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Abstract

We describe an algebraic approach to the constraint satisfaction problem (CSP)
and present recent results on the CSP that make use of, in an essential way, this
algebraic framework.

1 Introduction

This paper presents material from the talks that the authorsgave at the Dagstuhl semi-
nar on the Complexity of Constraints held in 2006. The primary goals of the talks were
to describe an algebraic approach to the constraint satisfaction problem and to present,
within the algebraic context, recent results relating to two of the main motivating con-
jectures in the field.

During our talks, by necessity, a fair amount of time was occupied in describing
basic and advanced universal algebra. In particular, overviews of two approaches to
analyzing the local structure of finite algebras were given.The first, known as tame
congruence theory, was developed in the 1980s by David Hobbyand Ralph McKenzie
and has played an important role in the development of universal algebra ever since.
The second is a much more recent approach developed by Bulatov specifically to ad-
dress questions relating to the CSP. For readers who wish to learn more about basic

1



universal algebra we recommend [17] and [37]. For more information on tame congru-
ence, the works [27] or [19] can be consulted. The paper [10] contains details of the
theory developed by Bulatov.

2 Constraint Satisfaction and Algebra

2.1 Constraint Satisfaction

We use the homomorphism definition of the CSP. Avocabularyτ is a finite set of
relational symbols; each symbol has an associatedarity. A (finite) relational structure
H with vocabularyτ consists of a finite setH , its universe, and, for every relational
symbolR ∈ τ of arity n, an n-ary relationRH on H , the interpretationof R by
H. A homomorphismof a structureG to a structureH with the same vocabularyτ
is a mappingϕ : G → H from the universe ofG to the universe ofH such that for
each (n-ary) relational symbolR ∈ τ and any tuple(a1, . . . , an) ∈ RG the tuple
(ϕ(a1), . . . , ϕ(an)) belongs toRH.

For a finite structureH the non-uniform constraint satisfaction problem, denoted
CSP(H), is the following combinatorial problem: Given a structureG of the same
vocabulary asH, decide whether or not there is a homomorphism fromG to H. The
structureH is called thetemplate, andG is called theinstance. For a classH of rela-
tional structures, in theuniform constraint satisfaction problem, denotedCSP(H), the
question is: given a structureH ∈ H and a structureG over the same vocabulary asH,
decide whether there exists a homomorphism fromG toH. Sometimes it is convenient
to think of a uniform problem as of the union or collection of non-uniform problems
CSP(H) for H ∈ H.

Example 1 (NAE, L INEAR EQUATIONS, and H-COLOURING)

1. Let HNAE be a relational structure with universe{0, 1} and one ternary rela-
tion RHNAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. It is easy to see that the problem
CSP(HNAE) is the same as the NOT-ALL -EQUAL SATISFIABILITY problem, in
which, given a set of propositional variables and a set of triples of these variables,
the question is whether or not it is possible to assign valuesto the variables such
that the variables from each of the specified triples take both possible values, 0
and 1.

2. LetF be a finite field andΓ the set of all relations overF that can be represented
as the set of solutions of a linear equation overF . Let HLQ(F ) denote the set
of all structures with universeF , whose relations are fromΓ. Then the uniform
problemCSP(HLQ(F )) is equivalent in a certain sense to the problem of solving
systems of linear equations overF .1

1The size of a CSP instance is defined to be the length of a reasonable encoding of the structures involved,
that is the source structure in the case of a non-uniform problem, and the source structure and the template
in the case of a uniform problem. Usually such an encoding includes a list of elements of the structures
and a list of tuples in all relations. In some cases such a general representation is not the most natural. For
example, the natural representation of aCSP(HLQ(F )) instance is a list of equations defining relations of
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3. Let H be a (directed) graph. In theH -COLOURING problem we are asked
whether there is a homomorphism from a given graphG to H . So, theH -
COLOURING problem is just the problemCSP(H).

Two major issues have arisen in the study of the study of the constraint satisfac-
tion problem. The first one is the computational complexity of solving such problems.
Although constraint satisfaction problems may belong to and be complete in many
complexity classes, see, e.g. [1, 33, 34], in this paper we concentrate on problems solv-
able in polynomial time (such problems are often said to betractable). The remaining
problems are calledintractable. All the intractable problems known so far turn out
to be NP-complete. This prompted Feder and Vardi [24] to suggest theDichotomy
Conjecture: Every non-uniform CSP is either tractable or NP-complete.

The second issue is the descriptive complexity of non-uniform problems. LetH
be a relational structure. The class of structures homomorphic to H is often denoted
by CSP(H) (this does not cause any confusion, becauseCSP(H) is the class of yes-
instances of the corresponding constraint satisfaction problem, and therefore thelan-
guageassociated to this problem). In many cases the classCSP(H) can be character-
ized as the class of all structures satisfying some formula in a certain logic. The goal is
to describe structuresH such thatCSP(H) is expressible in this logic. We concentrate
on the logic corresponding to Datalog. For definitions of Datalog, Datalog expressibil-
ity, related properties of structures and problems, as wellas results on other important
logical languages the reader is referred to [16] from the same volume.

Example 2 (continued) 1. NAE is NP-complete, [39].

2. LINEAR EQUATIONS is not expressible in Datalog, [24].

3. H -COLORING is tractable if and only ifH is a bipartite graph. In this case it is
expressible in Datalog. Otherwise it is NP-complete, [26].

2.2 Polymorphisms and Algebras

In this section we provide a brief overview of the algebraic approach to the constraint
satisfaction problem.

At the core of this approach is the concept of a polymorphism.Let R be a relation
on a setA. An (n-ary) operationf on the same set is said to be apolymorphismof
R if for any tuplesa1, . . . ,an ∈ R the tuplef(a1, . . . ,an) obtained by applyingf
component-wise also belongs toR. The relationR is called an invariant off . An
operationf is a polymorphism of a relational structureH if it is a polymorphism of
each relation of the structure. The set of all polymorphismsof H is denoted byPol(H).
For a collectionC of operationsInv(C) denotes the set of invariants of all operations
from C.

the template. Although no example is known, different representation may affect the complexity of uniform
problems. However, for the sake of generality throughout the paper we use the explicit representation of
relational structures. The choice of representation does not affect the complexity of non-uniform problems.
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Example 3 ([40]) Let R be the solution space of a system of linear equations over a
finite field F . Then the operationm(x, y, z) = x − y + z is a polymorphism ofR.
Indeed, letA · x = b be the system definingR, andx, z,y ∈ R. Then

A · m(x, z,y) = A · (x − z + y) = A · x − A · z + A · y = b− b + b = b.

In fact, the converse can also be shown: ifR is invariant underm then it is the solution
space of a certain system of linear equations.

The following theorem relates polymorphisms, complexity,and expressibility in
Datalog

Theorem 1 ([29, 31, 35])LetH1 andH2 be two structures with a common universe.

1. If Pol(H1) ⊆ Pol(H2) thenCSP(H2) is log-space reducible toCSP(H1).

2. If Pol(H1) ⊆ Pol(H2) andCSP(H1) is expressible in Datalog, thenCSP(H2)
is expressible in Datalog.

An algebrais a pairA = (A; F ) consisting of a setA, theuniverseof A, and a set
F of operations onA, thebasic operationsof A. Operations that can be obtained from
the basic operations ofA and theprojectionoperations onA, that is operations of the
form f(x1, . . . , xn) = xi, by means of compositions are calledtermoperations ofA.
Term(A) denotes the set of all term operations ofA. Operations that can be obtained
from term operations by substituting constants are calledpolynomial operations(or
justpolynomials) of A.

Any relational structureH and therefore any non-uniform constraint satisfaction
problem can be associated with an algebraAlg(H) = (H ; Pol(H)) whereH is the
universe ofH. Conversely, any algebraA = (A; F ) corresponds to a class of structures
Str(A) that includes all the structuresH with universeA and such thatTerm(A) ⊆
Pol(H). Therefore every algebra gives rise to a uniform constraintsatisfaction problem
CSP(Str(A)), which we will denote byCSP(A).

An algebraA is calledtractableif CSP(H) is tractable for eachH ∈ Str(A) and
is calledNP-completeif CSP(H) for someH ∈ Str(A) is. Theorem 1 implies that if
CSP(H) is tractable then the algebraAlg(H) is tractable. We make two observations.
First, if an algebraA is not tractable, it does not mean thatCSP(H) is intractable
for all H ∈ Str(A); this class always contains poor structures whose associated class
of constraint satisfaction problems is very easy. Second, if A is tractable it does not
necessarily mean that the uniform problemCSP(A) is tractable. Although no example
is known, it may be the case that the time complexity of problems CSP(H), H ∈
Str(A), does not have a uniform polynomial bound, even though the complexity of
each problem is polynomially bounded. To distinguish thesetwo potential situations
we sometimes call tractable algebraslocally tractableand algebras for whichCSP(A)
is tractable,globally tractable. In other words,A is locally tractable if every non-
uniform problem fromCSP(A) is solvable in polynomial time.

The relational width of an algebraA is a parameter related to certain properties
of Datalog programs or propagation algorithms that solve the problemsCSP(H) for
H ∈ Str(A). The algebraA is said to be ofbounded widthif CSP(H) is expressible in
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Datalog for any structureH ∈ Str(A). For complete definitions and discussion of this
concept see [16] in the same volume.

The tractability and relational width of an algebra usuallyfollows from the presence
of a certain polymorphism of a structure (or a term operationof an algebra).

Example 4 ([5, 13, 20, 22, 29, 31])If one of the following operations is a term op-
eration of an algebraA [a polymorphism of a relational structureH] then CSP(A)
[CSP(H)] is tractable:

• a semilatticeoperation, that is a binary operationf satisfying the equations:
(a) f(x, x) ≈ x (idempotency); (b)f(x, y) ≈ f(y, x) (commutativity);
(c) f(f(x, y), z) = f(x, f(y, z)) (associativity);

• a 2-semilatticeoperation, that is a binary operationf satisfying the equations
f(x, x) = x,
f(x, y) = f(y, x), andf(x, f(x, y)) = f(x, y);

• a near-unanimity(NU) operation, that is an operationf satisfying the equations
f(x, . . . , x, y) = f(x, . . . , x, y, x) = . . . = f(y, x, . . . , x) = x.

• amajorityoperation, that is a ternary operationg satisfying the equationsg(x, x, y) =
g(x, y, x) = g(y, x, x) = x (thus a majority operation is a ternary near-unanimity
operation).

• aMal’tsevoperation, that is a ternary operationh satisfying the equationsh(x, x, y) =
h(y, x, x) = y.

• a generalized majority-minority(GMM) operation, that is an operationf such
that for anya, b ∈ A one the following 2 conditions holds:
f(x, . . . , x, y) = f(x, . . . , x, y, x) = . . . = f(y, x, . . . , x) = x, for x, y ∈
{a, b}; or
f(x, . . . , x, y) = f(y, x, . . . , x) = x, for x, y ∈ {a, b}.

Example 5 If one of the following operations is a polymorphism of a relational struc-
tureH, thenCSP(H) is expressible in Datalog:

• a semilattice operation;

• a 2-semilattice operation;

• a near-unanimity operation;

• a majority operation.

On the other hand, the intractability of a relational structure (or an algebra) seems
to imply that it has rather uninteresting polymorphisms (term operations, respectively).
An operationf on a setA is said to be anessentially unary surjective operationif
f(x1, . . . , xn) = g(xi) for somei and some surjective mapg(x) of A.

Example 6 (continued)
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1. An operationf is a polymorphism ofHNAE if and only if f is an essentially
unary surjective operation, [31, 32].

2. An operationf is a polymorphism of all relations representable by linear equa-
tions over a fieldF if and only if f = α1x1 + . . .+αnxn whereα1, . . . , αn ∈ F
are such thatα1 + . . . + αn = 1, [40].

3. If H = Kℓ, a complete graph onℓ > 2 vertices, then an operationf is a poly-
morphism ofH if and only if f is an essentially unary surjective operation. If
H = K2 thenH has a majority polymorphism.

The examples above and Theorem 1 provide necessary conditions for tractability
and expressibility in Datalog.

Corollary 1

1. If every polymorphism of a structureH [every term operation of an algebraA] is
an essentially unary surjective operation thenCSP(H) [CSP(A), respectively]
is NP-complete.

2. If there is a fieldF such that every polymorphism of a structureH [every term
operation of an algebraA] is of the formf = α1x1 + . . . + αnxn, where
α1, . . . , αn ∈ F are such thatα1 + . . . + αn = 1, thenCSP(H) [CSP(A),
respectively] is not expressible in Datalog [is not of bounded relational width].

If every term operation of a finite algebraA is essentially unary surjective then
A is said to be aG-set. If there is a moduleM over a ringR such that every term
operation ofA can be represented asα1x1 + . . . + αnxn for α1, . . . , αn ∈ R and
α1 + . . . + αn = 1, thenA is called anidempotent reduct of a module.

Example 4 allows one to classify 2-element algebras in termsof complexity.

Proposition 1 (Schaefer’s Dichotomy Theorem, [39])For any 2-element algebraA,
the problemCSP(A) is (globally) tractable if and only ifTerm(A) contains one of the
following:

– the constant 0 or constant 1 operation;

– the conjunction or disjunction operations (which are semilattice);

– the majority operation(x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x);

– the Mal’tsev operationx − y + z(mod 2).

In all other casesCSP(A) is NP-complete.

2.3 Varieties

For the purposes of settling the Dichotomy Conjecture and related questions, the class
of algebras to be considered can be significantly reduced. AnalgebraA is called
surjectiveif every one of its unary term operations is surjective. One way to trans-
form an algebra into a surjective algebra is as follows: Letg be a term operation of
A = (A; F ) with a minimal range. Theng(A) denotes the algebra(g(A); Fg) where
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Fg = {gf |g(A) | f ∈ Term(A)}. It is not difficult to see that this algebra is sur-
jective. The algebraA is calledidempotentif every one of its term operationsf sat-
isfies the equationf(x, . . . , x) ≈ x. The full idempotent reductof A is the algebra
Id(A) = (A; Fid) whereFid is the set of all idempotent operations fromTerm(A).

Theorem 2 ([14]) LetA be an algebra.

1. If g is a unary term operation ofA with minimal range thenA is tractable if and
only if g(A) is tractable. The algebraA is NP-complete if and only ifg(A) is
NP-complete.

2. If A is surjective thenA is tractable if and only ifId(A) is tractable. The algebra
A is NP-complete if and only ifId(A) is NP-complete.

The main idea of the algebraic approach is to use some properties of an algebra
in order to determine the complexity of the associated constraint satisfaction problem.
To identify these properties, some connections between thecomplexity of an algebra
and the complexity of those algebras that can be obtained from it by some standard
algebraic constructions will be very helpful.

• Let A = (A; F ) be an algebra. Thek-th direct powerof A is the algebra
Ak = (Ak; F ) where we treat each (n-ary) operationf ∈ F as acting onAk

component-wise.

• Let A = (A; F ) be an algebra, and letB be a subset ofA such that, for any
(n-ary) f ∈ F , and for anyb1, . . . , bn ∈ B, we havef(b1, . . . , bn) ∈ B. Such
a subset is called asubuniverseof A. WhenB is non-empty, the algebraB =
(B; F

B
), whereF

B
consists of restrictions of operationsf ∈ F to B, is called

a subalgebraof A.

• Let A1 = (A1; F1) andA2 = (A2; F2) such thatF1 = {f1
i | i ∈ I}, F2 =

{f2
i | i ∈ I}, andf1

i , f2
i are of the same arity, for some setI and eachi ∈

I. A mappingϕ : A1 → A2 is called ahomomorphismfrom A1 to A2 if
ϕf1

i (a1, . . . , ani
) = f2

i (ϕ(a1), . . . , ϕ(ani
)) holds for alli ∈ I and alla1, . . . , ani

∈
A1. If the mappingϕ is onto thenA2 is said to be ahomomorphic imageof A1.

By a classic result of Birkhoff (see Theorem 11.9 from [17]),properties of algebras that
are preserved under the taking of subalgebras, homomorphicimages, and direct prod-
ucts (a natural generalization of the direct power construction) are precisely those that
can be defined by equations. We note that except for the last one, all of the properties
of the operations listed in Example 4 are defined by equations. Equationally defined
classes of algebras, also known as varieties of algebras, are fundamental objects of
study in universal algebra [27, 37]. The following theoremsthus provide an important
link between the constraint satisfaction problem and universal algebra.

Theorem 3 ([14, 8]) LetA be a finite algebra. Then

1. if A is tractable then so is every subalgebra, homomorphic image, and direct
power ofA.
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2. if A has an NP-complete subalgebra, homomorphic image, or direct power, then
A is NP-complete itself.

Theorem 4 ([35]) LetA be a finite algebra. IfA has bounded width then every subal-
gebra, homomorphic image, and direct power ofA has bounded width.

Using Birkhoff’s Theorem, the variety that an algebraA determines, denoted by
var(A), can be defined either as the class of all algebras that satisfy the same equa-
tions thatA does, or as the class of all algebras that arise as homomorphic images of
subalgebras of direct powers ofA.

Corollary 2

1. If A is tractable then so is every finite algebra fromvar(A). If var(A) contains
an NP-complete algebra thenA is NP-complete.

2. If A has bounded width then every finite algebra fromvar(A) has bounded width.
If var(A) contains an algebra of unbounded width thenA does not have bounded
width.

3. Tractability, NP-completeness, and bounded width are properties of an algebra
that depend only on the identities satisfied by the algebra.

Using Corollary 2 we can strengthen Corollary 1 as follows.

Theorem 5 ([14, 35]) LetA be an algebra

1. If var(A) contains a G-set thenA is NP-complete.

2. If var(A) contains a reduct of a module thenA does not have bounded width.

To date no NP-complete or unbounded width algebra is known that does not satisfy
the corresponding condition of Theorem 5. It is widely believed that these necessary
conditions are also sufficient, at least for idempotent algebras.

Conjecture 1 (complexity dichotomy conjecture)An idempotent algebraA is tractable
if and only ifvar(A) does not contain a G-set. Otherwise it is NP-complete.

Conjecture 2 (bounded width conjecture) An idempotent algebraA has bounded width
if and only ifvar(A) does not contain a reduct of a module.

Conjectures 1 and 2 have been proved in a number of particularcases: 2-element
algebras ([39]), 3-element algebras ([12]), semigroups ([9, 23]). The following exam-
ple shows that the undirected graphs dichotomy theorem by Hell and Nešetřil [26] also
fits Conjecture 1.

Example 7 ([11]) Let H be an undirected graph,A = Alg(H), andg a unary term
operation ofA with a minimal range. ThenH is non-bipartite if and only ifvar(g(A))
contains a G-set. Otherwiseg(H) is K2 andg(A) has a majority term operation.
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3 Alternate versions of the conjectures

The goal of this section is to present new formulations of Conjectures 1 and 2 that have
emerged over the past several years. Central to our first formulation is the notion of a
congruenceof an algebraA. A congruenceθ of A is an equivalence relation onA that
is invariant under all basic (and therefore term) operations of A. Every algebraA has
two distinguished congruences0A and1A corresponding to the smallest and largest
equivalence relations on the setA. For θ a congruence ofA = (A; F ) anda ∈ A
by a/θ we denote theθ-class containinga; and denote{a/θ | a ∈ A}, the set of all
θ-classes, byA/θ. The quotient algebraA/θ is the algebra with universeA/θ and
whose basic operations are{f/θ : f ∈ F}, where forf ∈ F ,

f/θ(a1/θ, . . . , an/θ) = (f(a1, . . . , an))/θ.

It is elementary that the mappingϕ : A → A/θ that maps an elementa ∈ A to a/θ is
a surjective homomorphism and so it follows thatA/θ is a homomorphic image ofA.

3.1 Tame Congruence Theory

In the early 1980’s Hobby and McKenzie developed a theory of the local structure of
finite algebras called tame congruence theory [27]. At the heart of the theory is a notion
of a neighbourhood of a finite algebra, relativized to certain congruences of the algebra.
The local structure of a finite algebra that emerges from their theory is surprisingly
well-behaved and has been used to prove many striking theorems in universal algebra.

Definition 1 LetA be a finite algebra andα a minimal congruence ofA (i.e.,0A < α
and ifβ is a congruence ofA with 0A < β ≤ α thenβ = α.)

• Anα-minimal set ofA is a subsetU of A such that

– U = p(A) for some unary polynomialp(x) of A that is not constant on at
least oneα-class, and

– with respect to containment,U is minimal with this property.

• Anα-neighbourhood (orα-trace) ofA is a subsetN of A such that

– N = U ∩ (a/α) for someα-minimal setU andα-classa/α, and

– |N | > 1.

It follows from the definition that a givenα-minimal setU contains within it
at least one (and possibly several)α-neighbourhoods. The union of all of theα-
neighbourhoods inU is called the body ofU , while the remaining elements ofU form
the tail ofU . What is surprising is that the structure thatA induces on any one of its
α-neighbourhoods is quite uniform and is restricted to one offive possible types. What
is meant by induced structure is given in the next definition.

Definition 2 Let A be an algebra andU ⊆ A. The algebra induced byA onU is the
algebra with universeU whose basic operations consist of the restriction toU of all
polynomials ofA under whichU is closed. We denote this induced algebra byA|U .
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Note the difference between this notion and the more familiar one of subuniverse
(recall that a subuniverse of an algebraA is a subset ofA that is closed under all term
operations ofA). In the theory developed by Hobby and McKenzie, the polynomials of
an algebra play a central role and in fact, two finite polynomially equivalent algebras
(i.e., two algebras over the same universe whose sets of polynomials coincide) are, for
the most part, indistinguishable using tame congruence theory.

Theorem 6 LetA be a finite algebra andα a minimal congruence ofA.

• If U and V are α-minimal sets thenA|U and A|V are isomorphic and in fact
there is a polynomialp(x) of A that mapsU bijectively on toV .

• If N andM are α-neighbourhoods thenA|N andA|M are isomorphic via the
restriction of some polynomial ofA.

• If N is anα-neighbourhood thenA|N is polynomially equivalent to one of:

1. A unary algebra whose basic operations are all permutations (unary type);

2. A one-dimensional vector space over some finite field (affine type);

3. A 2-element boolean algebra (boolean type);

4. A 2-element lattice (lattice type);

5. A 2-element semilattice (semilattice type).

Much more can be said about theα-neighbourhoods and minimal sets of an al-
gebra but for now we point out that the previous theorem allows us to assign a type
to each minimal congruenceα of an algebra according to the behaviour of theα-
neighbourhoods. For example, a minimal congruence whoseα-neighbourhoods are
all polynomially equivalent to a vector-space is said to have affine type (or to have type
2).

In Figure 1 twoα-minimal sets of an algebraA, U andV , of a minimal congruence
α are pictured, along with twoα-neighbourhoods,N andM , contained in them. The
dashed lines delineate theα-blocks of the algebra.

Taking this idea one step further, given a pair of congruences (α, β) of A with
β coveringα (i.e., α < β and there are no congruences ofA strictly between the
two), one can form the quotient algebraA/α and then consider the congruenceβ/α =
{(a/α, b/α) : (a, b) ∈ β}. Sinceβ coversα in the congruence lattice ofA thenβ/α
is a minimal congruence ofA/α and so can be assigned one of the five types. In this
way we can assign to each covering pair of congruences ofA a type and so end up with
a labelled congruence lattice forA.

For modestly sized algebras, one can, without too much effort, compute their la-
belled congruence lattices. Since in general, the size of the congruence lattice of a
finite algebra can be much larger than the algebra, the task ofcomputing the labelled
congruence lattice of an algebra is by no means tractable. Ifone is just interested in
determining the type of a given covering pair of congruencesor in the set of labels that
appear in the labelled congruence lattice of an algebra, polynomial time algorithms
exist (see [3]).
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N classesα−A

MV

U

Figure 1: Minimal Sets

Example 8 Consider the algebraA with universe{0, 1, 2, 3} having a single binary
basic operationx · y defined by:

· 0 1 2 3
0 0 0 0 3
1 0 1 0 1
2 0 0 2 3
3 3 1 3 3

Besides the two congruence0A and1A, A only has two other (minimal) congru-
ences,α andβ, pictured in Figure 2 as partitions (using the dotted lines)of the universe
of A.

We claim that the type ofα is boolean and the type ofβ is semilattice. To see this,
consider the polynomialsp(x) = x ·1 andq(x) = x ·2. The range ofp is {0, 1} and so
N = {0, 1} is both anα-minimal set and anα-neighbourhood (sincep is non constant
on someα-class and has minimal range subject to this property). On the other hand,
the range ofq is {0, 2, 3} and so is either aβ-minimal set or properly contains one
sinceq is not constant on the only non-trivialβ-class. By analyzing the set of unary
polynomials ofA it can be seen that in factV = {0, 2, 3} is indeed aβ-minimal set
and hence thatM = {0, 2} is aβ-neighbourhood.

Now thatα andβ-neighbourhoods have been identified, we need only determine
the types of the algebras thatA induces on each of them to determine the types ofα and
β. We see that the restriction ofx · y to N provides a semilattice operation onN and
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1
α   = 

0

3

2 0 2

1 3
β  =   

Figure 2: The Congruencesα andβ, with their minimal sets

so the type ofα cannot be unary or affine since algebras of these types do not support
a semilattice polynomial. Since all boolean operations canbe obtained by composition
from a boolean semilattice operation and complementation,it suffices to produce a
unary polynomial ofA that maps0 to 1 and1 to 0 in order to establish that the type
of α is boolean. It can be checked that the polynomial(((x · 3) · 2) · 1) fits the bill.
We leave the details of the calculation of the type ofβ to the reader and conclude the
presentation of this example by claiming that the types of the covering pairs(β, 1A)
and(α, 1A) are boolean and semilattice, respectively.

While the type-labelled congruence lattice of a finite algebra carries much informa-
tion about the algebra, it turns out that just knowing the setof labels that appear in the
labelled congruence lattice of a finite algebra or the variety that it generates is useful.

Definition 3

1. The typeset of a finite algebraA, denotedtyp{A}, is the set of labels that appear
in its labelled congruence lattice, and so is a subset of{unary, affine, boolean,
lattice, semi-lattice}.

2. The typeset of a class of algebrasK is the union of the typesets of all of its finite
members and is denoted bytyp{K}.

3. We say that a finite algebra or a class of algebras omits a particular type if that
type does not appear in its typeset.

The following result, found in [8] provides a connection with Conjecture 1, the
Complexity Dichotomy Conjecture.

Theorem 7 Let A be a finite idempotent algebra andV the variety generated byA.
ThenV omits the unary type if and only ifvar(A) does not contain aG-set. In fact, this
condition holds if and only if there is no algebra inHS(A) that is term equivalent to a
set (i.e., whose basic operations are just projections).

This theorem allows us to restate the Complexity Dichotomy Conjecture in terms
of types:

12



Conjecture 1 (the complexity dichotomy conjecture, version 2) A finite idempotent
algebraA is tractable if and only if the variety generated byA omits the unary type (or
equivalently, that every subalgebra ofA omits the unary type).

Something similar occurs when considering Conjecture 2, the Bounded Width Con-
jecture, namely we can express it in terms of omitting tame congruence theoretic types.

Theorem 8 ([41]) LetA be a finite idempotent algebra andV the variety generated by
A. ThenV omits the unary and affine types if and only ifvar(A) does not contain an
algebra that is term equivalent to a reduct of a module over some finite ring. In fact,
this condition holds if and only if there is no algebra inHS(A) that is term equivalent
to a set or to the full idempoten reduct of a module over some finite ring.

In the language of tame congruence theory, the Bounded WidthConjecture be-
comes:

Conjecture 2 (the bounded width conjecture, version 2)A finite idempotent algebra
A has bounded width if and only if the variety generated byA omits the unary and affine
types (or equivalently, that every subalgebra ofA omits these types).

We conclude this sub-section with a brief discussion of the complexity of deter-
mining if a given finite relational structure or finite algebra is tractable or has bounded
width, assuming that Conjectures 1 and 2 are true.

Theorem 9 ([8, 15, 41])Under the assumption that Conjectures 1 and 2 are true,

1. the problems of determining if a finite relational structure H is tractable or has
bounded width is NP-complete, and

2. the problems of determining if a finite idempotent algebraA is tractable or has
bounded width are polynomial-time solvable.

We note that without the assumption of idempotency, Freese and Valeriote have
shown [25] that to determine if the variety generated by a finite algebra omits the unary
type or both the unary and affine types are both EXPTIME-complete problems.

3.2 Weak Near-unanimity operations

Recall that a near-unanimity operation on a setA is a functiont(x1, . . . , xn), for n > 1,
that satisfies the equations

t(y, x, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, x, . . . , x, y) ≈ x

From [30] we know that if a relational structureH has a near-unanimity polymorphism
thenCSP(H) is tractable. The following variation of this notion was developed by E.
Kiss and Valeriote while investigating the Bounded Width Conjecture.

Definition 4 An operationt(x1, . . . , xn), for n > 1, on a setA is a weak near-
unanimity operation if it is idempotent and satisfies the equations

t(y, x, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, x, . . . , x, y)

13



Clearly any near-unanimity operation is also a weak near-unanimity operation but there
are algebras that have term operations of the latter sort butnot of the former. For
example, for any positive integern, the term operationx1 + x2 + · · · + xn+1 of the
group of integers modulon is a weak near-unanimity operation. It is not difficult to
show that this group fails to have a near-unanimity term operation in any number of
variables. We leave it as an exercise to show that the operation x · (y · z) on our 4-
element example is a weak near-unanimity operation (and that this algebra does not
have a near unanimity term operation).

While it is not too difficult to show that if a finite algebra hasa weak near-unanimity
term operation then the variety that it generates must omit the unary type, the converse
is much more difficult to show. A recent result of Maroti and McKenzie establishes
this, along with a characterization of finite algebras that generate varieties that omit
both the unary and affine types.

Theorem 10 ([38]) LetA be a finite algebra andV the variety that it generates.

1. V omits the unary type if and only ifA has a weak near-unanimity term opera-
tion.

2. V omits the unary and affine types if and only if there is someN > 0 such that
for all k ≥ N , A has a weak near unanimity term of arityk.

This surprising result allows us to provide restatements ofthe conjectures.

Conjecture 1 (the complexity dichotomy conjecture, version 3) A finite idempotent
algebraA is tractable if and only ifA has a weak near-unanimity term.

Conjecture 2 (the bounded width conjecture, version 3)A finite idempotent algebra
A has bounded width if and only if for all but finitely manyk > 0, A has ak-ary weak
near unanimity term.

4 Tractability via few subpowers

In this section we discuss a thread of tractability results that culminates in a theorem
that unifies them in terms of a notion of a finite algebra havingfew subpowers.

Definition 5 ([2]) A finite algebraA is said to have few subpowers if there is some
polynomialp(n) such that for eachn > 0,

sA(n) = log2 |{B : B is a subuniverse ofAn}| ≤ p(n).

It is not difficult to see that for any finite algebraA of sizem, the functionsA(n)
is bounded above bymn. In generalsA(n) will grow exponentially and so the few
subpowers condition imposes certain restrictions on the algebraA. One consequence
of a finite algebraA having few subpowers is the existence of a polynomialg(n) such
that for anyn > 0, every subalgebra ofAn has a generating set of size bounded
above byg(n). In fact this “small generating set” property is equivalentto having few
subpowers. Before characterizing such algebras, we present some examples.

14



Using a theorem of Baker and Pixley from [4] it follows that ifA is a finite algebra
that has ak-ary near unanimity term operation (see Example 4) then the functionsA(n)
is bounded above by a polynomial of degreek − 1 and so such algebras have few
subpowers. An early tractability result of Jeavons, Cohen and Cooper [30] establishes
that algebras having near unanimity terms are tractable, and it is no coincidence that
this tractability result can be proved using the Baker-Pixley theorem.

In [24], Feder and Vardi prove that if a relational structureH has a polymorphism
of the formx · y−1 · z for some group operationx · y onH thenCSP(H) is tractable.
Generalizing this, Bulatov [5] proves that if a finite algebra A has a termp(x, y, z)
that satisfies the equationsp(x, x, y) = p(y, x, x) = y for all x, y ∈ A thenA is also
tractable (any operation that satisfies these equations is known as a Mal’tsev operation,
see Example 4). The proof of this theorem found in [13] exploits the fact that any finite
algebra with a Mal’tsev term has the small generating sets property (and hence, few
subpowers).

While Mal’tsev and near unanimity operations are of quite different character, Dal-
mau in [22] managed to find a common generalization of them viathe generalized
majority-minority operation (see Example 4 for the definition). In a modification of
the algorithm presented in [13], Dalmau shows in [22] that any finite algebra that has a
GMM term is tractable. As in the case of algebras with Mal’tsev terms, these algebras
have few subpowers and the small generating sets property and it is this latter property
that plays a crucial role in the proof.

In [2] a characterization of finite algebras with few subpowers is given in terms of
the presence of a special type of operation.

Definition 6 Ak-edge operation on a setA is ak+1-variable operationt that satisfies
the equations:

t(x, x, y, y, y, . . . , y, y) ≈ y

t(x, y, x, y, y, . . . , y, y) ≈ y

t(y, y, y, x, y, . . . , y, y) ≈ y

t(y, y, y, y, x, . . . , y, y) ≈ y

...

t(y, y, y, y, y, . . . , y, x) ≈ y.

Theorem 11 ([2]) A finite algebraA has few subpowers if and only if it has ak-edge
term for somek > 0. If this condition fails to hold then the functionsA(n) grows
exponentially.

Using this characterization the tractability of algebras with few subpowers can be
deduced.

Corollary 3 ([28]) If the finite algebraA has few subpowers then it is globally tractable.

We note that the proof of this corollary closely follows the GMM tractability proof
of Dalmau. We also note that the theorem and corollary settleconjectures posed by
Chen [18] and Dalmau [21] on the nature of algebras with few subpowers.
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We conclude this section with a result of Marković and McKenzie [36, 2] that high-
lights the singular position that algebras with near unanimity term operations occupy.
We have already noted that if a finite idempotent algebra has anear unanimity opera-
tion, then it has bounded width and few subpowers and so can beshown to be tractable
in two distinct ways. The following theorem provides a converse to this.

Theorem 12 Let A be a finite idempotent algebra. IfA is of bounded width and has
few subpowers then it has a near unanimity term operation.

5 Coloured graphs and finite algebras

The conditions of tractability and bounded width that appear in Conjectures 1 and 2 are
known to be necessary. In order to prove that they are also sufficient for the complex-
ity dichotomy conjecture one needs to design an algorithm (or algorithms) that solves
CSPs satisfying the tractability condition, and for the bounded width conjecture, that
the constraint propagation algorithm solves CSPs satisfying the bounded width con-
dition. In all known cases algorithms (of proofs of the soundness of algorithms) use
some local structure of algebras. Usually this structure can be explained in terms of
the action of term operations of algebras on small subsets. In this section we propose
an approach to the local structure of a finite idempotent algebra that is based on term
operations of the algebra.

5.1 Coloured graphs of algebras

5.2 The graph

The results of this section were first presented in [10]. We relate to every idempotent
finite algebraA an edge-coloured graphGr(A). If A = (A; F ) andB ⊆ A, then by
〈B〉 we denote thesubalgebra generated byB, that is the smallest subalgebra ofA

containingB.

Definition 7 Let A = (A; F ) be a finite idempotent algebra. The vertex set of the
graphGr(A) is the universeA of A. A pairab of vertices is an edge if and only if there
exists a congruenceθ of 〈a, b〉 and a term operationf of A such that eitherf/θ is an
affine operation on〈a, b〉/θ, or f/θ is a semilattice operation on{a/θ, b/θ}, or f/θ is
a majority operation on{a/θ, b/θ} (see Figure 3).

The color of an edge is defined as follows.

• If there exists a congruenceθ and a term operationf ∈ Term(A) such thatf/θ
is a semilattice operation on{a/θ, b/θ} thenab is said to have thesemilattice
type.

• An edgeab is of themajority typeif it is not of the majority type and there are a
congruenceθ and a term operationf of A such thatf/θ is a majority operation
on{a/θ, b/θ}.
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Figure 4:Gr(A); edges of the semilattice type are drawn solid, edges of the majority
type are dotted

• An edgeab is of theaffine typeif it is not of the semilattice or majority type and
there are a congruenceθ and a term operationf of A such thatf/θ is an affine
operation on〈a, b〉/θ.

We sometimes call the seta/θ ∪ b/θ a thick edge.

Example 9 Let A = ({0, 1, 2}; f) be an algebra, where the operationf is defined by
its Cayley table

f(x, y) 0 1 2
0 0 1 2
1 1 1 0
2 2 0 2

(In fact, f occurs in [12]; in that paper it is called operation (6).) We have: 〈0, 1〉 =
{0, 1}, 〈0, 2〉 = {0, 2}, 〈1, 2〉 = {1, 2, 3}; the only congruence of〈1, 2〉 such that
1, 2 belong to distinct classes is the equality relation;f witnesses that01 and 02
are edges of semilattice type;12 cannot be an edge of the semilattice type because
no term operation ofA is semilattice on{1, 2}; however, the operationg(x, y, z) =
f(f(x, f(y, z)), f(f(x, y), z)) is a majority operation on{1, 2}. Thus,Gr(A) is the
graph shown in Figure 4. Note also that this graph was implicitly used in [12] to prove
the tractability ofA.

Observe that it is possible that for some paira, b different congruences of〈a, b〉
witness different types of the edgeab. Following the definition we always choose the
‘strongest’ type of the edge. Thus, the semilattice type is stronger than the majority
type, which, in turn, is stronger than the affine type.
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Example 10 Let A, B be algebras with universes{0, 1} and{a, b}, respectively, and
operationsf, g. These operations are defined as follows:

– f is a semilattice operation onA, i.e.f(0, 0) = f(0, 1) = f(1, 0) = 0, f(1, 1) = 1;
– f is the first projection onB, i.e.f(x, y) = x for all x, y ∈ {a, b};
– g is the ternary first projection onA, i.e.g(x, y, z) = x for all x, y, z ∈ {0, 1};
– g is a majority operation onB; note that there is only one majority operation on a
2-element set.

Then letC denote the direct product ofA andB, that is the algebra with universe
C = {(x, y) | x ∈ {0, 1}, y ∈ {a, b}}, and operationsf, g onC acting as follows:

f((x1, y1), (x2, y2)) = (f(x1, x2), f(y1, y2))

and
g((x1, y1), (x2, y2), (x3, y3)) = (g(x1, x2, x3), g(y1, y2, y3)).

As is easily seen,〈(0, a), (1, b)〉 = C and the equivalence relationsη1, η2 defined
by ((x1, y1), (x2, y2)) ∈ η1 if and only if x1 = x2, and((x1, y1), (x2, y2)) ∈ η2 if and
only if y1 = y2, are congruences ofC. Observe thatf/η1

is a semilattice operation on

C/η1
= {(0, a)/η1

, (1, b)/η1
}; and thatC/η2

= {(0, a)/η2
, (1, b)/η2

} is isomorphic

to B. Thus, congruenceη1 witnesses that(0, a)(1, b) is an edge of semilattice type,
while η2 witnesses that the same edge has majority type. Since the semilattice type is
stronger, this edge has semilattice type.

5.3 Connectedness and omitting types

We show that connectedness of the graphGr(A) and the colours of edges that appear
in it are closely related to omitting types in the sense of tame congruence theory, and
to Conjectures 1 and 2.

Theorem 13 ([10]) For an idempotent algebraA the following conditions are equiva-
lent:

(1) var(A) omits the unary type;

(2) var(A) does not contain a G-set;

(3) for any subalgebraB of A the graphGr(B) is connected.

We shall refer to condition (3) from Theorem 13 as to theconnectedness condition.

Theorem 14 Let A be an idempotent algebra. The following conditions are equiva-
lent:

(1) var(A) omits the unary and affine types;

(2) var(A) does not contain an algebra that is term equivalent to a reduct of a module
over some finite ring;

(3) A satisfies the connectedness condition, andGr(A) does not contain edges of the
affine type.
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Since this result appears here for the first time we give a proof of it. We shall use
an improved version of Lemma 1 from [10].

Lemma 1 LetA be a finite idempotent algebra, and letab be an edge of the affine type
in Gr(A). Then there are a maximal congruenceθ of 〈a, b〉 (that is there is no congru-
ence strictly betweenθ and the total congruence) and a moduleM with the universe
〈a, b〉/θ over a ringR such that every term operation of〈a, b〉/θ can be represented as
an operationα1x1 + . . . + αnxn of M with α1, . . . , αn ∈ R, α1 + . . . + αn = 1.

Proof (of Theorem 14):The equivalence of (1) and (2) is follows from Theorem 8.
We show that (3) is equivalent to (1).

If for some subalgebraB of A the graphGr(B) is not connected then by Theorem 13
var(B) ⊆ var(A) contains a G-set that is term equivalent to a reduct of any module,
because in an idempotent variety any G-set is term equivalent to an algebra whose
basic operations are projections. IfGr(A) contains an edge of the affine typeab then
by Lemma 1 the algebra〈a, b〉/θ for a certainθ is a reduct of a module.

By Theorem 8 ifvar(A) contains an algebra term equivalent to a reduct of a mod-
ule, then there is a subalgebraB of A and a congruenceθ of B such thatB/θ is term
equivalent to a reduct of a module. If this algebra is a G-set thenGr(B) is not con-
nected by Theorem 13. Otherwise we assume thatB is a minimal (with respect to
containment) subalgebra with this property andθ is a maximal congruence ofB. Then
θ is the only maximal congruence ofB. Indeed, ifη is another maximal congruence of
B, then any classC of η that is not contained in a class ofθ induces a proper subalgebra
C of B, andC/θ is still term equivalent to a reduct of a module; a contradiction with
minimality of B. It is not hard to see, that, for anya, b ∈ B such that(a, b) 6∈ θ, the
pairab is an edge of the affine type. 2

Using Theorems 13 and 14 we can give yet another formulation of the complexity
and bounded width conjectures.

Conjecture 1 (the complexity dichotomy conjecture, version 4) A finite idempotent
algebra is tractable if and only if it satisfies the connectedness condition.

Conjecture 2 (the bounded width conjecture, version 4)A finite idempotent algebra
A has bounded width if and only if it satisfies the connectedness condition and the
graphGr(A) does not contain edges of the affine type.

5.4 Improving an algebra

The study of finite algebras in the context of the complexity of the CSP does not nec-
essarily suppose investigation of the exact structure of finite algebras. Therefore we
can transform algebras under consideration as long as such atransformation preserves
properties supposedly responsible for tractability, e.g.omitting the unary type. In this
subsection we show two such transformations.

We say that the graphGr(A) is semilattice-connected, if for any two verticesa, b ∈
A there is a path inGr(A) consisting of edges of the semilattice type. Thesemilat-
tice/majority connectednessof Gr(A) is defined similarly.
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Proposition 2 LetA be an idempotent algebra satisfying the connectedness condition,
letab be an edge ofGr(A) of the semilattice or majority type, and letRab = (a/θ∪b/θ)
be the corresponding thick edge, whereθ is a congruence certifying the type ofab.

(1) Aab = (A; F ′), whereF ′ is the set of all term operations ofA preservingRab,
satisfies the connectedness condition.

(2) If ab is has the semilattice type andGr(A) is semilattice-connected, thenGr(Aab)
is semilattice-connected.

(3) If ab has the majority type andGr(A) is semilattice/majority-connected, thenGr(Aab)
is semilattice/majority-connected.

As the following example shows, constructing a reduct by adding an edge of the
affine type can destroy the connectedness condition and evenmake a tractable algebra
NP-complete.

Example 11 Let A = ({0, 1, 2}; h), whereh(x, y, z) = x − y + z and+,− denote
the operation of addition and subtraction modulo 3. It is well known (see e.g. [40])
that the term operations ofA are the operations of the formα1x1 + . . . + αnxn, where
α1, . . . , αn are integers andα1 + . . . + αn = 1 (mod 3). Therefore, for anya, b ∈ A,
〈a, b〉 = A, the only maximal congruence of〈a, b〉 is the equality relation, andab is an
edge of the affine type.

Since the affine operationx − y + z is an operation ofA, the problemCSP(A)
can be solved by Gaussian elimination [31]. Take an edge ofGr(A), say01 and a term
operationf(x1, . . . , xn) = α1x1+. . .+αnxn of A. If f preserves{0, 1}, then, for any
i ∈ {1, . . . , n}, we havef(0, . . . , 0, 1, 0, . . . , 0) = αi ∈ {0, 1} (1 is on theith place).
Furthermore, ifαi, αj = 1, thenf(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) = αi + αj = 2 6∈
{0, 1} (1s are on theith andjth places). Thus, only one of theαs is non-zero, which
means thatf is a projection. Hence, every term operation ofA01 is a projection and
CSP(A01) is NP-complete.

Proposition 2 amounts to saying that we may restrict our attention to algebrasA such
that every thick edge of the semilattice or majority type ofGr(A) is a subalgebra.

The second transformation preserving the connectedness condition is based on the
following statement that shows that the term operations certifying the type of edges can
be significantly unified.

Proposition 3 LetA be an idempotent algebra. For an edge,θ always denotes a con-
gruence certifying its type. There are term operationsf, g, h of A such that

f
{a/θ,b/θ}

is a semilattice operation ifab is an edge of the semilattice type, it is the

first projection ifab is an edge of the majority or affine type;

g
{a/θ,b/θ}

is a majority operation ifab is an edge of the majority type, it is the

first projection if ab is an edge of the affine type, andg
{a/θ,b/θ}

(x, y, z) =

f
{a/θ,b/θ}

(x, f
{a/θ,b/θ}

(y, z)) if ab has the semilattice type;
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h
〈ab〉/θ

is an affine operation operation ifab is an edge of the affine type, it is the

first projection ifab is an edge of the majority type, andh
{a/θ,b/θab

}
(x, y, z) =

f
{a/θ,b/θ}

(x, f
{a/θ,b/θ}

(y, z)) if ab has the semilattice type.

Example 9 (continued) Let us reconsider the algebraA from Example 9. By Propo-
sition 2, since12 is an edge of the majority type, the algebraA12 satisfies the connect-
edness condition. The operationsf, g, h satisfying the conditions of Proposition 3 can
be chosen as follows:g is the operation obtained in Example 9,f(x, y) = g(x, x, y)
(the binary operation defined in Example 9 does not fit, because it does not preserve
{1, 2}) andh(x, y, z) = f(x, f(y, z)).

Propositions 2 and 3 together allow us to restrict ourselvesto the study of idempo-
tent algebras that have at most three basic operations, one binary and two ternary, and
such that, for any edge of the semilattice or majorityab and a congruenceθ certifying
this, the thick edgea/θ ∪ b/θ is a subalgebra. In the next section we shall see that the
class of algebras to be studied can be further narrowed down.

5.4.1 Edges of the semilattice type

In this section we focus on edges of the semilattice type of the graphGr(A). Note first
that if one fixes a congruenceθab for each edge ofGr(A) that certifies its type, and a
term operationf such thatf is a semilattice operation on{a/θab

, b/θab
} for every edge

ab of the semilattice type ofGr(A), then one can define an orientation of every such
edge. An edgeab of the semilattice type is oriented froma to b if f(a/θab

, b/θab
) =

f(b/θab
, a/θab

) = b/θab
. For instance, the edges01, 02 of the graph from Example 9

are oriented from0 to 1 and2 respectively. Clearly, orientation strongly depends on the
choice of the operationf . The graphGr(A) oriented accordingly to a term operation
f will be denoted byGrf (A). We then can definesemilattice-connectedandstrongly
semilattice-connectedcomponents ofGrf (A). We will also use the natural order on the
set of strongly semilattice-connected components ofGrf (A): for componentsA, B,
A ≤ B if there is a directed path inGrf (A) consisting of edges of the semilattice type
and connecting a vertex fromA with a vertex fromB. Later we show that certain
restrictions on the set of strongly semilattice-connectedcomponents ofGrf (A) yield
the tractability ofCSP(A).

First we show that if for an edgeab of the semilattice type there is no semilattice
term operation on the set{a, b} thenab can be thrown out of the graphGr(A) such that
the connectedness condition is preserved in the remaining graph. Therefore, we can
assume that for any edge of the majority typeab there is a semilattice term operation
on{a, b}.

Proposition 4 Let A be an algebra andGr′(A) the subgraph ofGr(A) obtained by
omitting edgesab of the semilattice type such that there is no semilattice operation
on {a, b}. ThenGr′(A) is connected. IfGr(A) is semilattice-connected thenGr′(A)
is semilattice-connected. IfGr(A) is semilattice/majority-connected thenGr′(A) is
semilattice/majority-connected.
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The graphGr′(A) oriented according to a binary term operationf will be denoted
by Gr′f (A).

We conclude this subsection with a result that shows how properties of the graph
Gr(A) can help in establishing the tractability and bounded widthof the algebraA. Let
us consider algebrasA with a binary term operationf such that, for every subalgebraB

of A, the subgraph ofGr′f (A) induced byB has a unique maximal strongly semilattice-
connected component. This condition we shall call themaximal semilattice component
condition.

Theorem 15 If an algebraA satisfies the maximal semilattice component condition,
thenCSP(A) is of relational width 3.

Observe that a 2-semilattice, that is a grouppoid with a 2-semilattice basic op-
eration, satisfies the maximal semilattice component condition. Indeed, ifA has a
2-semilattice term operationf , thenf is a semilattice operation on{a, f(a, b)} and
{b, f(a, b) = f(b, a)}. This means thatGr′f (A) is semilattice-connected. Moreover,
if a, b belong to different maximal strongly semilattice-connected componentsB and
C, thenf(a, b) belongs to a strongly semilattice-connected componentD such that
B ≤ D andC ≤ D, a contradiction with the maximality ofB, C. The same argument
is valid for any subalgebra ofA, thus,A satisfies the maximal semilattice component
condition. Since every semilattice operation is also a 2-semilattice operation, the same
holds for algebras with a semilattice term operation. Thus,by Theorem 15, we obtain
the main result of [6], and also the results of [7], since abinary commutative conserv-
ativeoperation is a 2-semilattice operation, and also the results of [31, 29] concerning
semilattice operations.

5.5 Conservative algebras and their graphs

Let H be a relational structure. In theconservative(list) constraint satisfaction prob-
lem, denotedCCSP(H), the question is, given a structureG and, for each element
g ∈ G, a list L(g) of elements ofH, whether there exists a homomorphismϕ : G → H
such thatϕ(g) ∈ L(g) for all g ∈ G.

Example 12 (L IST-H-COLOURING) Let H be a (directed) graph. In the LIST H -CO-
LOURING problem we are given a graphG and, for each vertexv of G, a setL(v)
of vertices ofH . The question is whether there is a homomorphismϕ from G to H
such thatϕ(v) ∈ L(v) for every vertexv of G. Clearly, LIST H -COLOURING can be
represented in the form of the conservative CSP.

Notice that, for any structureH, the problemCCSP(H) is equivalent toCSP(H∗),
whereH∗ is an expansion ofH obtained by adding all unary relations. A structureH
such that for each subsetS ⊆ H there is a relational symbolR in the vocabulary with
RH = S is said to beconservative. Thus, instead of conservative CSPs we may study
ordinary constraint satisfaction problems correspondingto conservative structures.

On the algebraic side, every term operationf of an algebraA that gives rise to a
conservative CSP must beconservative, that isf(x1, . . . , xn) ∈ {x1, . . . , xn} for all
x1, . . . , xn. Algebras satisfying this condition are also called conservative.
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If A is a conservative algebra, then every 2-element subset ofA induces a subalge-
bra ofA. Therefore,A satisfies the connectedness condition if and only if every pair
of its elements constitutes an edge ofGr(A). Moreover, every edge of this graph is
2-element, implying that the operationsf, g, h constructed in Proposition 3 are a semi-
lattice (that is conjunction or disjunction) operation, the majority operation(x ∨ y) ∧
(y ∨ z) ∧ (z ∨ x), and the Mal’tsev operationx − y + z(mod 2) on each 2-element
subset fromA, respectively (we denote the elements of this subset by 0 and1).

Theorem 16 A conservative algebraA is tractable if and only if it satisfies the con-
nectedness condition, that is, for any 2-element subalgebra B of A (we assumeB =
{0, 1}), there exists a term operationt such thatt

B
is either a semilattice operation

x ∨ y or x ∧ y, or the majority operation(x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x), or the Mal’tsev
operationx − y + z(mod 2). In this caseA is also globally tractable. OtherwiseA is
NP-complete.

Observe that by Proposition 3 the tractability of a conservative algebra is witnessed
by term operations of arity at most 3. This observation implies a stronger version of
Theorem 16. An algebra such that each of itsk-element subsets induces a subalgebra
is calledk-conservative.

Corollary 4 If A is a 3-conservative algebra thenA is globally tractable if and only if
it satisfies the connectedness condition. Otherwise it is NP-complete.
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