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Abstract

We describe an algebraic approach to the constraint setisfigoroblem (CSP)
and present recent results on the CSP that make use of, irsantias way, this
algebraic framework.

1 Introduction

This paper presents material from the talks that the autiers at the Dagstuhl semi-
nar on the Complexity of Constraints held in 2006. The pringarals of the talks were
to describe an algebraic approach to the constraint saisfigoroblem and to present,
within the algebraic context, recent results relating to tfithe main motivating con-
jectures in the field.

During our talks, by necessity, a fair amount of time was @@ed in describing
basic and advanced universal algebra. In particular, @ws/of two approaches to
analyzing the local structure of finite algebras were givéhe first, known as tame
congruence theory, was developed in the 1980s by David HahdyRalph McKenzie
and has played an important role in the development of usaleigebra ever since.
The second is a much more recent approach developed by Busla¢aifically to ad-
dress questions relating to the CSP. For readers who wigkata imore about basic



universal algebra we recommend [17] and [37]. For more mfdfon on tame congru-
ence, the works [27] or [19] can be consulted. The paper [@0}ains details of the
theory developed by Bulatov.

2 Constraint Satisfaction and Algebra

2.1 Constraint Satisfaction

We use the homomorphism definition of the CSPv@cabularyr is a finite set of
relational symbolseach symbol has an associageidy. A (finite) relational structure
‘H with vocabularyr consists of a finite sell, its universe and, for every relational
symbol R € 7 of arity n, ann-ary relationR” on H, the interpretationof R by
H. A homomorphisnof a structureg to a structure with the same vocabulary
is a mappingp: G — H from the universe of; to the universe of{ such that for
each g-ary) relational symboR <€ 7 and any tupl€(as,...,a,) € RY the tuple
(o(ai),...,pla,)) belongs taR™.

For a finite structuré{ the non-uniform constraint satisfaction problemtenoted
CSP(H), is the following combinatorial problem: Given a struct@eof the same
vocabulary agt, decide whether or not there is a homomorphism fi@no 7. The
structureH is called thetemplate andg is called thenstance For a class) of rela-
tional structures, in thaniform constraint satisfaction probledenotedCSP($), the
guestion is: given a structufi¢ € $ and a structurg over the same vocabulary &5
decide whether there exists a homomorphism ftbta . Sometimes it is convenient
to think of a uniform problem as of the union or collection @muniform problems
CSP(H) for H € 9.

Example 1 (NAE, LINEAR EQUATIONS, and H-COLOURING)

1. LetHyap be a relational structure with univer$e, 1} and one ternary rela-
tion R*~ar = {0,1}3\ {(0,0,0),(1,1,1)}. Itis easy to see that the problem
CSP(Hwyag) isthe same as thedi-ALL-EQUAL SATISFIABILITY problem,in
which, given a set of propositional variables and a set pksi of these variables,
the question is whether or not it is possible to assign valu#se variables such
that the variables from each of the specified triples taka possible values, 0
and 1.

2. LetF be afinite field and the set of all relations ovdr that can be represented
as the set of solutions of a linear equation offerLet .o (F') denote the set
of all structures with universg', whose relations are from. Then the uniform
problemCSP($1.o(F')) is equivalentin a certain sense to the problem of solving
systems of linear equations over!

1The size of a CSP instance is defined to be the length of a rellsoencoding of the structures involved,
that is the source structure in the case of a non-uniformlenoband the source structure and the template
in the case of a uniform problem. Usually such an encodinfud®s a list of elements of the structures
and a list of tuples in all relations. In some cases such argerepresentation is not the most natural. For
example, the natural representation &8P (¢ (F')) instance is a list of equations defining relations of



3. Let H be a (directed) graph. In thH-COLOURING problem we are asked
whether there is a homomorphism from a given grapho H. So, theH-
COLOURING problem is just the problei@SP (H ).

Two major issues have arisen in the study of the study of tmstcaint satisfac-
tion problem. The first one is the computational complexitgalving such problems.
Although constraint satisfaction problems may belong td ba complete in many
complexity classes, see, e.g. [1, 33, 34], in this paper we&atrate on problems solv-
able in polynomial time (such problems are often said téré@etable). The remaining
problems are callethtractable All the intractable problems known so far turn out
to be NP-complete. This prompted Feder and Vardi [24] to eagtheDichotomy
Conjecture Every non-uniform CSP is either tractable or NP-complete.

The second issue is the descriptive complexity of non-umifproblems. LetH
be a relational structure. The class of structures homohiotp  is often denoted
by CSP(H) (this does not cause any confusion, becaiSE(7) is the class of yes-
instances of the corresponding constraint satisfactioblpm, and therefore than-
guageassociated to this problem). In many cases the ¢I&83H) can be character-
ized as the class of all structures satisfying some formmuedertain logic. The goal is
to describe structuregl such thatCSP(H) is expressible in this logic. We concentrate
on the logic corresponding to Datalog. For definitions ofddag, Datalog expressibil-
ity, related properties of structures and problems, as agetesults on other important
logical languages the reader is referred to [16] from thessanfume.

Example 2 (continued) 1. NAE is NP-complete, [39].
2. LINEAR EQUATIONS is not expressible in Datalog, [24].

3. H-COLORING is tractable if and only ifd is a bipartite graph. In this case it is
expressible in Datalog. Otherwise it is NP-complete, [26].

2.2 Polymorphisms and Algebras

In this section we provide a brief overview of the algebrgipt@ach to the constraint
satisfaction problem.

At the core of this approach is the concept of a polymorphiset.R be a relation
on a setA. An (n-ary) operationf on the same set is said to bg@alymorphisnof
R if for any tuplesa,,...,a, € R the tuplef(as,...,a,) obtained by applying
component-wise also belongs f& The relationR is called an invariant of. An
operationf is a polymorphism of a relational structut¢if it is a polymorphism of
each relation of the structure. The set of all polymorphisfrig is denoted byol(H).
For a collectionC' of operationdnv(C') denotes the set of invariants of all operations
from C.

the template. Although no example is known, different reprgation may affect the complexity of uniform
problems. However, for the sake of generality throughoatfhper we use the explicit representation of
relational structures. The choice of representation doeaffect the complexity of non-uniform problems.



Example 3 ([40]) Let R be the solution space of a system of linear equations over a
finite field F'. Then the operatiom(z,y,z) = = — y + z is a polymorphism ofR.
Indeed, letA - x = b be the system defining, andx, z,y € R. Then

A-mx,z,y)=A-(x—z4+y)=A-x—A-z+A-y=b—-b+b=hb.

In fact, the converse can also be showrRiis invariant undefn then it is the solution
space of a certain system of linear equations.

The following theorem relates polymorphisms, complexityd expressibility in
Datalog

Theorem 1 ([29, 31, 35])Let’H; andH- be two structures with a common universe.
1. If Pol(H1) C Pol(H2) thenCSP(Hz) is log-space reducible t&SP(H; ).

2. If Pol(H1) C Pol(Hz2) andCSP(H;) is expressible in Datalog, the@iSP(Hs)
is expressible in Datalog.

An algebrais a pairA = (A; F') consisting of a se#, theuniverseof A, and a set
F of operations o, thebasic operationsf A. Operations that can be obtained from
the basic operations d@f and theprojectionoperations oM, that is operations of the
form f(z1,...,x,) = x;, by means of compositions are calledm operations of.
Term(A) denotes the set of all term operationsdof Operations that can be obtained
from term operations by substituting constants are call@lginomial operationgor
justpolynomial of A.

Any relational structuré{ and therefore any non-uniform constraint satisfaction
problem can be associated with an algehtg(H) = (H;Pol(H)) whereH is the
universe ofH. Conversely, any algebra= (A; F') corresponds to a class of structures
Str(A) that includes all the structurg$ with universeA and such thaferm(A) C
Pol(H). Therefore every algebra gives rise to a uniform consteaitisfaction problem
CSP(Str(A)), which we will denote byCSP(A).

An algebraA is calledtractableif CSP(H) is tractable for eacl{ € Str(A) and
is calledNP-completéf CSP(H) for someH < Str(A) is. Theorem 1 implies that if
CSP(H) is tractable then the algebddg(H) is tractable. We make two observations.
First, if an algebraA is not tractable, it does not mean tHa8P () is intractable
for all H € Str(A); this class always contains poor structures whose asedaidss
of constraint satisfaction problems is very easy. Secdnd,is tractable it does not
necessarily mean that the uniform probl€i$P(A) is tractable. Although no example
is known, it may be the case that the time complexity of pratdl€SP(H), H €
Str(A), does not have a uniform polynomial bound, even though tmepbexity of
each problem is polynomially bounded. To distinguish th@se potential situations
we sometimes call tractable algeblasally tractableand algebras for whicBSP(A)
is tractable,globally tractable In other words,A is locally tractable if every non-
uniform problem fromCSP(A) is solvable in polynomial time.

The relational width of an algebr& is a parameter related to certain properties
of Datalog programs or propagation algorithms that soleeptoblemsCSP(H) for
H € Str(A). The algebra\ is said to be obounded widthf CSP(H) is expressible in



Datalog for any structurgl € Str(A). For complete definitions and discussion of this
concept see [16] in the same volume.

The tractability and relational width of an algebra usuédows from the presence
of a certain polymorphism of a structure (or a term operaticen algebra).

Example 4 ([5, 13, 20, 22, 29, 31])f one of the following operations is a term op-
eration of an algebra [a polymorphism of a relational structuf€] then CSP(A)
[CSP(H)] is tractable:

e asemilatticeoperation, that is a binary operatigrsatisfying the equations:
(@) f(z,z) =~ z (iddempotency); (b)f(z,y) =~ f(y,z) (commutativity);
(©) f(f(z,y),2) = f(, f(y, 2)) (associativity);

e a 2-semilatticeoperation, that is a binary operatighsatisfying the equations
flz,z) ==,
flzy) = [y, z), andf(z, f(z,y)) = f(z,y);

e anear-unanimityNU) operation, that is an operatighsatisfying the equations
f(x77‘2:7y) :f($5)x7y7$) = :f(y’a:??x) = .

e amajorityoperation, that is a ternary operatiggeatisfying the equationgz, z, y) =
g(z,y,z) = g(y, x,z) = z (thus a majority operation is a ternary near-unanimity
operation).

e aMal'tsevoperation, thatis a ternary operatiosatisfying the equationsz, z,y) =
h(y,z,z) = y.

e ageneralized majority-minorit¢yGMM) operation, that is an operatighsuch
that for anya, b € A one the following 2 conditions holds:

fla,...;x,y) = f(z,...,z,y,2) = ... = f(y,z,...,2) = z, forz,y €
{a,b}; or

flzy. . zy) = fly,z,...,z) =z, forz,y € {a,b}.

Example 5 If one of the following operations is a polymorphism of a telaal struc-
ture’H, thenCSP(H) is expressible in Datalog:

¢ a semilattice operation;

e a 2-semilattice operation;

e a near-unanimity operation;
e a majority operation.

On the other hand, the intractability of a relational stmuet(or an algebra) seems
to imply that it has rather uninteresting polymorphismenteperations, respectively).
An operationf on a setA is said to be aressentially unary surjective operatidgh
f(z1,...,2,) = g(x;) for some; and some surjective majjx) of A.

Example 6 (continued)



1. An operationf is a polymorphism of{y 45 if and only if f is an essentially
unary surjective operation, [31, 32].

2. An operationf is a polymorphism of all relations representable by linearee
tions over afield ifand only if f = a1 +. .. + a2, Whereay, ..., a, € F
are such thatv; + ... + «a,, = 1, [40].

3. If H = Ky, a complete graph of > 2 vertices, then an operatighis a poly-
morphism ofH if and only if f is an essentially unary surjective operation. If
‘H = K, then’H has a majority polymorphism.

The examples above and Theorem 1 provide necessary cargditio tractability
and expressibility in Datalog.

Corollary 1

1. If every polymorphism of a structuté [every term operation of an algebr] is
an essentially unary surjective operation théfP(H) [CSP(A), respectively]
is NP-complete.

2. If there is a fieldF’ such that every polymorphism of a structdie/every term
operation of an algebra\] is of the formf = ajxy + ... + a,z,, Where
ai,...,an € F are such thathy + ... + a,, = 1, thenCSP(H) [CSP(A),
respectively] is not expressible in Datalog [is not of boaddelational width].

If every term operation of a finite algebda is essentially unary surjective then
A is said to be a-set If there is a module\/ over a ringR such that every term
operation ofA can be represented agx; + ... + ayx, for ay,...,a, € R and
aj + ...+ a, = 1, thenA is called anidempotent reduct of a module

Example 4 allows one to classify 2-element algebras in tefnasmplexity.

Proposition 1 (Schaefer’'s Dichotomy Theorem, [39])For any 2-element algebra,
the problemCSP(A) is (globally) tractable if and only iferm(A) contains one of the
following:

—the constant O or constant 1 operation;

— the conjunction or disjunction operations (which are dattice);
— the majority operatioriz V y) A (y V 2) A (2 V x);

— the Mal'tsev operation — y + z(mod 2).

In all other casesCSP(A) is NP-complete.

2.3 Varieties

For the purposes of settling the Dichotomy Conjecture ateded questions, the class
of algebras to be considered can be significantly reduced.alg§ebraA is called
surjectiveif every one of its unary term operations is surjective. Oray o trans-
form an algebra into a surjective algebra is as follows: d.&& a term operation of
A = (4; F) with a minimal range. Thep(A) denotes the algebi@(A); F,) where



Fy = {gflgay | f € Term(A)}. It is not difficult to see that this algebra is sur-
jective. The algebra is calledidempotenif every one of its term operations sat-
isfies the equatiorf (z,...,x) ~ z. Thefull idempotent reducof A is the algebra
Id(A) = (4; F;q) whereF;, is the set of all idempotent operations frarrm(A).

Theorem 2 ([14]) Let A be an algebra.

1. If g is a unary term operation ot with minimal range ther is tractable if and
only if g(A) is tractable. The algebra is NP-complete if and only i§(A) is
NP-complete.

2. If Ais surjective then\ is tractable if and only ifd(A) is tractable. The algebra
A is NP-complete if and only [f(A) is NP-complete.

The main idea of the algebraic approach is to use some prep®eftan algebra
in order to determine the complexity of the associated caimtsatisfaction problem.
To identify these properties, some connections betweendh®plexity of an algebra
and the complexity of those algebras that can be obtained frddy some standard
algebraic constructions will be very helpful.

e Let A = (A;F) be an algebra. Thé-th direct powerof A is the algebra
AF = (A*; F) where we treat eachnfary) operationf € F as acting on4”
component-wise.

e Let A = (A4; F) be an algebra, and I8 be a subset ofi such that, for any
(n-ary) f € F, and for anyb,,...,b, € B, we havef(by,...,b,) € B. Such
a subset is called subuniversef A. When B is non-empty, the algebi& =
(B; FB), whereF‘B consists of restrictions of operatiofisc F' to B, is called

asubalgebraof A.

o LetA; = (Al;Fl) andAg = (AQ;FQ) such thatF1 = {fll | 1€ I}, F =
{f? | i € I}, andf}, f? are of the same arity, for some setand each €
1. A mappingy : A; — A, is called ahomomorphisnirom A; to A, if
ofi(ar, ... an,) = fA(p(ar),...,p(a,,)) holdsforalii € Tandallay, ..., an, €
A;. If the mappingp is onto thenA is said to be &@omomorphic imagef A;.

By a classic result of Birkhoff (see Theorem 11.9 from [1pfpperties of algebras that
are preserved under the taking of subalgebras, homomarphages, and direct prod-
ucts (a natural generalization of the direct power consivafare precisely those that
can be defined by equations. We note that except for the lastadirof the properties

of the operations listed in Example 4 are defined by equati&gsiationally defined

classes of algebras, also known as varieties of algebrafuadamental objects of
study in universal algebra [27, 37]. The following theoreinss provide an important
link between the constraint satisfaction problem and usalealgebra.

Theorem 3 ([14, 8]) Let A be afinite algebra. Then

1. if A is tractable then so is every subalgebra, homomorphic imagd direct
power ofA.



2. if A has an NP-complete subalgebra, homomorphic image, ortd@weer, then
A is NP-complete itself.

Theorem 4 ([35]) Let A be a finite algebra. I& has bounded width then every subal-
gebra, homomorphic image, and direct powerotfias bounded width.

Using Birkhoff’s Theorem, the variety that an algelxadetermines, denoted by
var(A), can be defined either as the class of all algebras thatys#tisfsame equa-
tions thatA does, or as the class of all algebras that arise as homonsanpages of
subalgebras of direct powers &f

Corollary 2

1. If A is tractable then so is every finite algebra framr(A). If var(A) contains
an NP-complete algebra thekis NP-complete.

2. If A has bounded width then every finite algebra frem(A) has bounded width.
If var(A) contains an algebra of unbounded width thiedoes not have bounded
width.

3. Tractability, NP-completeness, and bounded width aoperties of an algebra
that depend only on the identities satisfied by the algebra.

Using Corollary 2 we can strengthen Corollary 1 as follows.

Theorem 5 ([14, 35]) Let A be an algebra
1. If var(A) contains a G-set theA is NP-complete.

2. Ifvar(A) contains a reduct of a module théndoes not have bounded width.

To date no NP-complete or unbounded width algebra is knoatdihes not satisfy
the corresponding condition of Theorem 5. It is widely bedig that these necessary
conditions are also sufficient, at least for idempotentlaigs.

Conjecture 1 (complexity dichotomy conjecture) An idempotent algebra is tractable
if and only ifvar(A) does not contain a G-set. Otherwise it is NP-complete.

Conjecture 2 (bounded width conjecture) Anidempotent algebra has bounded width
if and only ifvar(A) does not contain a reduct of a module.

Conjectures 1 and 2 have been proved in a number of particatas: 2-element
algebras ([39]), 3-element algebras ([12]), semigrou@sZB]). The following exam-
ple shows that the undirected graphs dichotomy theorem HyaHe Ne3etfil [26] also
fits Conjecture 1.

Example 7 ([11]) Let H be an undirected graplh, = Alg(H), andg a unary term
operation ofA with a minimal range. The# is non-bipartite if and only ifrar(g(A))
contains a G-set. Otherwig€H ) is Ko andg(A) has a majority term operation.



3 Alternate versions of the conjectures

The goal of this section is to present new formulations ofj€ctuires 1 and 2 that have
emerged over the past several years. Central to our firstuatian is the notion of a
congruencef an algebra\. A congruencd of A is an equivalence relation ofi that

is invariant under all basic (and therefore term) operatioi\. Every algebra\ has
two distinguished congruencég and1,4 corresponding to the smallest and largest
equivalence relations on the sét For 6 a congruence oh = (A;F) anda € A

by a/, we denote thé-class containing; and denotda/y | a € A}, the set of all
¢-classes, byd/,. The quotient algebraA/, is the algebra with universd/, and
whose basic operations af¢/, : f € F'}, where forf € F,

flolar/g, .- an/g) = (flar,...,an))/p

Itis elementary that the mapping A — A/, that maps an elemente Atoa/yis
a surjective homomorphism and so it follows téat, is a homomorphic image af.

3.1 Tame Congruence Theory

In the early 1980’s Hobby and McKenzie developed a theorheflbcal structure of
finite algebras called tame congruence theory [27]. At tteethad the theory is a notion
of a neighbourhood of a finite algebra, relativized to cartaingruences of the algebra.
The local structure of a finite algebra that emerges fronr theiory is surprisingly
well-behaved and has been used to prove many striking thesareuniversal algebra.

Definition 1 Let A be a finite algebra and. a minimal congruence of (i.e.,04 < «
and if 3 is a congruence oh with04 < 8 < atheng = «.)

e Ana-minimal set ofA is a subset/ of A such that

— U = p(A) for some unary polynomial(z) of A that is not constant on at
least onen-class, and

— with respect to containmerit] is minimal with this property.
¢ Ana-neighbourhood (on-trace) of A is a subsetV of A such that

- N=Un/(a/,) for somea-minimal set/ anda-classa/ ,, and
— |N| > 1.

It follows from the definition that a givem-minimal setU contains within it
at least one (and possibly severabneighbourhoods. The union of all of the
neighbourhoods i/ is called the body of/, while the remaining elements 6f form
the tail of U. What is surprising is that the structure tiéatnduces on any one of its
a-neighbourhoods is quite uniform and is restricted to orfevefpossible types. What
is meant by induced structure is given in the next definition.

Definition 2 Let A be an algebra and/ C A. The algebra induced b§ onU is the
algebra with universé/ whose basic operations consist of the restrictioritof all
polynomials ofA under whichU is closed. We denote this induced algebray.



Note the difference between this notion and the more fanliee of subuniverse
(recall that a subuniverse of an algelirés a subset ofd that is closed under all term
operations o). In the theory developed by Hobby and McKenzie, the polyiadgwof
an algebra play a central role and in fact, two finite polyraliymiequivalent algebras
(i.e., two algebras over the same universe whose sets afipwiials coincide) are, for
the most part, indistinguishable using tame congruenceyhe

Theorem 6 Let A be a finite algebra and: a minimal congruence of.

e If U and V' are a-minimal sets ther\|; and A|y are isomorphic and in fact
there is a polynomigb(z) of A that mapdJ bijectively on toV.

e If N and M are a-neighbourhoods theA|y and A|,, are isomorphic via the
restriction of some polynomial &f.

e If N is ana-neighbourhood thed |y is polynomially equivalent to one of:

1. Aunary algebra whose basic operations are all permuteti@unary type);
2. A one-dimensional vector space over some finite field ¢difipe);

3. A 2-element boolean algebra (boolean type);

4. A 2-element lattice (lattice type);

5. A 2-element semilattice (semilattice type).

Much more can be said about theneighbourhoods and minimal sets of an al-
gebra but for now we point out that the previous theorem alow to assign a type
to each minimal congruence of an algebra according to the behaviour of the
neighbourhoods. For example, a minimal congruence wheseighbourhoods are
all polynomially equivalent to a vector-space is said toenaffine type (or to have type
2).

In Figure 1 twoa-minimal sets of an algebeg, U andV/, of a minimal congruence
« are pictured, along with twa-neighbourhoodsy and M, contained in them. The
dashed lines delineate theblocks of the algebra.

Taking this idea one step further, given a pair of congrueriae) of A with
0 coveringa (i.e., « < [ and there are no congruences/fstrictly between the
two), one can form the quotient algebﬁsa{a and then consider the congruertte, =
{(a/,,b/,)  (a,b) € B}. Sinces coversa in the congruence lattice of then/ ,
is a minimal congruence o@&/a and so can be assigned one of the five types. In this
way we can assign to each covering pair of congruencésaoype and so end up with
a labelled congruence lattice fér

For modestly sized algebras, one can, without too muchteffompute their la-
belled congruence lattices. Since in general, the sizeottingruence lattice of a
finite algebra can be much larger than the algebra, the tas&roputing the labelled
congruence lattice of an algebra is by no means tractablendfis just interested in
determining the type of a given covering pair of congruemeeés the set of labels that
appear in the labelled congruence lattice of an algebranpatial time algorithms
exist (see [3]).

10
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Figure 1: Minimal Sets

Example 8 Consider the algebraA with universe{0, 1, 2,3} having a single binary
basic operation - y defined by:

-]0 1 2 3
0[0 0 0 3
110 101
210 0 2 3
3]3.1.3 3

Besides the two congruenfg and1 4, A only has two other (minimal) congru-
encesg andg, pictured in Figure 2 as partitions (using the dotted lirdédhe universe
of A.

We claim that the type of is boolean and the type gfis semilattice. To see this,
consider the polynomiajg(z) = x -1 andg(z) = z-2. Therange op is {0, 1} and so
N = {0, 1} is both ana-minimal set and an-neighbourhood (sincgis non constant
on somex-class and has minimal range subject to this property). @rother hand,
the range of; is {0,2,3} and so is either @-minimal set or properly contains one
sinceq is not constant on the only non-triviglclass. By analyzing the set of unary
polynomials ofA it can be seen that in fadt = {0, 2,3} is indeed g3-minimal set
and hence that/ = {0, 2} is ag-neighbourhood.

Now thata and 3-neighbourhoods have been identified, we need only determin
the types of the algebras thainduces on each of them to determine the types afd
(5. We see that the restriction of- iy to N provides a semilattice operation & and

11



Figure 2: The Congruencesandg, with their minimal sets

so the type ofv cannot be unary or affine since algebras of these types dauppbs

a semilattice polynomial. Since all boolean operationslEobtained by composition
from a boolean semilattice operation and complementaitasyffices to produce a
unary polynomial ofA that map< to 1 and1 to 0 in order to establish that the type
of « is boolean. It can be checked that the polynori{ét: - 3) - 2) - 1) fits the bill.
We leave the details of the calculation of the type3ab the reader and conclude the
presentation of this example by claiming that the types efdbvering pairg3,1.4)
and(a, 14) are boolean and semilattice, respectively.

While the type-labelled congruence lattice of a finite algetarries much informa-
tion about the algebra, it turns out that just knowing theoddibels that appear in the
labelled congruence lattice of a finite algebra or the vatledt it generates is useful.

Definition 3

1. The typeset of a finite algeb#g denotedyp{A}, is the set of labels that appear
in its labelled congruence lattice, and so is a subsefwfary, affine, boolean,
lattice, semi-latticé.

2. The typeset of a class of algeb#éss the union of the typesets of all of its finite
members and is denoted byp{K}.

3. We say that a finite algebra or a class of algebras omits diqaar type if that
type does not appear in its typeset.

The following result, found in [8] provides a connection lwiConjecture 1, the
Complexity Dichotomy Conjecture.

Theorem 7 Let A be a finite idempotent algebra andthe variety generated bax.
ThenV omits the unary type if and onlyvir(A) does not contain &-set. In fact, this
condition holds if and only if there is no algebralft(A) that is term equivalent to a
set (i.e., whose basic operations are just projections).

This theorem allows us to restate the Complexity Dichotoropj€cture in terms
of types:
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Conjecture 1 (the complexity dichotomy conjecture, versia 2) A finite idempotent
algebraA is tractable if and only if the variety generated hyomits the unary type (or
equivalently, that every subalgebratfomits the unary type).

Something similar occurs when considering ConjectureeBibunded Width Con-
jecture, namely we can express it in terms of omitting tanmgooence theoretic types.

Theorem 8 ([41]) Let A be a finite idempotent algebra andithe variety generated by
A. ThenV omits the unary and affine types if and onlyaf(A) does not contain an
algebra that is term equivalent to a reduct of a module ovenedinite ring. In fact,
this condition holds if and only if there is no algebrahi$(A) that is term equivalent
to a set or to the full idempoten reduct of a module over sonite fiimg.

In the language of tame congruence theory, the Bounded \idttjecture be-
comes:

Conjecture 2 (the bounded width conjecture, version 2)A finite idempotent algebra
A has bounded width if and only if the variety generated\mits the unary and affine
types (or equivalently, that every subalgebra\odmits these types).

We conclude this sub-section with a brief discussion of themlexity of deter-
mining if a given finite relational structure or finite algabs tractable or has bounded
width, assuming that Conjectures 1 and 2 are true.

Theorem 9 ([8, 15, 41]) Under the assumption that Conjectures 1 and 2 are true,

1. the problems of determining if a finite relational struetl is tractable or has
bounded width is NP-complete, and

2. the problems of determining if a finite idempotent algebra tractable or has
bounded width are polynomial-time solvable.

We note that without the assumption of idempotency, FreaseValeriote have
shown [25] that to determine if the variety generated by adiaigebra omits the unary
type or both the unary and affine types are both EXPTIME-cetegroblems.

3.2 Weak Near-unanimity operations

Recall that a near-unanimity operation on a4& a functiort(x1, . . .,z ), forn > 1,
that satisfies the equations

ty,z,x,...,x) = t(x,y,z,...,x) & -~ t(x,z,...,0,y) XT

From [30] we know that if a relational structute has a near-unanimity polymorphism
thenCSP(H) is tractable. The following variation of this notion was d&ped by E.
Kiss and Valeriote while investigating the Bounded Widtm{eature.

Definition 4 An operationt(zy,...,z,), forn > 1, on a setd is a weak near-
unanimity operation if it is idempotent and satisfies theagiquns

ty,z,x,...,z) =t(z,y,z,...,x) ~ - =tx,z,...,2,Y)

13



Clearly any near-unanimity operation is also a weak neanimity operation but there
are algebras that have term operations of the latter sorhdubf the former. For
example, for any positive integer, the term operation; + z2 + - - - + z,,+1 Of the
group of integers module is a weak near-unanimity operation. It is not difficult to
show that this group fails to have a near-unanimity term af@n in any number of
variables. We leave it as an exercise to show that the oparati (y - z) on our 4-
element example is a weak near-unanimity operation (artcthisalgebra does not
have a near unanimity term operation).

While it is not too difficult to show that if a finite algebra hasveak near-unanimity
term operation then the variety that it generates must dmeitunhary type, the converse
is much more difficult to show. A recent result of Maroti and Kénzie establishes
this, along with a characterization of finite algebras thetiayate varieties that omit
both the unary and affine types.

Theorem 10 ([38]) Let A be a finite algebra and’ the variety that it generates.

1. V omits the unary type if and only £ has a weak near-unanimity term opera-
tion.

2. V omits the unary and affine types if and only if there is sé@ne 0 such that
forall kK > N, A has a weak near unanimity term of arity

This surprising result allows us to provide restatementh®@tonjectures.

Conjecture 1 (the complexity dichotomy conjecture, versia 3) A finite idempotent
algebraA is tractable if and only ifA has a weak near-unanimity term.

Conjecture 2 (the bounded width conjecture, version 3)A finite idempotent algebra
A has bounded width if and only if for all but finitely maky> 0, A has ak-ary weak
near unanimity term.

4  Tractability via few subpowers

In this section we discuss a thread of tractability resuitg tulminates in a theorem
that unifies them in terms of a notion of a finite algebra haavgsubpowers.

Definition 5 ([2]) A finite algebraA is said to have few subpowers if there is some
polynomialp(n) such that for each. > 0,

sa(n) =logy |{B : Bisasubuniverse di”}| < p(n).

It is not difficult to see that for any finite algebfaof sizem, the functions, (n)
is bounded above by:™. In generals, (n) will grow exponentially and so the few
subpowers condition imposes certain restrictions on tgetahA. One consequence
of a finite algebra\ having few subpowers is the existence of a polynomal) such
that for anyn > 0, every subalgebra ofi™ has a generating set of size bounded
above byg(n). In fact this “small generating set” property is equivalenhaving few
subpowers. Before characterizing such algebras, we preseme examples.
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Using a theorem of Baker and Pixley from [4] it follows thaf\fis a finite algebra
that has &-ary near unanimity term operation (see Example 4) thenuhetions, (n)
is bounded above by a polynomial of degree- 1 and so such algebras have few
subpowers. An early tractability result of Jeavons, Cohmh@ooper [30] establishes
that algebras having near unanimity terms are tractabtjtas no coincidence that
this tractability result can be proved using the Baker-@ixheorem.

In [24], Feder and Vardi prove that if a relational struct@iténas a polymorphism
of the formz - y~! - 2 for some group operatian- y on H thenCSP(H) is tractable.
Generalizing this, Bulatov [5] proves that if a finite algebr has a ternp(zx, y, 2)
that satisfies the equatiopér, x,y) = p(y,z,z) = y for all z, y € A thenA is also
tractable (any operation that satisfies these equatiommistkas a Mal'tsev operation,
see Example 4). The proof of this theorem found in [13] explihie fact that any finite
algebra with a Mal'tsev term has the small generating saipgaty (and hence, few
subpowers).

While Mal'tsev and near unanimity operations are of quitéedent character, Dal-
mau in [22] managed to find a common generalization of thenthaéageneralized
majority-minority operation (see Example 4 for the defonfi. In a modification of
the algorithm presented in [13], Dalmau shows in [22] thatfamite algebra that has a
GMM term is tractable. As in the case of algebras with MaVtserms, these algebras
have few subpowers and the small generating sets propetty arthis latter property
that plays a crucial role in the proof.

In [2] a characterization of finite algebras with few subposis given in terms of
the presence of a special type of operation.

Definition 6 A k-edge operation on a setis ak+ 1-variable operatiort that satisfies
the equations:

2,2, 9,9, 0,Y) =Y
0Ty, 2,9, Y, YY) R Y
Y00, 0,Y, - %y) Ry
CTRTR T TR NN TR 7)) y

Y, 0,999, --,y,) = .

Theorem 11 ([2]) A finite algebraA has few subpowers if and only if it hagceedge
term for somet > 0. If this condition fails to hold then the function, (n) grows
exponentially.

Using this characterization the tractability of algebrathview subpowers can be
deduced.

Corollary 3 ([28]) Ifthe finite algebra\ has few subpowers thenitis globally tractable.

We note that the proof of this corollary closely follows thi@ tractability proof
of Dalmau. We also note that the theorem and corollary settigectures posed by
Chen [18] and Dalmau [21] on the nature of algebras with felapswers.

15



We conclude this section with a result of Markovi¢ and McKier36, 2] that high-
lights the singular position that algebras with near unégiterm operations occupy.
We have already noted that if a finite idempotent algebra hresaaunanimity opera-
tion, then it has bounded width and few subpowers and so cahdyen to be tractable
in two distinct ways. The following theorem provides a caisesto this.

Theorem 12 Let A be a finite idempotent algebra. Af is of bounded width and has
few subpowers then it has a near unanimity term operation.

5 Coloured graphs and finite algebras

The conditions of tractability and bounded width that appe&onjectures 1 and 2 are
known to be necessary. In order to prove that they are al$iisut for the complex-
ity dichotomy conjecture one needs to design an algorithnal@morithms) that solves
CSPs satisfying the tractability condition, and for the bded width conjecture, that
the constraint propagation algorithm solves CSPs satigftie bounded width con-
dition. In all known cases algorithms (of proofs of the sonesk of algorithms) use
some local structure of algebras. Usually this structurelmaexplained in terms of
the action of term operations of algebras on small subsetthid section we propose
an approach to the local structure of a finite idempotenthalgéhat is based on term
operations of the algebra.

5.1 Coloured graphs of algebras
5.2 The graph

The results of this section were first presented in [10]. Watego every idempotent
finite algebraA an edge-coloured graplr(A). If A = (A; F) andB C A, then by
(B) we denote thessubalgebra generated b, that is the smallest subalgebra if
containingB.

Definition 7 Let A = (A; F') be a finite idempotent algebra. The vertex set of the
graphGr(A) is the universed of A. A pairab of vertices is an edge if and only if there
exists a congruenagof (a, b) and a term operatiorf of A such that eitherf /4 is an
affine operation orfa, b)/ y, or f/ is a semilattice operation ofu/y, b/}, or f/pis
a majority operation or{a/y, b/} (see Figure 3).

The color of an edge is defined as follows.

o If there exists a congruendeand a term operatiorf € Term(A) such thatf/,
is a semilattice operation ofia/y, b/} thenab is said to have theemilattice

type

e An edgeub is of themajority typeif it is not of the majority type and there are a
congruencd and a term operatiorf of A such thatf/ is a majority operation

on{a/y,b/p}-
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classes 0B

Figure 3: Edges

Figure 4: Gr(A); edges of the semilattice type are drawn solid, edges of #jerity
type are dotted

e An edgeud is of theaffine typeif it is not of the semilattice or majority type and
there are a congruenagand a term operatiorf of A such thatf/ is an affine
operation on(a, b)/p.

We sometimes call the sef , U b/, athick edge

Example 9 Let A = ({0, 1,2}; f) be an algebra, where the operatipis defined by
its Cayley table

flz,y) [0 1 2
0[0 1 2
1{1 1 0
202 0 2

(In fact, f occurs in [12]; in that paper it is called operation (6).) Wesé: (0,1) =
{0,1}, (0,2) = {0,2}, (1,2) = {1,2,3}; the only congruence ofl, 2) such that
1,2 belong to distinct classes is the equality relatighwitnesses that1 and 02

are edges of semilattice typ@2 cannot be an edge of the semilattice type because
no term operation of\ is semilattice on{1, 2}; however, the operation(z, y, z) =
f(f(z, f(y,2), f(f(z,y),z)) is @ majority operation of1,2}. Thus,Gr(A) is the
graph shown in Figure 4. Note also that this graph was intpliosed in [12] to prove

the tractability ofA.

Observe that it is possible that for some pajb different congruences qfz, b)
witness different types of the edgé. Following the definition we always choose the
‘strongest’ type of the edge. Thus, the semilattice typearsnger than the majority
type, which, in turn, is stronger than the affine type.
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Example 10 Let A, B be algebras with universd¢®, 1} and{a, b}, respectively, and
operationsf, g. These operations are defined as follows:

— f is a semilattice operation an, i.e. f(0,0) = f(0,1) = f(1,0) =0, f(1,1) = 1;

— fis the first projection o, i.e. f(z,y) = z forall x,y € {a,b};

— g is the ternary first projection oh, i.e.g(x,y,2) = « forall z,y, z € {0,1};

— g Is a majority operation oi8; note that there is only one majority operation on a
2-element set.

Then letC denote the direct product df andB, that is the algebra with universe
C ={(x,y) | €{0,1},y € {a,b}}, and operationg, g on C acting as follows:

f((@1,91), (w2, 92)) = (f(21,22), f(y1,92))
and
9((z1,91), (T2,92), (v3,93)) = (9(1, 22, 23), 9(y1, Y2, Y3))-

As is easily seen(0,a), (1,b)) = C and the equivalence relations, n, defined

by ((:Cl,yl), (!Eg, yg)) eEm if and onIy Ifxl = T2, and((xl,yl), (:Cg,yg)) € 2 if and
only if y; = y», are congruences @f. Observe thaf/771 is a semilattice operation on

(C/n1 = {(O,a)/m, (l,b)/m}; and thaIC/772 = {(O,a)/n2, (1’b)/7l2} is isomorphic
to B. Thus, congruence; witnesses that0,a)(1,b) is an edge of semilattice type,
while 7, withesses that the same edge has majority type. Since thiatem type is
stronger, this edge has semilattice type.

5.3 Connectedness and omitting types

We show that connectedness of the gr&pf\) and the colours of edges that appear
in it are closely related to omitting types in the sense ofdangruence theory, and
to Conjectures 1 and 2.

Theorem 13 ([10]) For an idempotent algebra the following conditions are equiva-
lent:

(1) var(A) omits the unary type;
(2) var(A) does not contain a G-set;

(3) for any subalgebr® of A the graphGr(B) is connected.

We shall refer to condition (3) from Theorem 13 as to¢banectedness condition

Theorem 14 Let A be an idempotent algebra. The following conditions are eatui
lent:

(1) var(A) omits the unary and affine types;

(2) var(A) does not contain an algebra that is term equivalent to a rédfia module
over some finite ring;

(3) A satisfies the connectedness condition, &n@\) does not contain edges of the
affine type.
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Since this result appears here for the first time we give affpbib. We shall use
an improved version of Lemma 1 from [10].

Lemma 1 LetA be afinite idempotent algebra, and tétbe an edge of the affine type
in Gr(A). Then there are a maximal congruertcef (a, b) (that is there is no congru-
ence strictly betweef and the total congruence) and a module with the universe
(a, b)/ g over aring R such that every term operation ¢f, b) / o can be represented as
an operationy;zy + ... + apx, f M withay, ..., € Ryar + ...+ a, = 1.

Proof (of Theorem 14): The equivalence of (1) and (2) is follows from Theorem 8.
We show that (3) is equivalent to (1).

If for some subalgebra of A the graphGr(B) is not connected then by Theorem 13
var(B) C var(A) contains a G-set that is term equivalent to a reduct of anyuteod
because in an idempotent variety any G-set is term equivédean algebra whose
basic operations are projections.df(A) contains an edge of the affine typé then
by Lemma 1 the algebra, b)/, for a certaing is a reduct of a module.

By Theorem 8 ifvar(A) contains an algebra term equivalent to a reduct of a mod-
ule, then there is a subalgetiBof A and a congruencéof B such thaf3/, is term
equivalent to a reduct of a module. If this algebra is a G{seh Gr(B) is not con-
nected by Theorem 13. Otherwise we assume Fhat a minimal (with respect to
containment) subalgebra with this property @&nid a maximal congruence @. Then
0 is the only maximal congruence Bt Indeed, ifp is another maximal congruence of
B, then any clas€’ of n that is not contained in a class®induces a proper subalgebra
C of B, andC/ is still term equivalent to a reduct of a module; a contradictvith
minimality of B. It is not hard to see, that, for amyb € B such that(a,b) ¢ 6, the
pair ab is an edge of the affine type. O

Using Theorems 13 and 14 we can give yet another formulafitmeocomplexity
and bounded width conjectures.

Conjecture 1 (the complexity dichotomy conjecture, versia 4) A finite idempotent
algebra is tractable if and only if it satisfies the connectess condition.

Conjecture 2 (the bounded width conjecture, version 4)A finite idempotent algebra
A has bounded width if and only if it satisfies the connectesigeadition and the
graphGr(A) does not contain edges of the affine type.

5.4 Improving an algebra

The study of finite algebras in the context of the complexftthe CSP does not nec-
essarily suppose investigation of the exact structure itefaigebras. Therefore we
can transform algebras under consideration as long as suahsfiormation preserves
properties supposedly responsible for tractability, etgitting the unary type. In this
subsection we show two such transformations.

We say that the grapBr(A) is semilattice-connectedf for any two vertices:, b €
A there is a path irGr(A) consisting of edges of the semilattice type. Hegnilat-
tice/majority connectedness$ Gr(A) is defined similarly.
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Proposition 2 LetA be an idempotent algebra satisfying the connectednesstmmd
letab be an edge o6r(A) of the semilattice or majority type, and [BL;, = (a/yUb/p)
be the corresponding thick edge, whérs a congruence certifying the type @f.

(1) Aer = (A; F), whereF’ is the set of all term operations @f preservingR,»,
satisfies the connectedness condition.

(2) If ab is has the semilattice type ar@(A) is semilattice-connected, th&r(A,;)
is semilattice-connected.

(3) If ab has the majority type an@r(A) is semilattice/majority-connected, thén(A ;)
is semilattice/majority-connected.

As the following example shows, constructing a reduct byirgidn edge of the
affine type can destroy the connectedness condition andmneake a tractable algebra
NP-complete.

Example 11 Let A = ({0, 1,2}; h), whereh(z,y, z) = © — y + z and+, — denote
the operation of addition and subtraction modulo 3. It islwabwn (see e.g. [40])
that the term operations @f are the operations of the form 21 + . . . + a2, Where
a1,...,qn areintegersand; + ...+ a,, = 1 (mod 3). Therefore, for any, b € A,
{(a,b) = A, the only maximal congruence i, b) is the equality relation, anab is an
edge of the affine type.

Since the affine operatian — y + z is an operation of\, the problemCSP(A)
can be solved by Gaussian elimination [31]. Take an edge @f), say01 and a term
operationf (z1,...,x,) = anx1+...+anz, of A. If f preserves0, 1}, then, for any
i€ {l,...,n}, we havef(0,...,0,1,0,...,0) = a; € {0,1} (1 is on theith place).
Furthermore, ity;, «; = 1, thenf(0,...,0,1,0,...,0,1,0,...,0) =a; + o; =2 ¢
{0,1} (1s are on théth andjth places). Thus, only one of thes is non-zero, which
means thaff is a projection. Hence, every term operationAgf; is a projection and
CSP(Agy) is NP-complete.

Proposition 2 amounts to saying that we may restrict ountitte to algebrag\ such
that every thick edge of the semilattice or majority typésefA) is a subalgebra.

The second transformation preserving the connectednesition is based on the
following statement that shows that the term operationt#fgierg the type of edges can
be significantly unified.

Proposition 3 Let A be an idempotent algebra. For an edgealways denotes a con-
gruence certifying its type. There are term operatigng, i of A such that

f‘{ 1ab/a} is a semilattice operation iib is an edge of the semilattice type, it is the
g:°r0

first projection ifab is an edge of the majority or affine type;

g‘{ b/} is a majority operation ifab is an edge of the majority type, it is the
*/9:°/9

first projection if ab is an edge of the affine type, a@Ea/gb/g}(x’y’ z) =

, , if ab has the semilattice type;
f‘{a/g,b/g}(x f‘{a/(yb/g}(y it a P
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h‘( ny is an affine operation operation ifb is an edge of the affine type, it is the
abl/g

first projection ifab is an edge of the majority type, thF (z,y,2) =
ta/g:b/g .}

, , if ab has the semilattice type.
f‘{a/g,b/g}(x f‘{a/(yb/g}(y it a P
Example 9 (continued) Let us reconsider the algebfafrom Example 9. By Propo-
sition 2, sincel2 is an edge of the majority type, the algelira satisfies the connect-
edness condition. The operatiofig), h satisfying the conditions of Proposition 3 can
be chosen as follows; is the operation obtained in Example 8z, y) = g(z, z,y)
(the binary operation defined in Example 9 does not fit, bex#uboes not preserve
{1,2}) andh(z,y, 2) = f(z, f(y, 2)).

Propositions 2 and 3 together allow us to restrict oursetvéise study of idempo-
tent algebras that have at most three basic operations,ioasy/land two ternary, and
such that, for any edge of the semilattice or majosityand a congruenagcertifying
this, the thick edge/, U b/ is a subalgebra. In the next section we shall see that the
class of algebras to be studied can be further narrowed down.

5.4.1 Edges of the semilattice type

In this section we focus on edges of the semilattice type®ftiaphGr(A). Note first
that if one fixes a congruendg,, for each edge o6r(A) that certifies its type, and a
term operatiory such thatf is a semilattice operation o[rm/oab, b/ﬁab} for every edge

ab of the semilattice type o&r(A), then one can define an orientation of every such
edge. An edgeb of the semilattice type is oriented fromto b if f(a/Gab’ b/ﬁab) =
f(b/Hab’ a/Gab) = b/ﬁab' For instance, the edges, 02 of the graph from Example 9
are oriented frond to 1 and2 respectively. Clearly, orientation strongly depends @n th
choice of the operatiori. The graphGr(A) oriented accordingly to a term operation
f will be denoted byGr¢(A). We then can definsemilattice-connecteandstrongly
semilattice-connectezbmponents o6r ¢ (A). We will also use the natural order on the
set of strongly semilattice-connected component&gf(A): for components, B,

A < B ifthere is a directed path ifir (A) consisting of edges of the semilattice type
and connecting a vertex from with a vertex fromB. Later we show that certain
restrictions on the set of strongly semilattice-connecimponents oGrs(A) yield
the tractability ofCSP(A).

First we show that if for an edge of the semilattice type there is no semilattice
term operation on the s¢t, b} thenab can be thrown out of the gragr(A) such that
the connectedness condition is preserved in the remainagghg Therefore, we can
assume that for any edge of the majority tygethere is a semilattice term operation
on{a,b}.

Proposition 4 Let A be an algebra andsr’(A) the subgraph ofcr(A) obtained by
omitting edgesib of the semilattice type such that there is no semilatticeratpm

on {a,b}. ThenGr'(A) is connected. Ifcr(A) is semilattice-connected thesr'(A)

is semilattice-connected. Gr(A) is semilattice/majority-connected théir'(A) is

semilattice/majority-connected.
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The graphGr’(A) oriented according to a binary term operatipwill be denoted
by Gr’f (A).

We conclude this subsection with a result that shows howestigs of the graph
Gr(A) can help in establishing the tractability and bounded widtine algebra\. Let
us consider algebraswith a binary term operatiofi such that, for every subalgelia
of A, the subgraph O(Er’f (A) induced byB has a uniqgue maximal strongly semilattice-
connected component. This condition we shall calltteximal semilattice component
condition

Theorem 15 If an algebraA satisfies the maximal semilattice component condition,
thenCSP(A) is of relational width 3.

Observe that a 2-semilattice, that is a grouppoid with ariils¢tice basic op-
eration, satisfies the maximal semilattice component ¢mmdi Indeed, ifA has a
2-semilattice term operatiofi, then f is a semilattice operation ofu, f(a,b)} and
{b, f(a,b) = f(b,a)}. This means thabr’;(A) is semilattice-connected. Moreover,
if a,b belong to different maximal strongly semilattice-conmectomponent® and
C, then f(a,b) belongs to a strongly semilattice-connected compotiisuch that
B < D andC < D, acontradiction with the maximality d8, C. The same argument
is valid for any subalgebra df, thus,A satisfies the maximal semilattice component
condition. Since every semilattice operation is also arilsétice operation, the same
holds for algebras with a semilattice term operation. ThysTheorem 15, we obtain
the main result of [6], and also the results of [7], sindgirsary commutative conserv-
ative operation is a 2-semilattice operation, and also the resiifi31, 29] concerning
semilattice operations.

5.5 Conservative algebras and their graphs

Let H be a relational structure. In ttomnservativelist) constraint satisfaction prob-
lem denotedCCSP(H), the question is, given a structugeand, for each element
g € G, alist L(g) of elements of+, whether there exists a homomorphigmG — H
such thatp(g) € L(g) forall g € G.

Example 12 L1sT-H-COLOURING) Let H be a (directed) graph. In thesT H-Co-
LOURING problem we are given a grapgh and, for each vertex of G, a setL(v)
of vertices of H. The question is whether there is a homomorphjsfrom G to H
such thatp(v) € L(v) for every vertexw of G. Clearly, ST H-COLOURING can be
represented in the form of the conservative CSP.

Notice that, for any structure(, the problemCCSP(H) is equivalent toCSP(H*),
whereH* is an expansion of{ obtained by adding all unary relations. A struct@fe
such that for each subsgtC H there is a relational symbat in the vocabulary with
R™ = Sis said to beconservative Thus, instead of conservative CSPs we may study
ordinary constraint satisfaction problems correspontbr@pnservative structures.

On the algebraic side, every term operatjoof an algebra\ that gives rise to a
conservative CSP must leenservativethat is f (z1,...,z,) € {z1,...,2,} for all
x1,...,Ty,. Algebras satisfying this condition are also called covesére.
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If A is a conservative algebra, then every 2-element subséirmduces a subalge-
bra of A. Therefore A satisfies the connectedness condition if and only if eveity pa
of its elements constitutes an edge@f{A). Moreover, every edge of this graph is
2-element, implying that the operatiofisg, » constructed in Proposition 3 are a semi-
lattice (that is conjunction or disjunction) operatione timajority operatiorfz \V y) A
(y vV z) A (2 V ), and the Mal'tsev operation — y + z(mod 2) on each 2-element
subset fromA, respectively (we denote the elements of this subset by @ and

Theorem 16 A conservative algebra is tractable if and only if it satisfies the con-
nectedness condition, that is, for any 2-element subatgBlof A (we assume3 =
{0, 1}), there exists a term operatiagnsuch thatt‘B is either a semilattice operation

x Vyorzx Ay, or the majority operatioriz V y) A (y V 2) A (2 V x), or the Mal'tsev
operationz — y + z(mod 2). In this caseA is also globally tractable. Otherwis& is
NP-complete.

Observe that by Proposition 3 the tractability of a consrgalgebra is withessed
by term operations of arity at most 3. This observation iegk stronger version of
Theorem 16. An algebra such that each ofkitslement subsets induces a subalgebra
is calledk-conservative

Corollary 4 If A is a 3-conservative algebra theis globally tractable if and only if
it satisfies the connectedness condition. Otherwise it ibiRplete.

References

[1] Eric Allender, Michael Bauland, Neil Immerman, Henni&ghnoor, and Heribert
Vollmer. The complexity of satisfiability problems: Refigischaefer's theorem.
In MFCS pages 71-82, 2005.

[2] Joel Berman, Pawet Idziak, Petar Markovit, Ralph McKienMatthew Valeriote,
and Ross Willard. Varieties with few subalgebras of powprsprint, 2006.

[3] Joel D. Berman, Emil W. Kiss, Péter Prohle, ahghes Szendrei. The set of types
of a finitely generated varietiscrete Math, 112(1-3):1-20, 1993.

[4] K.A. Baker and A.F. Pixley. Polynomial interpolationéthe chinese remainder
theorem.Mathematische Zeitschrjft43:165-174, 1975.

[5] A.A. Bulatov. Mal'tsev constraints are tractable. Teaal Report PRG-RR-02-
05, Computing Laboratory, University of Oxford, Oxford, UR002.

[6] A.A. Bulatov. Combinatorial problems raised from 2-sétiices. Journal of
Algebra 298(2):321-339, 2006.

[7] A.A. Bulatov and P.G. Jeavons. Tractable constraimsed under a binary op-
eration. Technical Report PRG-TR-12-00, Computing Latuoya University of
Oxford, Oxford, UK, 2000.

23



[8] A.AA. Bulatov and P.G. Jeavons. Algebraic structures ilombi-
natorial problems. Technical Report MATH-AL-4-2001, Teddh
che universitat Dresden, Dresden, Germany, 2001. aveiladnt
http://web. com ab. ox. ac. uk/ oucl / resear ch/ ar eas/
constrai nts/publications/index.htn.

[9] A.A. Bulatov, P.G. Jeavons, and M.V. Volkov. Finite s@miups imposing
tractable constraints. In Gracinda M.S.Gomes, Jean-Hmnid¥edro V.Silva, ed-
itor, Semigroups, Algorithms, Automata and Languageges 313—-329. World
Scientific, Singapore, 2002.

[10] Andrei A. Bulatov. A graph of a relational structure aoohstraint satisfaction
problems. InLICS, pages 448—-457, 2004.

[11] Andrei A. Bulatov. H-coloring dichotomy revisited. Theor. Comput. Sgi.
349(1):31-39, 2005.

[12] Andrei A. Bulatov. A dichotomy theorem for constrai@ttisfaction problems on
a 3-element setl. ACM 53(1):66-120, 2006.

[13] Andrei A. Bulatov and Victor Dalmau. A simple algonithfor mal'tsev con-
straints.SIAM J. Comput.36(1):16—27, 2006.

[14] Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokh@lassifying the com-
plexity of constraints using finite algebrasSIAM J. Comput.34(3):720-742,
2005.

[15] Albert Atserias, Andrei Bulatov, and Anuj Dawar. Affirsystems of equations
and counting infinitary logic. IrProceedings of the 34th International Collo-
guium on Automata, Languages and Programming—ICALF2007.

[16] Andrei A. Bulatov, Andrei A. Krokhin, and Benoit LaroséDualities for Con-
straint Satisfaction Problems. submitted.

[17] S. Burris and H.P. SankappanavArcourse in universal algebrarolume 78 of
Graduate Texts in MathematicSpringer-Verlag, New York-Berlin, 1981.

[18] Hubie Chen. The expressive rate of constraint&nn. Math. Artif. Intell,
44(4):341-352, 2005.

[19] Matthias Clasen and Matthew Valeriote. Tame congraeheory. InLectures on
algebraic model theorwolume 15 ofFields Inst. Monogr.pages 67-111. Amer.
Math. Soc., Providence, RI, 2002.

[20] V. Dalmau. A new tractable class of constraint satisfacproblems. InPro-
ceedings 6th International Symposium on Atrtificial Intedlice and Mathemat-
ics, 2000.

[21] V. Dalmau.Computational Complexity of Problems over Generalisedrfidas
PhD thesis, Department LSI of the Universitat PolitecnieaGatalunya (UPC),
Barcelona., March, 2000.

24



[22] Victor Dalmau. Generalized majority-minority op&oas are tractable. 1hICS,
pages 438-447, 2005.

[23] Victor Dalmau, Ricard Gavalda, Pascal Tesson, andiD&hérien. Tractable
clones of polynomials over semigroups.@R, pages 196210, 2005.

[24] T. Feder and M.Y. Vardi. The computational structurenrminotone monadic SNP
and constraint satisfaction: A study through datalog araugrtheory. SIAM
Journal of Computing28:57—-104, 1998.

[25] Ralph S. Freese and Matthew A. Valeriote. On the conipl@f some Maltsev
conditions. preprint, 2006.

[26] P. Hell and J. NeSetfil. On the complexity Bf-coloring. Journal of Combinato-
rial Theory, Ser.B48:92-110, 1990.

[27] D. Hobby and R.N. McKenzieThe Structure of Finite Algebrasolume 76 of
Contemporary MathematicsAmerican Mathematical Society, Providence, R.I.,
1988.

[28] Pawel Idziak, Petar Markovi¢, Ralph McKenzie, Matth¥aleriote, and Ross
Willard. Tractability and learnability arising from algets with few subpowers.
InLICS '07: Proceedings of the 22nd Annual IEEE Symposium giiclio Com-
puter Sciencepages 213-224, Washington, DC, USA, 2007. IEEE Computer
Society.

[29] P.G. Jeavons. On the algebraic structure of combirafmroblems.Theoretical
Computer Scienc00:185-204, 1998.

[30] P.G. Jeavons, D.A. Cohen, and M.C. Cooper. Constradoissistency and clo-
sure.Artificial Intelligence 101(1-2):251-265, 1998.

[31] P.G. Jeavons, D.A. Cohen, and M. Gyssens. Closure piep@f constraints.
Journal of the ACM44:527-548, 1997.

[32] P.G. Jeavons, D.A. Cohen, and J.K. Pearson. Cong&raimd universal algebra.
Annals of Mathematics and Artificial Intelligenc:51-67, 1998.

[33] B. Larose, C. Loten, and C. Tardif. A characterisatidriitst-order constraint
satisfaction problems. IbICS, pages 201-210, 2006.

[34] B. Larose and P. Tesson. Universal algebra and hardeestts for constraint
satisfaction problems. IKCALP, 2007.

[35] B. Larose and L. Zadori. Bounded width problems and latgs. Algebra Uni-
versalis 56(3-4):439-466, 2007.

[36] Petar Markovi¢ and Ralph McKenzie. Few subpowersgeoance distributivity
and near-unanimity. to appear in Algebra Universalis, 2006

25



[37] R.N. McKenzie, G.F. McNulty, and W.F. Tayloilgebras, Lattices and Varietigs
volume |. Wadsworth and Brooks, California, 1987.

[38] Ralph McKenzie and Miklés Marbti. Existence theorefar weakly symmetric
operations. to appear in Algebra Universalis, 2006.

[39] T.J. Schaefer. The complexity of satisfiability prabke In Proceedings of
the 10th ACM Symposium on Theory of Computing (STOCp&)es 216226,
1978.

[40] A. Szendrei.Clones in Universal Algebravolume 99 ofSeminaires de Mathe-
matiques Superieure§/niversité de Moéntreal, 1986.

[41] Matthew Valeriote. A subalgebraintersection propést congruence distributive
varieties.Canadian Journal of Mathematicaccepted for publication, 2006.

26



