a structure with finite duality, and the (meta-)problem of recognising such
structures.

Recall from Example 8 that the transitive tournament T, has an obstruction
set consisting of a single structure P,,. In general, a structure with finite duality
might not have a set of obstructions that consists of a single structure:

Ezample 17. Let B = ({0,1}; R, {0}, {1}) where R = {(0,0), (0,1), (1,0)}. View-
ing structures of this type as coloured digraphs (with colours given by the unary
relations), it is easy to see that A - B if and only if there exists a vertex v
of A which is coloured with both colours 0 and 1, or an edge (a,b) with both
endpoints coloured 1. Consequently B has a two-element obstruction set, one
structure A consisting of a single vertex with two colours, the other structure
A5 consisting of one directed edge with both ends coloured 1. It is easy to see
that B does not have a one-element obstruction set.

Ezample 18. Recall the problem UNREACHABILITY, or CSP(B,,,) from Exam-
ple 3. It is not difficult to see that B,,, does not have finite duality. As in
Example 17, we can view structures as coloured digraphs. Note that any path
with ends coloured 0 and 1 does not have a homomorphism to B, but any
proper substructure of the path does. If O is a finite obstruction set for B,
then one can find a long enough path P (with coloured ends) such that ev-
ery structure in O can have only non-surjective homomorphisms (if any) to P.
Hence, either none of the structures in O has a homomorphism to P or some
structure in O has a homomorphism to B,,,. In either case, O cannot be an
obstruction set for B,..

It is easy to see that if a structure B has finite duality then CSP(B) is
FO-definable; in fact, co-CSP(B) is definable in existential positive FO, or said
differently, it is definable in Datalog without IDBs other than the goal predicate.
Indeed, let C be a 7-structure with C' = {¢1,..., ¢}, and consider the following
sentence Tc = 3z ... 31 e, /\(cil,...,c”)eRC R(x4,, ..., 2, ). It is well known
and easy to check that, for any 7-structure A, we have A — C if and only if A
satisfies Tc. Hence, if O is a finite obstruction set for a 7-structure B, then a
T-structure A belongs to co-CSP(B) if and only if the sentence \/.» Tc holds
true in A.

Atserias ([2], see also [55]) has shown that the converse also holds: if CSP(B)
is FO-definable then B has finite duality. We now show how this result follows
from other, more recent, results.

The next result is stated in [48] in a slightly weaker form, but in fact the
proof relies on a characterisation of structures with finite duality from [46, 47],
and immediately yields the following:
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Theorem 1 ([48]). If a structure B does not have finite duality then CSP(B)
1s LOGSPACE-hard under first-order reductions.

Recall that complexity class non-uniform AC' consists of all languages
accepted by polynomial-size constant-depth families of Boolean circuits (see,
e.g., [50]). It is known that any FO-definable class of structures belongs to this
complexity class (see Theorem 6.4 of [50]). Moreover, any problem which is
LOGSPACE-hard under first-order reductions cannot lie in non-uniform AC°
because there are problems in LOGSPACE which are not in non-uniform AC°
(see [24]) and non-uniform AC? is closed under first-order reductions. These
facts and Theorem 1 imply the following result.

Theorem 2. For any structure B, the following conditions are equivalent:

1. B has finite duality.
2. CSP(B) is FO-definable.
3. CSP(B) is in non-uniform AC’.

Let us now consider the question about the nature of finite obstruction sets.

Definition 11. Let A be a 7-structure. The incidence multigraph of A, denoted
Inc(A), is defined as the bipartite multigraph with parts A and Block(A), where
Block(A) consists of all pairs (R,a) such that R € T and @ € R®, and with
edges eq,i,z joining a € A to Z = (R, (as,...,a,)) € Block(A) when a; = a. We
say that the structure A is a T-tree (or simply a tree) if its incidence multigraph
is a tree (in particular, it has no multiple edges).

Theorem 3 ([52,53]). If a finite structure has finite duality, then it admits an
obstruction set consisting of finitely many trees. Conversely, for any finite set

O of trees, there is a structure B that can be explicitly constructed from O such
that O = OB.

Note that the structure B obtained in the above theorem may not be a core;
in fact, it may be much larger than its core.

We now give an algebraic characterisation of structures with finite duality.

Definition 12. Let R be a relation on the set A. An n-ary operation f on A
is a 1-tolerant polymorphism of R if, for any tuples a1,...,a, at least n — 1 of
which belong to R, the tuple obtained by applying f componentwise also belongs
to R.

Theorem 4 ([46,47]). A structure B has finite duality if and only if its core
has a 1-tolerant NU polymorphism.

In fact, the arity of such a 1-tolerant NU polymorphism is determined by the
total number of tuples in the relations of minimal obstructions. A structure A
is a critical obstruction of B if A 4 B and A’ — B for any proper substructure
A’ of A. Call any tuple of any relation of a structure A a hyperedge of this
structure. Then we have the following:
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Theorem 5 ([46]). The core B admits a 1-tolerant NU polymorphism of arity
n+ 1 if and only if each critical obstruction of B has at most n hyperedges.

Ezxample 19. 1. The transitive tournament T, of Example 8 admits a 1-tolerant
NU polymorphism of arity n + 1, but none of smaller arity (even though it
has a majority polymorphism).

2. The structure B of Example 17 admits a 1-tolerant NU polymorphism of
arity 4, but not 3. Indeed, if m was a ternary 1-tolerant NU polymorphism
of the relation R of B, we would have (1,1) = (m(1,1,0),m(1,0,1)) € R,
which is false. On the other hand, it is straightforward to check that the
4-ary operation f such that f(z1,...,24) = 1 if and only if at most one z;
is equal to 0 is a 1-tolerant NU polymorphism of B.

Call a relation R on B biredundant if the projection of R onto some two
coordinates is the equality relation on some subset C' C B with |C| > 2.

Theorem 6 ([19,47]). Let By and By be structures such that By is a core with
finite duality and Pol(By) C Pol(Bs). Then the following holds.

1. If By does not have finite duality then CSP(B3) is LOGSPACE-complete.
2. If none of the relations in Bo is biredundant then By also has finite duality.
If Bs is a core then the converse holds as well.

Example 20. We will now describe Boolean structures that are cores with fi-
nite duality. (Boolean non-core structures trivially have this property). It can
be derived from [47,48] that these are precisely the (Boolean) core structures
B without biredundant relations and such that (at least) one of the ternary
operations z V (y A Z) and = A (y V Z) is a polymorphism of B.

We shall now describe a simple algorithm to determine if a structure B
has finite duality. A slight modification of this algorithm also provides a way
of producing solutions of a CSP with finite duality. First, we require a few
straightforward definitions.

Definition 13. Let A be a structure and let a,b € A. We say that the element
a dominates the element b if, in any tuple t in any relation R in A, replacement
in t of any number of occurrences of b by a yields a tuple also in R.

For example, if a dominates b and (b,c,b) € R then (a,c,b), (b,c,a), and
(a,c,a) are all in R. Note that this notion is a direct generalisation of the notion
of domination in graph theory.

Recall from Section 2.5 the definition of the n-th power of a structure. Ob-
viously, the second power B? of a structure B is called the square of B. The
diagonal A(B?) of the square B? is the substructure of B? induced by the set
{(b,b) | b € B}. Note that A(B?) is isomorphic to B.

Definition 14. A structure A is said to dismantle to its substructure C if there
exists a sequence of induced substructures Ao, ..., Ay of A such that (i) Ag = A,
(11) Ay, = C and (i) for each 0 < j < k the structure A 11 is obtained from
A; by removal of a dominated element of A;.
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It is known [46,47] that the procedure of dismantling can always be done
greedily, by successively removing arbitrary dominated elements in substructures
of A to eventually obtain C.

Theorem 7 ([46,47]). A structure B has finite duality if and only if it has a
retract A whose square A* dismantles to its diagonal A(A?).

Ezample 21. Consider the tournament T3 (see Example 8). We know that T is
a core with finite duality, so its square Tg should dismantle to its diagonal. We
will now show that this is indeed the case. The process of dismantling is shown
on Fig. 3.

The digraph T3 is shown in Fig. 3, top-left. The vertices (2,0) and (0,2)
are dominated by all vertices, so they are removed, and the resulting digraph is
shown in Fig. 3, top-right. Next, the vertices (1,0) and (0, 1) are now dominated
by (0,0), so they are are removed (see Fig. 3, bottom-left). Finally, the vertices
(1,2) and (2,1) are now dominated by (2,2), so they are removed as well, which
leaves only the diagonal A(T3), shown in Fig. 3, bottom-right.

21 (22)
(10 (1.2)
(0.0 ©0,1)

21 (2.2) (22)

(0,0) (0.0)

Fig. 3. Dismantling T3 to its diagonal.

From Theorem 7, the problem of recognising structures with finite duality is
in NP. Indeed, one only needs to guess a mapping ¢ from B onto its subset A,
and then to check that the induced (by A) substructure A of B is a retract of
B (via ¢), then to form the square A? and, finally, to check (greedily) that A?
dismantles to its diagonal, which clearly can all be done in polynomial time.
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Theorem 8 ([46,47]).

1. The problem of deciding whether a given structure B has finite duality is
NP-complete.

2. The problem of deciding whether a given structure B is a core with finite
duality is in PTIME.

We now present a slight modification of this algorithm which will yield a
solution to the CSP when one exists. In a product A x B, an element (a,b) is
said to be dominated in the second coordinate if it is dominated by an element
of the form (a,b’). We say that A x B dismantles in the second coordinate to
its substructure C if C can be obtained from A x B by successively removing
elements that are dominated in the second coordinate.

Theorem 9 ([47]). Let B be a core with finite duality and let A be a structure
similar to B. Let C be a structure with no dominations which is obtained from
A x B by dismantling in the second coordinate. Then A — B if and only if C
s the graph of a homomorphism from A to B.

In other words, the procedure is as follows: (i) dismantle greedily the product
A x B in the second coordinate until no dominations are left; (ii) check if the
resulting set is of the form C' = {(a,$(a)) : a € A} for some map ¢ : A — B;
if it is, verify that ¢ is a homomorphism. Then either it is and ¢ is the desired
solution, or else there is no homomorphism from A to B. Note that the result
remains valid not only for cores, but for any structure B whose square dismantles
to the diagonal.

4 Bounded pathwidth duality

In this section we consider bounded pathwidth duality, which is a property shared
by all structures B such that CSP(B) is currently known to belong to NL. The
following result ties together pathwidth dualities, linear Datalog, and PR-games.

Theorem 10 ([16]). For any structure B, the following conditions are equiva-
lent:

B has (j, k)-pathwidth duality.

co-CSP(B) is definable in linear (j, k)-Datalog.

co-CSP(B) is definable in IMLE .

CSP(B) is the class of all structures A such that the Duplicator wins the
(J, k)-PR game on (A,B).

™o~

If these conditions hold then CSP(B) is in NL.

Dalmau [16] also provides other equivalent conditions, including definability
in other infinitary finite-variable logics and in fragments of second-order logic.
We will now give examples of structures with bounded pathwidth duality.
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Example 22. An oriented path is a digraph obtained from a path by orient-
ing its edges in some way. A digraph is called a local tournament if the set of
out-neighbours of any vertex induces a tournament. For example, all transitive
tournaments and all directed paths (see Example 8) are local tournaments. It
was shown in [31, 32] that any digraph H that is an oriented path or an acyclic
local tournament has an obstruction set consisting of oriented paths. Since any
oriented path has pathwidth at most (1,2), it follows that H has (1,2)-pathwidth
duality.

Example 23. An oriented cycle is a digraph obtained from a cycle by orienting its
edges in some way. An oriented cycle is called balanced if it has the same number
of edges in one direction and in the other, and it is unbalanced otherwise. It
was shown in [33] that any unbalanced oriented cycle H has an obstruction
set consisting of oriented paths and oriented cycles. Since oriented cycles have
pathwidth at most (2,3) (see Example 7), such a digraph H has (2,3)-pathwidth
duality. Moreover, if the difference between the number edges in H going in one
direction and the number of edges in the other direction is exactly one then
H has an obstruction set consisting only of oriented paths [33], and so it has
(1,2)-pathwidth duality.

Ezample 24. A binary relation on B is called implicational (or 0/1/all) if it has
one of the following three forms: (1) C' x D for some C,D C B, (2) {(c, f(c) |
¢ € C} for some C' C B and some permutation f on B, (3) ({¢} x DUC x {d})
for some C, D C B, c€ C, and d € D. A structure is called implicational if all
of its relations are such. For example, it is easy to show (or see [16]) that the
2-SAT problem can be represented as CSP(B) for an implicational structure B
(with universe {0,1}). It was shown in [16] that every implicational structure
has (2,3)-pathwidth duality.

Ezample 25. The class of implicative hitting-set bounded (IHS-B) relations was
introduced in [14]. For k& > 2, a Boolean relation is in k-IHS-B+ if it can be
expressed as a CNF where each clause is of the form -z, —zVy, or 1 V...V zy.
Dually, a Boolean relation is in k-IHS-B— if it can be expressed as a CNF where
each clause is of the form z, ~x Vy, or =21 V...V ). It was shown in [16] that
any structure Bjps (with universe {0,1}) all whose relations are in k-IHS-B+
(or in k-THS-B—) has (k, k — 1 4+ p(Bins))-pathwidth duality.

We mentioned in Section 2.5 that the polymorphisms of a structure B de-
termine the complexity of CSP(B). Similarly, the polymorphisms determine
whether a structure has bounded pathwidth duality.

Theorem 11 ([19,48]). Let By and By be relational structures with the same
universe and such that Pol(B1) C Pol(Bs). If co-CSP(By) is definable in linear
Datalog, then so is co-CSP(Ba).

For a structure B, let B, denote the structure obtained from B by adding
all elements of B as singleton unary relations.
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Theorem 12 ([48]). For a core structure B, co-CSP(B) is definable in linear
Datalog if and only if co-CSP(B,.) is.

Note that all polymorphisms of the structure B, in the above theorem are
idempotent. Hence, for core structures, the idempotent polymorphisms deter-
mine whether a structure has bounded pathwidth duality.

The only currently known sufficient algebraic condition for general structures
to have bounded pathwidth duality is given by the following result:

Theorem 13 ([17]). If |B| = k and B has a majority polymorphism then B
has (3k + 2,3k + p(B))-pathwidth duality.

Note that Theorem 13 can be used to obtain bounded pathwidth duality for
all structures from Examples 22-24 (though, with worse bounds). For example,
it was shown in [20] that any oriented path and any unbalanced oriented cycle
has a majority polymorphism, and the same can be shown for any acyclic local
tournament. If B is an implicational structure then, as shown in [13], B has a
majority polymorphism of a very specific form, the so-called dual discriminator.

For certain types of structures B, the presence of a majority polymorphism is
the dividing line, for CSP(B), between membership in PTIME (which, by The-
orems 10 and 13, becomes membership in NL) and NP-completeness, that is,
either B has a majority polymorphism or else CSP(B) is NP-complete. For ex-
ample, this is the case when B is an arbitrary (balanced or unbalanced) oriented
cycle H [20] or a structure By, (from Example 2) whose underlying digraph H
is undirected [21]. Combinatorial descriptions of the boundaries for both classi-
fications can be found in [20] and [21], respectively.

The structures B, from Example 25, with £ > 3 have bounded pathwidth
duality, but do not have a majority polymorphism. However these structures are
known to have an NU polymorphism of arity k+ 1. Furthermore, it follows from
known algebraic results (see, e.g., [56]) that a Boolean core structure B has an
NU polymorphism (of some arity) if and only if B has a majority polymorphism
or it is a structure of the form B;,s. Moreover, it can be derived from [48] that in
all other cases B does not have bounded pathwidth duality. That is, we obtain
the following result:

Theorem 14. Let |B| = 2. Then B has bounded pathwidth duality if and only
B has an NU polymorphism of some arity.

It is not known whether the presence of an NU polymorphism is a sufficient
condition for general structures to have bounded pathwidth duality. However,
it is known that, in general, this condition is not necessary. It can be derived
from [45] that there exist structures B such that B has bounded pathwidth
duality, but no NU polymorphism of any arity. The simplest (known) structure
B with these properties is obtained as follows. Take the poset whose Hasse
diagram is shown in Fig. 4. Then B is obtained from this poset by adding all
elements of the universe as singleton unary relations.
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Fig. 4. A poset without NU polymorphisms.

Let us now consider the question of which structures do not have bounded
pathwidth duality. Trivially, any structure without bounded treewidth duality
cannot have bounded pathwidth duality.

Ezample 26. Re-consider the structure B, from Example 4. This structure has
1-treewidth duality, as shown in Example 10. By using the game technique (see
below), it can be shown that B,s does not have bounded pathwidth duality (an
alternative proof of this can be found in [1]).

At present, the most general algebraic necessary condition for the presence
of bounded pathwidth duality is given by the following result.

Theorem 15 ([48]). If a core structure B has bounded pathwidth duality then
the variety var(Ag) omits types 1, 2, and 5.

By using Theorem 9.11 of [34], the previous theorem can be re-stated as
follows.

Theorem 16. If a core structure B has bounded pathwidth duality then B has
ternary polymorphisms dy, ..., d,, n > 2, satisfying the following identities:

z) =

z) =

T,Y, ) = dl+1(m y,x) for all even i < n,

2,y,y) = div1(z,y,y) for all even i < n,
) =

di(z,z,y) = diy1(x,z,y) for all odd i < n.

Moreover, if a core structure B does not have the polymorphisms described
above (or, equivalently, the variety var(Ag) admits at least one of the types 1,2,
and 5) then CSP(B) is hard for PTIME or for ModpL (for some prime p)
under first-order reductions [48], and thus is unlikely to belong to NL.

One very natural question about pathwidth dualities is whether they form a
proper hierarchy or the hierarchy collapses to some level. That is, the question is
whether there exists a number j such that, for any j' > j, every structure with
j'-pathwidth duality also has j-pathwidth duality.

It follows from Theorem 10 that, in order to prove that a certain structure
B does not have (7, k)-pathwidth duality, one only needs to provide a structure
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A such that the Duplicator has a winning strategy in the (j, k)-PR game on
(A, B), but it holds that A 4 B. This game technique was used in [17] to give a
negative answer to the above question. Let us now describe the structures that
were used in [17].

Let n > 1 and let B,, be the structure with universe B,, and relations Ril,
1 <1< n, defined as follows. The universe B, is the set {1,...,n} x {1,2}. For
every 1 <1 < n, Rl is a binary symmetric relation on B, that consists of all
pairs ((i,m), (i, m’)) satisfying at least one of the following conditions:

—i>lLi=v, m=m
—i=v=1,m#m,
—¢<land i <l
—¢<land? <.

Theorem 17 ([17]). For every n > 2, the structure B,, does not have n-
pathwidth duality, but B,, has a majority polymorphism (and hence (6n + 2)-
pathwidth duality).

The only known fact concerning the meta-problem for bounded pathwidth
duality is that, for any fixed £ > 1, the problem of recognising structures with
(1, k)-pathwidth duality is decidable [16].

5 Bounded treewidth duality

In this section we consider bounded treewidth duality. This is one of the two most
general properties of relational structures B that are known to guarantee that
the problem CSP(B) solvable in polynomial time, and the vast majority of such
structures have bounded treewidth duality. The notion of bounded treewidth
duality has strong links with methods of solving constraint satisfaction problems
based on establishing local consistency (see, e.g., [12, 18,37, 28]).

The following result links together treewidth dualities, Datalog, infinitary
logics, and existential pebble games.

Theorem 18 ([22,41]). For any structure B, the following conditions are equiv-
alent:

B has (7, k)-treewidth duality.

co-CSP(B) is definable in (j, k)-Datalog.

co-CSP(B) is expressible in ILLE .

CSP(B) consists of all structures A such that Duplicator has a winning
strategy in the existential (j, k)-pebble game.

o do =

If these conditions hold then CSP(B) is in PTIME.

To prevent possible confusion, we note that the paper [41] speaks about
definability of co-CSP(B) in k-Datalog meaning (k, k)-Datalog (in our notation).
Hence, this does not exactly correspond to k-treewidth duality in our sense.



22 A. Bulatov, A. Krokhin and B. Larose

In [22] and some subsequent papers (e.g., in [49]), problems CSP(B) that
have j-treewidth duality (or bounded treewidth duality) are called width-j (or
bounded width, respectively) problems.

We will now give some examples of structures with and without bounded
treewidth duality. Note that, trivially, every structure with bounded pathwidth
duality also has bounded treewidth duality.

Ezample 27. Recall the structure B3y from Example 5; the problem CSP(Bsg)
is precisely HORN-3-SAT. It follows from Example 11 that B3y has (1,3)-treewidth
duality. By replacing relations PBs# and NBs# in Bsy with k-ary relations
PBrr =10, 1}*\{(1,...,1,1)} and NBr# = {0,1}*\{(1,...,1,0)}, respectively,
one obtains a structure By such that CSP(Byy) is exactly HORN-k-SAT. An
obvious modification of Example 11 shows that By has (1, k)-treewidth duality.

Ezample 28. Let 7 be the vocabulary (P, S,T, E) where P is ternary, E is bi-
nary, and S and T are unary relation symbols. Consider the 7-structure B with
4-element universe {0, 1, a, b} and relations defined as follows. Reconsider struc-
tures B, from Example 4 and K from Example 9, and assume that the universe
of Ky is {a,b}. If R € {R,S,T} then define RE = RBr»: and let EB = EXz2,
We claim that the structure B has 2-treewidth duality, but neither 1-treewidth
duality nor bounded pathwidth duality. It is easy to see that if a connected 7-
structure A homomorphically maps to B then either E# is empty or else the
other three relations in A are empty. Hence, B has an obstruction set consisting
of structures from Op,, and Ok, (suitably expanded with empty relations) and
of finitely many structures in which some element appears both in the binary
relation and in one of the other three relations. Since By, has 1-treewidth du-
ality and K has (2,3)-pathwidth duality, we conclude that B has 2-treewidth
duality. On the other hand, B,s does not have bounded pathwidth duality (see
Example 26) and it is straightforward to show that K does not have 1-treewidth
dualtiy. Hence, B cannot have either of these two properties.

Ezxample 29. As we know from Example 1, the H-COLORING problem coincides
with the problem CSP(By.) where By, is the (di)graph H. If H is a bipartite
graph, then core(H) = Ko and CSP(B},) coincides with the 2-COLOURABILTY
problem, and By, hence has (2,3)-pathwidth duality (see Example 9). If H is
a non-bipartite graph then CSP(Bj.) is NP-complete [27]. It is known (see,
e.g., [28]) that in this case B, does not have bounded treewidth duality (without
any complexity-theoretic assumptions).

Example 30. A triadis a digraph obtained from three oriented paths by choosing
one end of each path and identifying these three vertices. It is shown in [2] that
there exists a triad H such that CSP(B},) is in PTIME, but H does not have
bounded treewidth duality.

Within the algebraic approach to the CSP, a different concept, relational
width, is often very useful, see, e.g., [9]. This concept is applicable even for infi-
nite sets of relations, but in the case of relational structures (with finite vocab-
ulary) relational width is strongly related to treewidth duality, as we shall now
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see. Relational width is usually (e.g., in [6,8,9, 11]) defined using the “variable-
value” form (as given in Section 1) of the constraint satisfaction problem. A
straightforward translation into the homomorphism form goes as follows.

Definition 15. For k > 1, a family M = {H; | I C A, |I| < k}, where each Hy
is a non-empty set of mappings from I to B, is called a k-minimal family for
(A,B) if

1. forany I' C 1 C A, |I| <k, we have Hp = {h;p, | h € Hr}, and
2. for any I C A with |I| < k, any h € Hy, any (n-ary) R € 7, and any
(ai,...,a,) € R®, there exists a tuple (by,...,b,) € R® such that
(a) h(a;) =b; for all a; € I,
(b) for any J C A with |J| < k, there exists h' € Hy such that h'(a;) = b;
for all a; € J.

A structure B is said to have relational width k if, for any structure A such
that there is a k-minimal family for (A,B), we have A — B. A structure B has
bounded relational width if it has relational width k for some k.

Note that property 2(a) shows that every member of every Hr € M is a
projective homomorphism, while properties 1 and 2(b) show that there is strong
compatibility between different sets in M. The following theorem links relational
width and treewidth dualities.

Theorem 19. For any structure B, the following holds.

1. If B has (j, k)-treewidth duality, then it has relational width k.
2. If B has relational width k and p(B) = r, then it has (k, k')-treewidth duality
where k' = max(k,r).

In particular, B has bounded treewidth duality if and only if it has bounded
relational width.

Proof. (1) Assume that B has (j, k)-treewidth duality. Take an arbitrary struc-
ture A such that there exists a k-minimal family M = {H; | I C A,|I| < k}
for (A,B). We need to show that A — B. By assumption and by Theorem 18,
it is enough to exhibit a winning strategy H for the Duplicator in the existen-
tial (j, k)-pebble game on (A,B). Let H = Uy < Hi. Indeed, every mapping
in H is a projective homomorphism, and hence a partial homomorphism (with
domain of size at most k). Moreover, the first property of a k-minimal family
implies that H is closed under restrictions and has the (j, k)-forth property.

(2) Assume that B has relational width k. Take an arbitrary structure A
such that there exists a winning strategy H for the Duplicator in the existential
(k,k’)-pebble game on (A, B). We need to show that A — B. By assumption,
it suffices to exhibit a k-minimal family for (A, B). For each I C A with |I| < k,
let Hf = {h € H | dom(h) = I}, and let M be the family of all such sets
H;. From the properties of a winning strategy, it is easy to see that M has
property 1 of a k-minimal family. Now, for any I C A with |I| < k, any h € Hy,
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any (n-ary) R € 7, and any (ay,...,a,) € R®, the mapping hi1nfay,...an} 1S @
partial homomorphism which belongs to H (by the restriction property of H).
Since k" > p(B), it can be extended to a homomorphism g : A|(a,,... 0,3} — B
(by the (k,k’)-forth property of H). Set (b1,...,b,) = (g(a1),...,g9(ay)). It is
easy to see that, since g and all its restrictions belong to H, the obtained tuple
(b1,...,bn) can be used to show that M has property 2 of a k-minimal family.

Note that Theorem 19 shows that there is a correspondence between the
parameters of relational width and treewidth duality, but it does not show how
optimal parameters for these widths are related in general.

We will state results about bounded treewidth duality and bounded relational
width in the way they were stated originally. By the above theorem, one can
translate such results between the widths.

Similarly to Theorems 11 and 12, the (idempotent) polymorphisms determine
whether a (core) structure has bounded treewidth duality.

Theorem 20 ([49]). Let By and By be relational structures with the same uni-
verse and such that Pol(B1) C Pol(By). If co-CSP(B2) is definable in Datalog,
then so is co-CSP(B1).

Theorem 21 ([48]). For a core structure B, co-CSP(B) is definable in Datalog
if and only if co-CSP(B,) is.

We will now give example of polymorphisms that guarantee that a structure
has bounded treewidth duality.

Theorem 22 ([22], see also [37]). If a structure B has a (I1+1)-ary NU poly-
morphism then B has [-treewidth duality.

Tree duality is just a shorter name for 1-treewidth duality. It is known [22,
47] that every structure with tree duality has an obstruction set consisting of
trees in the sense of Definition 11. (Note that this fact does not follow trivially
from the definition of 1-treewidth duality.) In particular, if a structure B has
tree duality then it has (1, p(B))-treewidth duality. Structures with tree duality
have been completely characterised in [22]. To state this result, we need to give
a certain construction. For a 7-structure B, its power structure is a T-structure
P1(B) with universe consisting of all non-empty subsets of B, and, for each r-ary
R € 7, we have (41,...,4,) € RP1®) if and only if, for each 1 < ¢ < r and
each a € A;, there is (ay,...,a,) € R® such that a; = a.

Theorem 23 ([22], see also [18]). For any structure B, the following condi-
tions are equivalent:

1. B has tree duality.
2. The structure P1(B) admits a homomorphism to B.
3. For every n > 2, B has an n-ary TSI polymorphism.

Ezample 31. 1t is not difficult to see that, for n > 2, the operation f, = A\_, z;
is a TSI polymorphism of the structure Byy (see Example 27).
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Theorem 19 implies that every structure with relational width 1 also has
1-treewidth duality. By using Theorem 23 and Definition 15, it is easy to show
that, conversely, every structure with 1-treewidth duality has relational width 1.
Note that, in general, the optimal parameters for relational width and treewidth
duality need not be equal. For example, the structure B = K, of Example 9
has (2,3)-treewidth duality, but not tree duality (since it has no binary TSI
polymorphism). On the other hand, K5 has relational width 3 by Theorem 19,
but not 2 (which can be seen by taking K3 as A).

Theorem 24 ([8]). If a structure B has a 2-semilattice polymorphism then B
has relational width 3.

Some of the most studied varieties in universal algebra are the so-called
congruence distributive varieties (see, e.g., [34,38,57]). For a core structure B,
the algebra Ag belongs to a congruence distributive variety if, for some n > 2,
B has ternary polymorphisms dy, ... ,d, (called Jdonsson operations) satisfying
the identities from Theorem 16, and, in addition, such that d;(z,y,z) = x for
all 0 < i < n. In this case we say that Ag is in the class CD(n). Note that Ag
is in CD(2) if and only if B has a majority polymorphism (which is d; in this
case).

Theorem 25 ([38]). For any structure B, if the algebra Ag is in CD(3) then
B has relational width min(| B|?, max(3, p(B))).

Theorem 20 makes it possible to introduce algebras having bounded treewidth
duality: An algebra A = (B; F) has bounded treewidth duality if every structure
B with universe B such that F' C Pol(B) has bounded treewidth duality. The
following result shows that bounded treewidth duality can be lifted further to
varieties of algebras.

Theorem 26 ([49]). If A is an algebra with bounded treewidth duality then
every finite algebra from the variety var(A) also has bounded treewidth duality.

Clearly, if CSP(B) is NP-complete, then it does not have bounded treewidth
duality unless PTIME = NP. Systems of linear equations (see Example 6 in this
paper or the proof of Theorem 1 of [7]), as well as problems that can “simulate”
them, provide benchmark examples of structures B such that CSP(B) is in
PTIME, but B does not have bounded treewidth duality [22]. Combining these
two reasons for not having bounded treewidth duality, one obtains the following
equivalent necessary conditions for bounded treewidth duality.

Theorem 27. If a core structure B has bounded treewidth duality then the fol-
lowing equivalent conditions hold:

1. The variety var(Ag) omits types 1 and 2.
2. There is k > 2 such that B has n-ary weak NU polymorphisms for alln > k.

In the above theorem, the necessity of condition (1) was proved in [49], and
the equivalence of conditions (1) and (2) in [51].
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Congecture 1 ( [49]). A core structure B has bounded treewidth duality duality
if and only if the equivalent conditions from Theorem 27 hold.

A somewhat different way of applying algebras to analyse a relational struc-
ture B, via an edge-coloured graph Gr(B) of the structure, was introduced in [7]
(see also [11]). The conditions in Theorem 27 can be equivalently expressed in
terms of properties of this graph, and a conjecture equivalent to Conjecture 1
was made in [7].

Conjecture 1 was confirmed in the following important cases, and, interest-
ingly, the best possible bound for some width turns out to be quite small.

Theorem 28 ([22]). If B is a 2-element core structure then B has bounded
treewidth if and only if B has a semilattice polymorphism or a majority poly-
morphism. Moreover, in this case B has 2-treewidth duality.

A factor of an algebra A is a homomorphic image of a subalgebra of A.

Theorem 29 ([9]). If B is a core structure with |B| < 3 then B has bounded
relational width if and only if the algebra Ag itself or each of its factors have an
operation (depending on a factor) which is a majority operation or a 2-semilattice
operation. Moreover, in this case B has relational width 3.

Theorem 30 ([6]). Let B be a structure containing all unary relations. Then B
has bounded relational width if and only if, for each two-element subset C C B,
there is a polymorphism f € Pol(B) (depending on C) such that f|c is either
a semilattice operation or a magority operation. Moreover, in this case B has
relational width 3.

Conjecture 1 can be strengthened in the following sense. As we saw above,
bounded treewidth is equivalent to expressibility in a certain infinitary logic.
The expressive power of this logic is relatively weak, and it is natural to ask if
it possible to express constraint satisfaction problems in terms of more powerful
logic. One such logic is C¥ , (see Section 2.3). This logic can express a number of
undecidable problems (e.g., the HALTING problem). However, if Conjecture 1 is
true than its expressive power for constraint satisfaction problems is no greater
than that of Datalog.

Theorem 31 ([3]). Let B be a structure. If the variety var(Ag) admits type 1
or 2 then CSP(B) is not expressible in C¥ .

The complexity of checking the equivalent conditions from Theorem 27 is
known. Therefore, under the assumption that Conjecture 1 is true, the complex-
ity of checking if a structure or an algebra has bounded treewidth duality is also
known.

Theorem 32 ([3]). Assuming Conjecture 1 holds, the meta-problem for bounded
treewidth duality is NP-complete for arbitrary structures, but tractable for struc-
tures of bounded size.
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Theorem 33 ([57]). There is a polynomial time algorithm which, given a finite
idempotent algebra A, checks whether the variety var(A) omits types 1 and 2.

It is a natural question to determine the complexity of recognising structures
with j-treewidth duality for a fixed j. For j = 1, it follows from Theorem 23
that this problem is decidable, and the following result gives a lower bound.

Theorem 34 ([46,47]). It is NP-hard to decide whether a given structure B
has tree duality.

In Section 4, we have considered the hierarchy problem for j-pathwidth
dualities and found (see Theorem 17) that the hierarchy does not collapse.
We now consider a similar problem for j-treewidth dualities. Let T'W; be the
class of all structures with j-treewidth duality. Clearly, we have a hierarchy
TW, CTWe CTW3 CTW, C ...

It is easy to show that TW; & T'Wj,. Consider the problem 2-COLOURABILITY,
or CSP(K5), from Example 9. The structure Ko has (2,3)-pathwidth duality,
and hence (2,3)-treewidth duality. On the other hand, it is easy to see that Ko
does not have a binary commutative polymorphism, and hence, by Theorem 23
(see also Example 15(1)), it cannot have 1-treewidth duality. Surprisingly, the
question whether any other inclusion in the treewidth duality hierarchy is strict
remains open. It may seem that Theorems 22 and 25 contradict this claim.
However, they give only an upper bound for the treewidth duality of structures
invariant with respect to an NU-term. For instance, every 2-element structure
with an NU polymorphism has 2-treewidth duality.

6 Additional Remarks

6.1 Symmetric Datalog

A restriction of linear Datalog, symmetric Datalog, has been recently introduced
n [19]. A linear Datalog program is called symmetric, if, for every rule of the
form tg : — t1,t2,...,t, (n > 1), where ¢ty and ¢; are IDBs, that appears in the
program, the program also contains the “symmetric” rule t; : — tg,ta,..., ¢y,
obtained by formally swapping the IDBs in the rule. We say that co-CSP(B) is
definable in symmetric Datalog if it is accepted by a symmetric Datalog program.
In broad terms, symmetric Datalog for CSP is to LOGSPACE what linear
Datalog for CSP is to NL: if co-CSP(B) is definable in symmetric Datalog
then CSP(B) is in LOGSPACE, and, for all problems CSP(B) that are known
to be in LOGSPACE, co-CSP(B) is definable in symmetric Datalog [19]. In
particular, this holds for all Boolean problems CSP(B) in LOGSPACE. If B,
and By are structures such that Pol(B;) C Pol(B2) and co-CSP(B;) is definable
in symmetric Datalog, then co-CSP(B3) is also definable in symmetric Datalog
(compare with Theorems 11 and 20). The following analog of Theorems 15 and 27
holds for symmetric Datalog: for a core structure B, if co-CSP(B) is definable
in symmetric Datalog then the variety var(Ag) omits types 1, 2, 4, and 5 (i.e.,
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it admits only type 3) [48]. It is shown in [19] that definability of co-CSP(B) in
symmetric Datalog is equivalent to definability in a certain fragment of second
order logic (this parallels a result in [16]). It would be interesting to find a
convenient pebble game and an appropriate notion of duality for symmetric
Datalog, in the spirit of Theorems 10 and 18.

6.2 Extending Datalog with inequality and negation

One can extend (4, k)-Datalog, and the logic 3L%* by allowing the use of in-
equalities (#) and negated atomic formulas (which must be EDBs in the case of
Datalog). The obtained logics are denoted (j, k)-Datalog(#, =) and L% (#, -).
It was shown in [23] that these extensions do not add any expressive power for
homomorphism-closed classes (e.g., such as co-CSP(B)). In other words, if a
class co-CSP(B) is definable in (j, k)-Datalog(#, =) then it is also definable in
(4, k)-Datalog, and the same holds for 3L%F (#, ). Moreover, a closer inspection
of the proof reveals that this result remains true for linear (j, k)-Datalog and
the logic IMLE .

6.3 Infinite CSP

Up until now we have considered only finite structures. However, one can also
consider the problem of deciding whether a given finite 7-structure admits a
homomorphism to a fixed infinite 7-structure B. Some natural problems such
as BETWEENNESS (see [25]) and the ACYCLICITY problem for digraphs can be
represented as CSP(B) for suitable infinitely countable structures B (but not
for any finite structure B). Bounded treewidth duality for infinitely countable
structures has been considered in [4,5]. It was shown in these papers that, for
general countable structures, Theorem 18 fails. However, there is a large class of
structures (w-categorical structures), for which Theorem 18 holds. Recall that a
structure B is called w-categorical if, for each n > 1, there are only finitely many
inequivalent first-order formulas with n free variables over B. Moreover, analogs
of Theorems 22 and 23 hold for such structures.

7 A list of open questions

1. Can an FO-definable CSP(B) always be defined by a short FO-formula? If
B is core structure with finite duality, how large can the minimal arity of its
1-tolerant NU polymorphism be?

2. Is the property of having j-pathwidth and j-treewidth duality for fixed j
determined by the polymorphisms of a structure?

3. Is it true that a structure B has bounded pathwidth duality whenever
CSP(B) is in NL?

4. Prove that every structure with an NU polymorphism has bounded path-
width duality.
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11.

12.

13.

14.
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Find other sufficient algebraic conditions for a structure to have bounded
pathwidth duality.

Are the conditions in Theorems 15 and 16 necessary and sufficient for a
structure to have bounded pathwidth duality?

Prove (or disprove) Conjecture 1.

For j > 2, is there a structure P;(B) such that B has j-treewidth duality if
and only if P;(B) — B (particularly, for j = 2)?

Does the treewidth duality hierarchy collapse (in particular, to its second
level) or not?

Are there structures that have bounded relation width, but not relational
width 37

Is it true that the number k from Theorem 27 can always be chosen to be
equal to 37

Is it true that a structure B has bounded relational width whenever the
algebra Ap is in CD(n) for some n > 4 (in particular, for n = 4)?

Find a pebble-game and a duality characterisation for structures B such that
co-CSP(B) is definable in symmetric Datalog.

Is it true that co-CSP(B) is definable in symmetric Datalog whenever CSP(B)
is in LOGSPACE?

. Are there other naturally arising dualities for CSP?
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