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Abstract

The Dichotomy Conjecture for the Constraint Satisfaction Problem (CSP) was recently

settled, independently by Zhuk and the author. The proofs of this conjecture are rather

sophisticated and require deep understanding of the algebraic structure of CSPs. This

paper is a precursor of the author’s proof of the Dichotomy Conjecture, and represents

its main ideas in a simpler and clearer form in a more restricted class of the CSP.

There are two well-known types of algorithms for solving CSPs: local propagation

and generating a basis of the solution space. For several years the focus of the CSP

research has been on ‘hybrid’ algorithms that somehow combine the two approaches.

In this paper we present a new method of such hybridization that allows us to solve

certain CSPs that has been out of reach for a quite a while, and eventually leads to

resolving the Dichotomy Conjecture.

We apply this method to CSPs parametrized by a universal algebra, an approach

that has been very popular in the last decade or so. Specifically, we consider a fairly

restricted class of algebras we will call semilattice block Mal’tsev. An algebra A is

semilattice block Mal’tsev if it has a binary operation f , a ternary operation m, and

a congruence σ such that the quotient A/σ with operation f is a semilattice, f is a

projection on every block of σ, and every block of σ is a Mal’tsev algebra with Mal’tsev

operation m. This means that the domain in such a CSP is partitioned into blocks such

that if the problem is considered on the quotient set A/σ, it can be solved by a simple

constraint propagation algorithm. On the other hand, if the problem is restricted on
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individual σ-blocks, it can be solved by generating a basis of the solution space. We

show that the two methods can be combined in a highly nontrivial way, and therefore

the constraint satisfaction problem over a semilattice block Mal’tsev algebra is solvable

in polynomial time.

Keywords: constraint satisfaction problem, semilattice block Mal’tsev algebras,

dichotomy conjecture, block-minimality

1. Introduction

In a Constraint Satisfaction Problem (CSP, for short) we need to decide whether or

not a given set of constraints on values that can be assigned simultaneously to a given

set of variables can be satisfied. While the general CSP is NP-complete, its versions re-

stricted by specifying a constraint language, a set of allowed constraints, are sometimes5

solvable in polynomial time. For a constraint language Γ the corresponding restricted

CSP is denoted CSP(Γ) and called a nonuniform CSP. The study of the complexity

of nonuniform CSPs was initiated by Schaefer [33]. In that paper Schaefer determined

the complexity of CSP(Γ) for constraint languages on a 2-element set. The complexity

of CSP(Γ) for constraint languages over finite sets has been attracting much attention10

since then. This research is guided by the Dichotomy Conjecture proposed by Feder

and Vardi [20, 21] that states that every CSP of the form CSP(Γ) for a constraint lan-

guage Γ on a finite set is either solvable in polynomial time or is NP-complete. The

Dichotomy Conjecture has been restated and made more precise in different languages,

see, e.g. [12, 31]. Also, several powerful approaches to the problem have been devel-15

oped, through algebra, logic, and graph theory. So far the most successful method

of studying the complexity of the CSP has been the algebraic approach introduced by

Jeavons et al. [11, 12, 14, 25]. This approach relates the complexity of CSP(Γ) to the

properties of a certain universal algebra AΓ associated with Γ. In particular it allows

one to expand CSP(Γ) to the problem CSP(AΓ) that depends only on the associated20

algebra, without changing its complexity. It therefore suffices to restrict ourselves to

the study of the complexity of problems of the form CSP(A), where A is a finite uni-

versal algebra.
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The dichotomy conjecture has been confirmed in a number of cases: for constraint

languages on 2- and 3-element sets [7, 33] (a dichotomy result was also announced25

for languages over 4-, 5-, and 7-element sets [27, 34, 35]), for constraint languages

containing all unary relations [1, 8, 9], and several others, see, e.g. [2, 3, 24]. Finally,

Zhuk [36, 37] and Bulatov [16, 17] confirmed the general Dichotomy Conjecture.

One of the most remarkable phenomena discovered in the CSP research is that,

generally, there are only two types of algorithms applicable to CSPs solvable in poly-30

nomial time. The first one has long been known to researchers in Artificial Intelligence

as constraint propagation [19]. Algorithms of the other type resemble Gaussian elimi-

nation in the sense that they construct a small generating set of the set of all solutions

[10, 24]. The scope of both types of algorithms is precisely known [2, 24].

Dichotomy results, however, cannot be proved using only algorithms of a single35

‘pure’ type. In all such results, see, e.g. [1, 7, 8, 9] a certain mix of the two types of

algorithms is needed. In some cases, for instance, [7] such a hybrid algorithm is some-

what ad hoc; in other cases, [1, 8, 9] it is based on intricate decompositions of the prob-

lem instance. In this paper we present a different approach to mixed types algorithms.

It is a precursor and a much simplified version of the general algorithm from [16, 17].40

We believe that this algorithm is worth attention in its own right, because it avoids the

technicalities and complications of the general algorithm from [16, 17], while retaining

most of the main ideas. It therefore is accessible and can be read as an introduction to

[16, 17]. The first new feature of our algorithm is that it decomposes a CSP instance

into subproblems that unlike local propagation are not necessarily small — some of45

these ‘subproblems’ may even contain all the variables of the original instance. Then it

solves the problem by establishing some ‘extreme’ consistency by recursively solving

the subproblems identified in the first stage. Later we give a more detailed description

of the algorithm.

We follow the line of research pioneered in [28, 29, 30, 32]. In these works the re-50

searchers tried to tackle somewhat limited cases of the CSP, in which a combination of

local consistency properties and Gaussian elimination type fragments is very explicit.

To provide the context for our results we explain those cases in detail.

Suppose that a constraint language Γ is such that it is possible to partition its domain
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A into blocks with the property that the restriction of CSP(Γ) on each block of the

partition can be solved by an algorithm of one type; while if we collapse each block

into a single element, the resulting quotient problem can be solved by an algorithm of

another type. What can be said about CSP(Γ) itself? For instance, consider constraint

language Γ = {R} on A = {0, 1, 2} where the ternary relation R is given by (triples

in R are written vertically)

R =


0 0 1 1 2 2 2 2 2 2 2 2

0 1 0 1 0 0 1 1 2 2 0 1

0 1 1 0 1 0 0 1 0 1 2 2

 .

IfA is partitioned intoB = {0, 1} andC = {2}, then the restriction ofR on the blocks

B,C is one of the relations above separated by vertical lines (we can choose between

B and C for different coordinate positions), and the corresponding CSP can be solved

by Gaussian elimination. Indeed, the only nontrivial relation obtained this way is the

first one, that is, R ∩ B3, and it is given by a linear equation x + y + z = 0. The

quotient relation R′ then looks like

R′ =


B C C C

B B C B

B B B C

 ,

and it follows from [33] that CSP(R′) can be solved by a local propagation algorithm,

as R′ can be represented by a Horn clause. Solving CSP(Γ) itself is not so easy, see,55

[7], and similar but more complicated cases have not been known to be polynomial

time solvable for a long time.

To make constructions like the one above more precise we use the algebraic rep-

resentation of nonuniform CSPs, in which a constraint language is replaced with its

(universal) algebra of polymorphisms. This allows us to exploit structural properties60

of algebras to design a hybrid algorithm. So, starting from CSP(Γ), where Γ is a con-

straint language on a set A, we first consider the corresponding algebra AΓ with base

set A such that CSP(AΓ) is polynomial time reducible to CSP(Γ). A partition of AΓ

is given by a congruence of AΓ, that is, an invariant equivalence relation. Recall that
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due to the results of [12] the algebra AΓ can be assumed idempotent, this makes re-65

strictions on congruence blocks possible. Now, suppose that an idempotent algebra A

is such that it has a congruence σ with the property that the CSP of its quotient A/σ
can be solved by the small generating set algorithm, say, it is Mal’tsev, while for every

σ-block B (a subalgebra of A) the CSP over B can be solved by a local propagation

algorithm; or the other way round, see Figure 1. How can one solve the CSP over A70

itself? Maroti in [29] considered the first case, when A/σ can be solved by the small

generating set algorithm. This case turns out to be easier because of the property of the

σ-blocks we can exploit. Suppose for simplicity that every σ-block B is a semilattice,

as shown in Figure 1. Then every CSP instance on B has some sort of a canonical

solution that assigns the maximal element of the semilattice (that is an element a ∈ B75

such that ab = a for all b ∈ B) to every variable. It then can be shown that if we find

a solution ϕ : V → A/σ where V is the set of variables of the instance on A/σ, and

then assign the maximal elements of the σ-block ϕ(v) to v, we obtain a solution of the

original instance.

+

+ +

+

maximal elements

maximal     -blocks

(a)

(b)

Figure 1: (a) Algebra A such that A/σ is Mal’tsev; (b) an SBM algebra. Rectangles represent σ-blocks,

dots represent elements, lines show the semilattice structure, and ⊕ represents a Mal’tsev operation acting

on elements or σ-blocks.

The case when A/σ is a semilattice, while every σ-block is Mal’tsev is much more80

difficult. We will call such algebras semilattice block Mal’tsev algebras (SBM algebras,

for short). More precisely, we consider idempotent algebras A with the following prop-

erty: There are a binary operation f and a ternary operation m, and a congruence σ of

A such that A/σ is a semilattice with a semilattice operation f , and every σ-block B is
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a Mal’tsev algebra with Mal’tsev operation m, and fB is a projection. The main diffi-85

culty with this kind of algebras is that the only solution of a CSP over a semilattice we

can reliably find is the canonical one assigning the maximal available element to each

variable. However, if we restrict our instance only to the maximal σ-block B, it may

have no solution there, even though the original instance has a solution, which simply

does not belong to the maximal block. If this is the case, it has been unclear for nearly90

10 years how the domain can be reduced so that the maximal block is eliminated.

The problem has been resolved in some special cases. Firstly, Maróti in [30]

showed that it suffices to consider SBM algebras of a certain restricted type. We

will use this result in this paper. Marcovic̀ and McKenzie suggested an algorithm that

solves the CSP over SBM algebras A when A/σ is a chain, that is, ab ∈ {a, b} for any95

a, b ∈ A/σ. In this case their algorithm is capable of eliminating the maximal block

using the fact that if a semilattice is a chain, any of its subsets is a subalgebra. Finally,

very recently Payne in [32] suggested an algorithm that works for a more general class

of algebras than SBM, but algebras in this class have to satisfy an extra condition that

in SBM algebras manifests itself as the existence of certain well behaving mappings100

between σ-blocks. In particular, this condition guarantees that the instance restricted

to the maximal σ-block has a solution whenever the original problem has a solution.

In this paper we continue the effort started in [28, 30, 32] and present an algorithm

that solves the CSP over an arbitrary SBM algebra.

Theorem 1. If A is a SBM algebra then CSP(A) is solvable in polynomial time.105

The algorithm is based upon a new local consistency notion that we call block-

minimality (although in our case it is necessarily not quite local, since it has to deal

with Mal’tsev algebras). A slightly generalized version of block-minimality is one

of the two main ingredients of the general CSP algoritm [16, 17]. More specifically,

our algorithm first separates the set V of variables of a CSP instance into overlap-110

ping subsets, coherent sets, and considers subproblems on these sets of variables. For

block-minimality these subproblems have to be minimal, that is, every tuple from ev-

ery constraint relation has to be a part of a solution. This can be achieved by solving

the problem many times with additional constraints. However, this is not very straight-
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forward, because coherent sets may contain all the variables from V . To overcome115

this problem we show that the subproblems restricted to coherent sets are either over a

Mal’tsev domain and therefore can be solved efficiently, or they split up into a collec-

tion of disjoint instances, each of which has a strictly smaller domain. In the latter case

we can recurse on these smaller instances. Finally, we prove that any block-minimal

instance has a solution.120

The results of this paper can easily be made more general by removing some of the

restrictions on the basic operations of SBM algebras. However, the goal of the paper is

to illustrate the work of the block-minimality condition in its pure form, and so we stop

short of giving more general but also more technically involved proofs just restricting

ourselves to demonstrating the general idea.125

In Section 2 we recall the basic definitions on CSP and the algebraic approach. A

somewhat simplified outline of the solution algorithm and block-minimality is given in

Section 3. More advanced facts from algebra and a study of certain properties of SBM

algebras are given in Section 4. In Section 5 we strengthen the results of [5] about the

structure of relations over Mal’tsev algebras and extend them to SBM algebras1. In130

Section 6 we extend these notions to CSP instances. Finally, in Section 7 we prove the

main result and present a solution algorithm.

2. Preliminaries

2.1. Multisorted Constraint Satisfaction Problem

By [n] we denote the set {1, . . . , n}. Let A1, . . . , An be finite sets. Tuples from135

A1 × . . . × An are denoted in boldface, say, a, and their entries by a[1], . . . ,a[n]. A

relation R over A1, . . . , An is a subset of A1 × · · · ×An. We refer to n as the arity of

the tuple a and the relation R. Let I = (i1, . . . , ik) be an (ordered) multiset, a subset

of [n]. Then let prIa = (a[i1], . . . ,a[ik]) and prIR = {prIa | a ∈ R}. Relation

R is said to be a subdirect product of A1, . . . , An if priR = Ai for i ∈ [n]. In some140

1Kearnes and Szendrei in [26] developed a technique based on so-called critical relations that resembles

in certain aspects what can be achieved through coherent sets. However, [26] only concerns congruence

modular algebras, and so cannot be used for SBM algebras.
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cases it will be convenient to consider tuples and relations whose entries are indexed

by sets other than subsets of [n], most often those will be sets of variables. Then we

either assume the index set is somehow ordered, or consider tuples as functions from

the index set to the domain and relations as sets of such functions.

Let A be a set of sets, in this paper A is usually the set of universes of finite alge-145

bras derived from an SBM algebra; we clarify ‘derived’ later. An instance of a (Mul-

tisorted) Constraint Satisfaction Problem (CSP) over A is given by P = (V,A, C),

where V is a set of variables, A is a collection of domains Av ∈ A, v ∈ V , and C is

a set of constraints; every constraint 〈s, R〉 is a pair consisting of an ordered multiset

s = (v1, . . . , vk), a subset of V , called the constraint scope, and R, a relation over150

Av1 , . . . , Avk , called the constraint relation.

2.2. Algebraic structure of the CSP

For a detailed introduction to CSP and the algebraic approach to its structure the

reader is referred to a very recent and very nice survey by Barto et al. [4]. Basics of

universal algebra can be learned from the textbook [18] and monograph [23].155

A (universal) algebra is a pair A = (A;F ), where A is a set (always finite in this

paper) called the universe of A, and F is a set of basic operations, multi-ary operations

on A. Algebras A = (A,FA) and B = (B,FB) are said to be similar if their basic

operations are indexed by elements of the same set F in such a way that operations

from FA and FB indexed by the same element have the same arity. Operations that can160

be obtained from the basic operations of A or a class A of similar algebras by means

of compositions are said to be term operations of A or, respectively, A.

The CSP is related to algebras through the notion of polymorphism. Let R be

a relation on a set A and f be a k-ary operation on the same set. Operation f is

said to be a polymorphism of R if for any a1, . . . ,ak ∈ R the tuple f(a1, . . . ,ak)165

also belongs to R. More generally, let R be a subset of A1 × · · · × A` and f be an

operation symbol such that fAi is a k-ary operation on Ai for i ∈ [`]. Then f is a

polymorphism of R if for any a1, . . . ,ak ∈ R the tuple f(a1, . . . ,ak) belongs to R,

where f(a1, . . . ,ak) = (fA1(a1[1], . . . ,ak[1]), . . . , fA`(a1[`], . . . ,ak[`])). Let Γ be

a constraint language, that is, a set of relations, on a set A. Then Pol(Γ) denotes the170
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set of all operations f on A such that f is a polymorphism of every relation from Γ;

also AΓ = (A,Pol(Γ)) is the corresponding algebra. Similarly, letA be a collection of

sets and Γ a constraint language over A, that is, a set of relations R ⊆ A1 × · · · × A`,

A1, . . . , A` ∈ A. Then F = Pol(Γ) is the set of all operation symbols f along with

their interpretations on sets fromA such that f is a polymorphism of all relations from175

Γ. The corresponding set of algebras is denoted by AΓ, that is, for every A ∈ A the set

AΓ contains algebra A = (A,FA), where FA = {fA | f ∈ F}.

Any class of similar algebras also gives rise to a CSP. Let A be a class of similar

finite algebras and A the set of universes of algebras from A. Then CSP(A) is the

class of instances (V,A, C) of CSPs over A such that every constraint relation R from180

〈s, R〉 ∈ C, s = (v1, . . . , vk), is a subalgebra of Av1 × · · · × Avk , where Av , v ∈ V ,

are viewed as algebras from A.

In this paper we will use two special types of operations.

Example 2. A binary operation f on A is said to be semilattice if f(a, a) = a,

f(a, b) = f(b, a), and f(f(a, b), c) = f(a, f(b, c)) for any a, b, c ∈ A. Similarly,185

f is a semilattice operation on a class A of similar algebras, if it is a term operation of

that class and fA is a semilattice operation for every A ∈ A. We will treat a semilattice

operation as multiplication and denote it by · or omit the sign altogether. A semilattice

operation defines an order on its domain: a ≤ b if and only if ab = b. This means that

there is always the greatest element of such a semilattice order — the product of all the190

elements of A. We will denote this element by max(A).

Example 3. A ternary operation m is said to be Mal’tsev if it satisfies the equations

m(a, b, b) = m(b, b, a) = a for any a, b ∈ A. A term operation m of a class A

is Mal’tsev if mA is Mal’tsev for every A ∈ A. An algebra with a Mal’tsev term

operation is said to be Mal’tsev.195

If A has a Mal’tsev term operation, the algorithm from [10] constructs a compact

representation of the set of solutions of any instance from CSP(A), thus solving the

problem in polynomial time.

A subalgebra of an algebra A = (A,F ) is a subset B ⊆ A equipped with the

restrictions of operations from F on B and such that f(a1, . . . , ak) ∈ B for every200
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f ∈ F and a1, . . . , ak ∈ B. An equivalence relation on A invariant with respect to

the basic operations of A is said to be a congruence of A. If a, b are related by a

congruence α, we write a
α≡ b; the α-block containing a is denoted aα. The quotient

algebra A/α has the universe A/α and basic operations fα, f ∈ F , such that for any

a1, . . . , ak ∈ A operation fα is given by fα(aα1 , . . . , a
α
k ) = (f(a1, . . . , ak))α. We will205

omit the superscript in fα whenever this does not lead to a confusion. Algebra A is said

to be idempotent if f(a, . . . , a) = a for any f ∈ F and any a ∈ A. A useful property

of idempotent algebras is that every class of any of its congruences is a subalgebra. In

particular, every 1-element subset of A is a subalgebra. Algebras A,A′ with the same

universe are called term equivalent if they have the same set of term operations. If210

A = (A,F ), A′ = (A,F ′) and F ′ is a subset of the set of term operations of A, then

A′ is said to be a reduct of A.

Definition 4. Idempotent algebra A is said to be semilattice block Mal’tsev if there

are a binary term operation f and a ternary term operation m, and a congruence σA

of A such that A/σA is term equivalent to a semilattice with a semilattice operation f ,215

operationm is a Mal’tsev operation on every σA-blockB, and fB is the first projection,

that is, fB(x, y) = x.

2.3. Partial solutions and local consistency

Let P = (V,A, C) be a CSP instance. Let W ⊆ V . By PW we denote the

instance (W,AW , CW ) defined as follows: AWv = Av for each v ∈ W ; for every220

constraint C = 〈s, R〉, C ∈ C, the set CW includes the constraint CW = 〈s′, R′〉,

where s′ = s∩W and R′ = prs′R. A solution of PW is called a partial solution of P

on W . The set of all such solutions is denoted by SW . If W = {v} or W = {u, v},

we simplify notation to Pv,Sv and Puv,Suv , respectively.

Instance P is called minimal if every tuple a ∈ R for any constraint 〈s, R〉 ∈ C can225

be extended to a solution of P; that is, there is ϕ ∈ S such that ϕ(v) = a[v] for v ∈ s.

Instance P is called k-minimal if PW is minimal for all k-element W ⊆ V . For any

fixed k every instance can be reduced to a k-minimal instance in polynomial time by a

standard algorithm [13]: cycle over all k element subsets W ⊆ V , solve the problem
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PW , and for every constraint 〈s, R〉 exclude from R all tuples inconsistent with SW .230

If P ∈ CSP(A) for some class A of similar algebras closed under subalgebras, the

resulting problem also belongs to CSP(A). In particular, from now on we will assume

that all the instances we deal with are 1-minimal. For such problems we can also

tighten the instance reducing the domains Av , v ∈ V , to the sets Sv . Every constraint

relation will therefore be assumed to be a subdirect product of the respective domains.235

If A consists of idempotent algebras, then any problem from CSP(A) can be reduced

to a minimal one by solving polynomially many instances of CSP(A). First of all,

constant relations, Ra = {(a)}, a ∈ A ∈ A, are subalgebras of A and therefore

can be used in constraints. Then the algorithm proceeds as follows: cycle over all

constraints C = 〈s, R〉 ∈ C and all a ∈ R; replace C with the collection of unary240

constraints 〈(s[i]), Ra[s[i]]〉; solve the resulting instancePC,a; remove a fromR ifPC,a
has no solutions. This procedure, however, obviously amounts to solving instances

from CSP(A), and therefore there is no guarantee this can be done in polynomial time.

Example 5. If a class A of similar algebras has a semilattice term operation then

CSP(A) can be solved by establishing 1-minimality. More precisely, if P = (V,A, C)245

is a 1-minimal instance from CSP(A), where Av is the domain of v ∈ V , then the

mapping ϕ(v) = max(Av) is a solution of P .

2.4. Congruences and polynomials

The set (lattice) of congruences of an algebra A will be denoted by Con(A). So,

Con(A) is equipped with two binary operations of join, ∨, and meet, ∧. The smallest250

congruence of A, the equality relation, is denoted by 0A, and the greatest congruence,

the total relation, is denoted by 1A. Let R be a subdirect product of A1, . . . ,Ak, and

αi ∈ Con(Ai), i ∈ [k]. Then by αR, or simply α if R is clear from the context, we

denote the congruence α1 × · · · × αk of R given by a
α≡ b if and only if a[i]

αi≡ b[i]

for all i ∈ [k]. Also, if I = {i1, . . . , i`} ⊆ [k] then by αI we denote the congruence255

αi1 × · · · × αi` of prIR.

Let P = (V,A, C) be an instance of CSP(A) and αv a congruence of Av ∈ A for

each v ∈ V . By Pα we denote the instance (V,Aα, Cα), in which Aαv = Av/αv, and
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a constraint 〈s, R′〉, s = (v1, . . . , vk), belongs to Cα if and only if a constraint 〈s, R〉,

where

R′ = R/α = {aα = (a[1]αv1 , . . . ,a[k]αvk ) | a ∈ R},

belongs to C.

A pair of congruences α, β ∈ Con(A) is said to be a prime interval, denoted α ≺ β,

if α ≤ β and α < γ < β for no congruence γ ∈ Con(A). Then α � β means that

α ≺ β or α = β. For an operation f on A we write f(β) ⊆ α if, for any a, b ∈ A with260

a
β
≡ b, f(a)

α≡ f(b).

Polynomials of A are formed from term operations as follows. Let

f(x1, . . . , xk, y1, . . . , y`) be a term operation of A and a1, . . . , a` ∈ A. Then the

operation g(x1, . . . , xk) = f(x1, . . . , xk, a1, . . . , a`) is said to be a polynomial of A.

Note that although a polynomial does not have to be a polymorphism of invariant re-265

lations of A, unary polynomials and congruences of A are in a special relationship: an

equivalence relation α is a congruence of A if and only if it is preserved by every unary

polynomial f , that is, f(α) ⊆ α. As usual, by an idempotent unary polynomial we

mean a polynomial f(x) such that f ◦ f = f or, equivalently, such that f(x) = x for

any x from its range.270

Let R be a subdirect product of A1, . . . ,Ak. Similar to tuples from R, polyno-

mials of R are also denoted in boldface, say, f . A polynomial f can be represented

as f(x1, . . . , xk) = g(x1, . . . , xk,a
1, . . . ,a`) where g is a term operation of R and

a1, . . . ,al ∈ R. Then the polynomial g(x1, . . . , xk,a
1[i], . . . ,a`[i]) of Ai is denoted

by fi, and for I = {i1, . . . , is} ⊆ [n], fI denotes the polynomial g(x1, . . . , xk,prIa
1, . . . ,prIa

`)275

of prIR. For any i, and any polynomial f of Ai, there is a polynomial g of R such that

gi = f . We shall call g an extension of f to a polynomial of R. Finally, for I ⊆ [k],

and a ∈
∏
i∈I Ai and b ∈

∏
i∈[k]−I Ai, (a,b) denotes the tuple c such that c[i] = a[i]

for i ∈ I and c[i] = b[i] if i ∈ [k] − I . To distinguish such concatenation of tuples

from pairs of tuples, we will denote pairs of tuples by 〈a,b〉.280

The proposition below lists the main basic properties of relations over Mal’tsev

algebras.

Proposition 6 (Folklore). Let R be a subdirect product of Mal’tsev algebras A1 ×
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· · · × Ak and I ⊆ [k]. Then the following properties hold

(1)R is rectangular, that is if a,b ∈ prIR, c,d ∈ pr[k]−IR and (a, c), (a,d), (b, c) ∈285

R, then (b,d) ∈ R.

(2) The relation νI = {〈a,b〉 ∈ (prIR)2 | there is c ∈ pr[k]−IR such that (a, c),

(b, c) ∈ R} is a congruence of prIR.

3. Outline of the algorithm

Our solution algorithm works by establishing some sort of minimality condition290

and repeatedly alternates two phases. The first phase is based on the results of Maroti

[30] that allow us to reduce an instance over SBM algebras to one over SBM algebras

with a minimal element. If A is an SBM algebra then there is a congruence σ such that

A/σ is a semilattice. This means that A/σ has a maximal or absorbing element a such

that ax = xa = a for any x ∈ A/σ. This element will be in the focus of our argument.295

We will also show with help of [30], Corollary 13, that it can always be assumed that

A/σ has a minimal or neutral element b such that bx = xb = x for any x ∈ A/σ. In

fact, one can assume an even stronger condition: that b is a 1-element σ-block.

For the second phase we introduce the block-minimality condition defined with the

help of congruences and polynomials of an algebra. Let R be a subdirect product of300

A1 × · · · ×An and α, β ∈ Con(Ai), γ, δ ∈ Con(Aj) such that α ≺ β, γ ≺ δ for some

i, j ∈ [n]. Interval (α, β) can be separated from (γ, δ) if there is a unary polynomial

f of R such that fi(β) 6⊆ α while fj(δ) ⊆ γ. We are mostly interested in the situation

when prime intervals cannot be separated.

Suppose that P = (V,A, C) is a 3-minimal instance and the domain Av of v ∈305

V is an SBM algebra and σv is such that Av/σv is a semilattice. Let θv denote the

congruence of Av such that the maximal element of Av/σv is one block of θv , and all

other θv-blocks are singletons. We show, Lemma 10, that this is indeed a congruence.

For every v ∈ V and α, β ∈ Con(Av) with α ≺ β ≤ θv let Wvαβ ⊆ V denote the set

of variables w such that (α, β) and (γ, δ) for some γ, δ ∈ Con(Aw) with γ ≺ δ ≤ θw310

cannot be separated from each other in the binary relation Svw. We call such sets of

variables coherent sets. Instance P is said to be block-minimal if for every v ∈ V and
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α, β ∈ Con(Av) with α ≺ β ≤ θv the problem PWvαβ
is minimal.

The result now follows from the following two statements. First, Proposition 22

claims that any instance P over SBM algebras can be efficiently reduced to an equiv-315

alent block-minimal instance by solving polynomially many SBM instances over do-

mains of smaller size. The second statement, Theorem 23, claims that any block-

minimal SBM instance has a solution.

The key to the proof of Proposition 22 is Lemma 20 stating that every problem

PWvαβ
is a disjoint union of problems over smaller domains, or its domains are Mal’tsev320

algebras. More precisely, in the first case there is k such that for every w ∈ Wvαβ

the domain Aw can be partitioned into a disjoint union A(1)
w ∪ · · · ∪ A(k)

w in such a

way that for any constraint 〈(v1, . . . , v`), R〉 of PWvαβ
, every tuple a ∈ R belongs to

A(j)
v1 × · · · ×A(j)

vk for some j ∈ [k]. This property follows from the existence of a min-

imal element in every domain and the fact that certain prime intervals in congruence325

lattices of the domains of PWvαβ
cannot be separated from each other, Lemma 20. It

means, of course, that it suffices to solve k problems P(j)
Wvαβ

whose domains are A(j)
w .

We prove Theorem 23 by induction, showing that for every β = (βv)v∈V with

βv ∈ Con(Av) with βv ≤ θv there is a collection of solutions ϕvαβ of PWvαβ
such

that whenever u ∈ Wvαβ ∩Wwγδ we have ϕvαβ(u)
βu≡ ϕwγδ(u). Observe that this330

condition implies that the collection {ϕvαβ} gives a solution of Pβ . If every βw equals

θw then such a collection exists because the maximal element of Aw/βw is a singleton,

and we always can choose mappings ϕvαβ to be such that ϕvαβ(w)/θw is the maximal

element of Aw/σw. On the other hand, if βw is the equality relation for every w ∈ V

then solutions ϕvαβ agree with each other and provide a solution of P . Thus, showing335

that the existence of solutions ϕvαβ for some β implies the existence of such solutions

for smaller congruences β
′

is the crux of our argument.

4. Semilattice block Mal’tsev algebras and minimal elements

4.1. Minimal sets and polynomials

We will use several basic concepts of the tame congruence theory, [23].340
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An (α, β)-minimal set is a minimal (under inclusion) set U such that U = f(A) for

a unary polynomial of A satisfying f(β) 6⊆ α. Sets B,C are said to be polynomially

isomorphic in A if there are unary polynomials f, g such that f(B) = C, g(C) = B,

and f ◦ g, g ◦ f are identity mappings on C and B, respectively.

Lemma 7 (Theorem 2.8, [23]). Let A be any finite algebra, α, β ∈ Con(A), α ≺ β.345

Then the following hold.

(1) Any (α, β)-minimal sets U, V are polynomially isomorphic.

(2) For any (α, β)-minimal setU and any unary polynomial f , if f(βU) 6⊆ α then f(U)

is an (α, β)-minimal set, U and f(U) are polynomially isomorphic, and f witnesses

this fact.350

(3) For any (α, β)-minimal set U there is a unary polynomial f such that f(A) = U ,

f(β) 6⊆ α, and f is idempotent, in particular, f is the identity mapping on U .

(4) For any unary polynomial f such that f(β) 6⊆ α there is an (α, β)-minimal set

U such that f witnesses that U and f(U) are polynomially isomorphic. In particular,

f(U) is an (α, β)-minimal set.355

Minimal sets of a Mal’tsev algebra form a particularly dense collection. The fol-

lowing lemma is well known, see, e.g., Exercise 8.8(1) from [23].

Lemma 8. Let A be a finite Mal’tsev algebra and α ≺ β for α, β ∈ Con(A). Then

for any a, b ∈ A with (a, b) ∈ β − α, there is an (α, β)-minimal set U such that

aα ∩ U 6= ∅ and bα ∩ U 6= ∅.360

4.2. Semilattice block Mal’tsev algebras

Since the fewer basic operations an algebra has, the richer the corresponding con-

straint language is, we assume that the algebras we are dealing with have only two basic

operations, just enough to guarantee the required properties. Therefore we assume that

our semilattice block Mal’tsev algebras have only two basic operations: a binary op-365

eration · that we will often omit, and a ternary operation m satisfying the conditions

specified earlier. For elements a, b ∈ A such that ab = ba = b we write a ≤ b.

Lemma 9. Let A be an SBM algebra. By choosing a reduct of A we may assume that
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(a) Operation · satisfies the property: for any a, b ∈ A, a ≤ ab.

(b) Operationm can be chosen such that for any a, b, c ∈ A,m(a, b, c)σA = (abc)σA .370

Proof: (1) Follows from Proposition 10 of [15] .

(2) Consider the operation m′(x, y, z) = m(x, y, z)xyz. If B is a σA-block, then,

since ab = a for any a, b ∈ B, operation m′ is Mal’tsev on B. Also, as A/σA is term

equivalent to a semilattice, d = m(a, b, c)σA belongs to the subsemilattice of A/σA

generated by aσA , bσA , cσA . Therefore m′(a, b, c)σA = d(abc)σA = (abc)σA , and we375

can choose m′ for m. 2

Next we show some useful properties of SBM algebras. Let A be an SBM algebra

and max(A) the maximal block of σ, that is, max(A) · a, a ·max(A) ⊆ max(A) for

all a ∈ A.

Lemma 10. (1) The equivalence relation θA whose blocks are max(A), and all the380

remaining elements form singleton blocks, is a congruence.

(2) Let R be a subdirect product of SBM algebras A1, . . . ,An, and let the equiva-

lence relation θR be such that its blocks are max(R) = R ∩ (max(A1)× · · · ×

max(An)), and all the remaining elements form singleton blocks. Then θR is a

congruence.385

Proof: (1) It suffices to observe that for any a ∈ max(A) we have ax, xa,m(a, x, y),m(x, a, y),m(x, y, a) ∈

max(A) for any x, y, and therefore all non-constant polynomials of A preserve max(A).

(2) is similar to (1). 2

When dealing with a relation over algebras A1, . . . ,An or a CSP with domains Av
we will simplify the notation θAi , θAv to θi, θv .390

Lemma 11. Every (α, β)-minimal set, for α ≺ β ≤ θA, is a subset of max(A).

Proof: LetU be a (α, β)-minimal set and f an idempotent polynomial with f(A) =

U and f(β) 6⊆ α. Since β ≤ θA, c, d ∈ U ∩ max(A) for some (c, d) ∈ β − α, as

otherwise we would have f(β) ⊆ α. Take a ∈ max(A) and set g(x) = f(x)a. For

any b ∈ U ∩ max(A) we have g(b) = f(b)a = ba = b. Therefore g(β) 6⊆ α and395
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g(A) ⊆ max(A). Finally, f(max(A)) ⊆ max(A), therefore f ◦ g(A) ⊆ U ∩max(A)

and f ◦ g(x) = x for x ∈ U ∩max(A). As U is minimal, U = U ∩max(A). 2

4.3. Maroti’s reduction

In this section we describe a reduction introduced by Maroti in [30] that allows us

to reduce CSPs over SBM algebras to CSPs over SBM algebras of a certain restricted400

type. More precisely, it allows us to assume that every domain A is either a Mal’tsev

algebra with m as a Mal’tsev operation, or it contains a minimal element a, that is, an

element such that ab = ba = b for all b ∈ A. Moreover, as is easily seen, such element

is unique and forms a σA-block, which is also the smallest element of the semilattice

A/σA.405

Let f be an idempotent unary polynomial of algebra A and A the universe of A.

The retract f(A) of A is the algebra with universe f(A), whose basic operations are of

the form f ◦g, given by f ◦g(x1, . . . , xn) = f(g(x1, . . . , xn)) for x1, . . . , xn ∈ f(A),

where g is a basic operation of A.

Lemma 12. A retract of an SBM algebra through an idempotent polynomial is an SBM410

algebra.

Proof: Let f be an idempotent polynomial. Let g1(x, y) = f(xy), m1(x, y, z) =

f(m(x, y, z)) be the basic operations of the retract, A1 = f(A), and σ1 = σAA1
.

Firstly, note that σ1 is a congruence of A1 and A1 is an idempotent algebra. Since

A/σA is term equivalent to a semilattice and any retract of a semilattice by a semilattice415

polynomial is a semilattice, so is A1/σ1
. Finally,

m1(x, y, y) = f(m(x, y, y)) = f(x) = x

m1(y, y, x) = f(m(y, y, x)) = f(x) = x,

for any x, y ∈ A1 with x
σ1≡ y. 2

The results of [30] imply the following. Let A be a class of similar finite algebras

closed under subalgebras and retracts via idempotent unary polynomials. Suppose that

A has a term operation f satisfying the following conditions for some B ∈ A:420

(1) f(x, f(x, y)) = f(x, y) for any x, y ∈ B;
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(2) for each a ∈ B the mapping x 7→ f(a, x) is not surjective;

(3) the set C of a ∈ B such that x 7→ f(x, a) is surjective generates a proper

subalgebra of B.

Then CSP(A) is polynomial time reducible to CSP(A− {B}).425

By Lemma 9 the operation · of the class of SBM algebras from A satisfies con-

dition (1). If the operation a · x is surjective for some a, then a ≤ x for all x ∈ B.

Therefore the only case when condition (2) is not satisfied is when B has a minimal

element. Moreover, if a ∈ B is such that ax is a surjective polynomial, it also satifies

the condition ax = x for x ∈ B. Indeed, if ab 6= b for some b, the surjectivity of430

g(x) = ax implies that a(ab) 6= ab, a contradiction with Lemma 9. Finally, condition

(3) is satisfied whenever B is not a Mal’tsev algebra, because if h(x) = xa is surjective

then aσB is the minimal element of B/σB. Therefore, (3) holds unless σB is the total

relation, in which case B is a Mal’tsev algebra by definition. Therefore, choosing B to

be a maximal (in terms of cardinality) algebra from A satisfying conditions (1)–(3) we435

may only consider instances of CSP(A), in which every domain has a minimal element

or is a Mal’tsev algebra.

Corollary 13. Every instance P ∈ CSP(A) can be reduced in polynomial time to

polynomially many instances over algebras each of which either is Mal’tsev or has a

minimal element a such that ax = x for all x ∈ A.440

Throughout the rest of the paper A is a finite class of finite SBM algebras closed

under taking subalgebras, quotient algebras, and retracts through unary idempotent

polynomials.

5. Separating congruences

In this section we develop a method that will lead to some way to decompose CSPs445

over SBM algebras. First, we introduce and study the notion of separation of prime

intervals. Let R be a subdirect product of A1 × · · · × An and α, β ∈ Con(Ai), γ, δ ∈

Con(Aj), for some i, j ∈ [n], such that α ≺ β, γ ≺ δ. Recall that interval (α, β) can
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be separated from (γ, δ) if there is a unary polynomial f of R such that fi(β) 6⊆ α

while fj(δ) ⊆ γ. If f satisfies this property we will also say that f separates (α, β)450

from (γ, δ). In the definition above it is possible that i = j or that n = 1; in this cases

the argument in some proofs may be slightly different. To avoid such complications

we will always assume that i 6= j, as the following lemma allows us to do.

Lemma 14. Let Q be the binary equality relation on A. Prime interval (α, β), α ≺

β ≤ θA, can be separated from (γ, δ), γ ≺ δ ≤ θA, as intervals in Con(A) if and only455

if (α, β) can be separated from (γ, δ) in Q (as intervals in the congruence lattices of

the factors of a binary relation).

Proof: Note that for any polynomial f ofQ its action on the first and second factors

of Q is the same polynomial of A. By definition α ≺ β can be separated from γ ≺ δ

in Con(A) if and only if there is a unary polynomial f of A, f(β) 6⊆ α while f(δ) ⊆460

γ. This condition can be expressed as follows: there is a unary polynomial f of Q,

f1(β) 6⊆ α while f2(δ) ⊆ γ, which precisely means that (α, β) can be separated from

(γ, δ) in Q 2

In Section 5.1 we study the sets of intervals that cannot be separated from each

other. These sets will later give us some sort of decomposition of CSP instances. Col-465

lapsing polynomials introduced in Section 5.2 yeild one of the main ingredients of the

solution algorithm. Section 5.3 provides a sufficient condition for separation of inter-

vals and a related notion of decomposition, which is the second ingredient.

5.1. Basic properties of separation

Let again R be a subdirect product of SBM algebras A1 × . . .×An, i, j ∈ [n], and470

α, β ∈ Con(Ai), γ, δ ∈ Con(Aj) with α ≺ β ≤ θi, γ ≺ δ ≤ θj .

First, we show that separating polynomials can be chosen to satisfy certain simple

conditions.

Lemma 15. If (α, β) can be separated from (γ, δ) then there is a polynomial f that

separates (α, β) from (γ, δ) and such that f`(A`) ⊆ max(A`) for every ` ∈ [n].475
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Proof: Let g separate (α, β) from (γ, δ). Choose a tuple a ∈ max(R) and consider

the polynomial f(x) = g(x) · a. As is easily seen, f`(A`) ⊆ max(A`) for ` ∈ [n].

Since gj(δ) ⊆ γ, we have fj(δ) ⊆ γ. Finally, as gi(β) 6⊆ α, there are (a′, b′) ∈ β − α

such that for a = gi(a
′), b = gi(b

′) we have (a, b) ∈ β − α. Since β ≤ σAi and all

the nontrivial (that is, different from an α-block) β-blocks are inside max(Ai), it also

holds that a′, b′ ∈ max(Ai). Then

fi(a
′) = gi(a

′)a[i] = aa[i] = a 6= b = ba[i] = gi(b
′)a[i] = fi(b

′).

2

From now on we assume that all polynomials separating intervals satisfy the con-

ditions of Lemma 15.

Lemma 16. If (α, β) can be separated from (γ, δ) then, for any (α, β)-minimal set

U , there is an idempotent unary polynomial g such that gi(Ai) = U , and g separates480

(α, β) from (γ, δ).

Proof: Let f separate (α, β) from (γ, δ). Then by Lemma 7(4) fi(Ai) contains

an (α, β)-minimal set U ′, and by Lemma 7(3) there is an idempotent polynomial hi

with hi(Ai) = U ′. The polynomial hi can be extended to a polynomial h of R. Then

f ′ = h ◦ f separates (α, β) from (γ, δ) and f ′i(Ai) = U ′.485

Since f ′i(β) 6⊆ α, by Lemma 7(4) there is an (α, β)-minimal set U ′′ such that f ′i

witnesses that U ′′ and f ′i(U
′′) are polynomially isomorphic. This means that f ′i(U

′′)

is an (α, β)-minimal set, and as f ′i(Ai) = U ′ we obtain f ′i(U
′′) = U ′. By Lemma 7(1)

there exists an idempotent polynomial h′i with h′i(U
′) = U ′′. As above, the polynomial

h′i can be extended to a polynomial h′ of R. For a certain k, (f ′ ◦ h′)k is idempotent,490

separates i from j, and (f ′i ◦ h′i)k(Ai) = U ′′. Now the lemma follows easily from

Lemma 7(1). 2

Let IR be the set of triples (i, α, β) such that i ∈ [n], α, β ∈ Con(Ai) and α ≺

β ≤ θi. The relation ‘cannot be separated inR’ on IR is clearly reflexive and transitive.

Now, we prove it is also symmetric495

Lemma 17. If (α, β) can be separated from (γ, δ) then (γ, δ) can be separated from (α, β).
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Proof: Let U1, . . . , Uk be all the (α, β)-minimal sets. By Lemma 16, for every

U`, there is an idempotent unary polynomial g(`) separating (α, β) from (γ, δ) and

such that g(`)
i (Ai) = U`. Take a δ-block B that contains more than one γ-block, a

tuple a ∈ R such that a[j] ∈ B, and set a(`) = g(`)(a). By Lemmas 11 and 15500

a(1), . . . ,a(k) can be assumed to be from max(R) and U1, . . . , Uk ⊆ max(Ai), and

B ⊆ max(Aj). The operation h(`)(x) = m(x,g(`)(x),a(`)) satisfies the following

conditions

• h(`)
i (x) = m(x, g

(`)
i (x),a(`)[i]) = m(x, x,a(`)[i]) = a(`)[i] for all x ∈ U`;

• h(`)
j (x) = m(x, g

(`)
j (x),a(`)[j])

γ
≡ m(x,a(`)[j],a(`)[j]) = x for all x ∈ B;505

• h(`)(R) ⊆ max(R).

We are going to compose the polynomials h(`) such that the composition collapses

β. To this end take a sequence 1 = `1, `2, . . . such that U`2 is a subset of the range

of h
(1)

= h
(`1)
i , and, for s > 2, U`s is a subset of the range of h

(s−1)
= h

(`s−1)
i ◦

. . . ◦ h(`1)
i . Since |h(s)

(Ai)| < |h
(s−1)

(Ai)|, there is r such that |h(r)
(Ai)| contains510

no (α, β)-minimal sets. Therefore, setting h(x) = h(`r)(h(`r−1)(. . .h(`1)(x) . . .)) we

have that hi collapses all the (α, β)-minimal sets, and hj acts identically onB/γ. Thus,

h separates (γ, δ) from (α, β). 2

Lemma 17 together with the observation before it shows that the relation ‘cannot

be separated’ is an equivalence relation on IR.515

5.2. Collapsing polynomials

Intuitively, a collapsing polynomial for some prime interval α ≺ β in an algebra or

a subdirect product of algebras is a polynomial that collapses all prime intervals that

can be separated from α ≺ β and only such prime intervals.

Let R be a subdirect product of SBM algebras A1 × · · · × An, and (i, α, β) ∈ IR.520

A unary idempotent polynomial f of R is called (α, β)-collapsing if the following

conditions hold:

(C1) for any (j, γ, δ) ∈ IR, it holds fj(δ) ⊆ γ, unless (α, β) and (γ, δ) cannot be

separated;
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(C2) for any (j, γ, δ) ∈ IR such that (α, β), (γ, δ) cannot be separated, the set fj(Aj)525

is a (γ, δ)-minimal set.

First, we show that (α, β)-collapsing polynomials exist even if we impose some

additional requirements.

Lemma 18. LetR be a subdirect product of SBM algebras A1×· · ·×An and (i, α, β) ∈

IR, and let a ∈ max(R) be such that a[i] belongs to a β-block containing more than530

one α-block and b ∈ Ai with (a[i], b) ∈ β − α. Then there is an (α, β)-collapsing

polynomial f of R such that f(a) = a and fi(b)
α≡ b.

Proof: First, we find an (α, β)-collapsing polynomial. For every (j, γ, δ) ∈ IR
such that (α, β) can be separated from (γ, δ) there is an idempotent polynomial gjγδ

such that gjγδj (δ) ⊆ γ, but gjγδi (β) 6⊆ α. Moreover, we may assume by Lemma 16 that535

for every gjγδ , gjγδi (Ai) = U for the same (α, β)-minimal set U . Composing all such

polynomials we obtain a polynomial h such that hi(Ai) = U , and so hi(β) 6⊆ α, and

hj(δ) ⊆ γ for any j, γ, δ as above. By iterating h can be assumed idempotent. Choose

h to have the smallest image among unary idempotent polynomials such that hi(Ai)

is an (α, β)-minimal set and hj(δ) ⊆ γ for any (j, γ, δ) ∈ IR such that (α, β) can be540

separated from (γ, δ).

Suppose now that for some (j, γ, δ) ∈ IR such that the interval (α, β) cannot be

separated from (γ, δ) the set U ′ = hj(Aj) is not a (γ, δ)-minimal set. Then, since

hj(δ) 6⊆ γ, the set U ′ contains a (γ, δ)-minimal set U ′′. Let g be an idempotent

polynomial of Aj with g(Aj) = U ′′ and g its extension to a polynomial of R. Then545

h′ = g ◦ h satisfies the following conditions:

– h′j(Aj) = U ′′ and h′j(δ) 6⊆ γ;

– h′i(β) 6⊆ α, because (α, β) cannot be separated from (γ, δ);

– |h′(R)| < |h(R)|.

Iterating h′ it can be assumed idempotent. Then the last property contradicts the choice550

of h. Therefore h is (α, β)-collapsing.

By Lemma 8 there is an (α, β)-minimal set U such that a[i]α ∩ U, bα ∩ U 6= ∅.

Moreover, an (α, β)-collapsing polynomial h can be chosen such that hi(Ai) = U .
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Then set f(x) = m(h(x),h(a),a). For the polynomial f we have:

– f(a) = m(h(a),h(a),a) = a;555

– c = fi(b) = m(hi(b), hi(a[i]),a[i])
α≡ m(hi(b),a[i],a[i]) = hi(b)

α≡ b, because,

since h is idempotent, hi(a[i])
α≡ a[i] and hi(b)

α≡ b;

– for any (j, γ, δ) ∈ IR such that and (α, β), (γ, δ) can be separated, fj(δ) ⊆ γ.

By iterating f we obtain an idempotent polynomial f ′ that satisfies all the conditions

above. Indeed, the first and third conditions are straightforward, while the second560

one follows from the equality fi(c)
α≡ c. Finally, for any (j, γ, δ) ∈ IR such that

(α, β), (γ, δ) cannot be separated we have f ′j(δ) 6⊆ γ, because f ′i(β) 6⊆ α. Also,

f ′j(Aj) is a (γ, δ)-minimal set, because hj(Aj) is a one.

Thus, f ′ satisfies all the required conditions. The lemma is proved. 2

5.3. Splits and alignments565

In this section we present a sufficient condition for two prime intervals to be sep-

arated. As we shall see using this condition certain projections of a relation can be

partitioned into a small number of subdirect products of smaller algebras.

Let R be a subdirect product of A1 × · · · × An, αi, βi ∈ Con(Ai), i ∈ [n], such

that αi ≺ βi ≤ θAi . An element a ∈ Ai, i ∈ [n], is called αiβi-split if there is a570

βi-block B and b, c ∈ B such that ab 6αi≡ ac. Note that no element from max(Ai) is

αiβi-split, while the minimal element is αiβi-split. Indeed, if a ∈ Ai is a minimal

element satisfying the conditions of Corollary 13, then ax = x for any x ∈ Ai and

clearly satifies the definition of an αiβi-split element. We say that i, j ∈ [n] are αβ-

aligned if for any a ∈ R such that a[i] is αiβi-split then a[j] is αjβj-split as well, and575

the other way round.

Lemma 19. If i, j are not αβ-aligned then (αi, βi) can be separated from (αj , βj).

Proof: It suffices to consider the case n = 2, i = 1, j = 2. Let (a, b) ∈ R be

such that a is αiβi-split, while b is not αjβj-split. Consider operation f((x1, x2)) =

(a, b) · (x1, x2). We claim that f1(β1) 6⊆ α1 while f2(β2) ⊆ α2.580

For any β2-block B2 and any a′, b′ ∈ B2 we have f2(a′) = ba′
α2≡ bb′ = f2(b′), as

b is not α2β2-split. Thus f2(β2) ⊆ α2. On the other hand, since a is α1β1-split, there
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is a β1-block B1 and a′′, b′′ ∈ B1 such that f1(a′′) = aa′′ 6α1≡ ab′′ = f1(b′′). Therefore

f1(β1) 6⊆ α1. 2

6. From relations to instances585

Here we apply the results of the previous section to CSP instances. In particular,

we introduce coherent sets of an instance and show that if an instance has solutions on

every coherent set, which are consistent in some weak sense, then the entire instance

has a solution.

LetP = (V,A, C) be a 3-minimal instance of CSP(A). We assume that the domain590

Av of each variable v ∈ V is the set of solutions Sv , and so the constraint relations are

subdirect products of the domains.

Since separation of prime intervals depends only on binary projections of a relation,

it can be defined for 3-minimal instances as well. More precisely, let IP (or just I if

P is clear from the context) be the set of all triples (v, α, β), where v ∈ V , α, β ∈595

Con(Av) are such that α ≺ β ≤ θv . Let (v, α, β), (w, γ, δ) ∈ I; we say that (α, β)

cannot separated from (γ, δ) if this is the case for Svw. Due to 3-minimality — we can

consider sets of solutions on 3 variables — this relation is transitive. It is also reflexive

and symmetric by Lemma 17.

Next we define two partitions of a CSP instance P . The first one, link partition600

allows us to reduce solving subinstances of P to instances over smaller domains. The

second one provides a sufficient condition to have a link partition and is defined through

alignment properties.

Let again P = (V,A, C) be a 3-minimal instance of CSP(A). Partitions Av1 ∪

. . . ∪Avkv = Av for v ∈ V are called a link partition if the following conditions hold:605

(A) For any v, w ∈ V , kv = kw ≥ 2, and there is a bijection ϕvw : [kv]→ [kw] such

that for any (a, b) ∈ Svw and any j ∈ [kv], a ∈ Avj if and only if b ∈ Awϕvw(j);

and

(B) any partitions A′v1 ∪ · · · ∪ A′v`v = Av , v ∈ V , such that for every v ∈ V and

any i ∈ [`v], the set A′vi is a subset of Avj for some j ∈ [kv], does not satisfy610

condition (A).
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Observe that, since P is 3-minimal, the mappings ϕvw are consistent, that is, for

any u, v, w ∈ V it holds that ϕvw ◦ ϕuv = ϕuw. Without loss of generality we will

assume that ϕvw is an identity mapping.

As is easily seen, the partition Av1 ∪ . . .∪Avkv = Av defines a congruence of Av .615

In particular, each of Avi is a subalgebra of Av .

Let αv, βv ∈ Con(Av) for v ∈ V be such that αv ≺ βv ≤ θv . Variables v, w ∈ V

are αβ-aligned if they are αβ-aligned in Svw. In the following lemma we assume that

every domain Av of P either has a minimal element, or σAv is the full congruence, and

so Av is a Mal’tsev algebra.620

Lemma 20. (1) If variables v, w ∈ V of an instance P = (V,A, C) are αβ-aligned

and Av has a minimal element then Aw also has a minimal element.

(2) If every domain of an instance P = (V,A, C) has a minimal element and any two

variables v, w ∈ V are αβ-aligned, then P has a link partition.

Proof: For every v ∈ V let Lv denote the set of αvβv-split elements of Av and625

let Nv denote the set of αvβv-non-split elements. As we observed before Lemma 19,

both sets are nonempty if Av has a minimal element, and Lv = ∅ if Av is a Mal’tsev

algebra.

(1) If Aw is a Mal’tsev algebra then v, w cannot be αβ-aligned since Lw = ∅,

while Lv, Nv 6= ∅, and Svw is a subdirect product.630

(2) For any v, w ∈ V and any pair (a, b) ∈ Svw, a ∈ Lv if and only if b ∈ Lw. This

provides some nontrivial partitions satisfying condition (A), and we may choose the

finest such partition. Therefore Svw is link-partitioned, as well as R for any constraint

C = 〈s, R〉 ∈ C. 2

7. The algorithm635

In the first part of this section we introduce the property of block-minimality, the

key property of CSP instances for our algorithm. We also prove that block-minimality

can be efficiently established. Then in the second part we show that block-minimality

is sufficient for the existence of a solution, Theorem 23, which is the main result of this

section, and provides a polynomial time algorithm for CSPs over SBM algebras.640
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7.1. Block-minimality

Let P = (V,A, C) be a 3-minimal instance such that for every its domain Av either

σv is the full congruence, and so Av is a Mal’tsev algebra with Mal’tsev operation m,

or Av has a minimal element.

Recall that IP or just I denotes the set of all triples (v, α, β), where v ∈ V ,645

α, β ∈ Con(Av) are such that α ≺ β ≤ θv . For a triple (v, α, β) ∈ I by I(v, α, β)

we denote the set of all triples (w, γ, δ) ∈ I such that (α, β) cannot be separated from

(γ, δ). Also, by Wvαβ we denote the set {w | (w, γ, δ) ∈ I(v, α, β)}. Sets of the form

Wvαβ are called coherent sets.

The next lemma gives one of the key properties of coherent sets and collapsing650

polynomials.

Lemma 21. Let (v, α, β) ∈ I and w 6∈ Wvαβ , and let f be an (α, β)-collapsing

polynomial of Svw. Then fw(1w) ⊆ 0w.

Proof: Since w does not belong the coherent set Wvαβ for any prime interval

0w ≤ γ ≺ δ ≤ θw we have fw(δ) ⊆ γ. This means that fw(θw) ⊆ 0w. However, as655

the range of fw is a subset of max(Aw), we also have fw(1w) ⊆ θw. Finally, as fw is

idempotent, it also implies fw(1w) ⊆ 0w. The result follows. 2

Instance P is said to be block-minimal if for any (v, α, β) ∈ I the instance PWvαβ

is minimal.

In the next section we prove, Theorem 23, that every block-minimal instance has660

a solution. To show that Theorem 23 gives rise to a polynomial-time algorithm for

CSP(A) we need to show how block-minimality can be established. We prove that

establishing block-minimality can be reduced to solving polynomially many smaller

instances of CSP(A).

Proposition 22. Transforming an instance P = (V,A, C) ∈ CSP(A) to a block-665

minimal instance can be reduced to solving polynomially many instancesP ′ = (V ′,A′, C′) ∈

CSP(A) such that V ′ ⊆ V and either A′v is a Mal’tsev algebra for all v ∈ V ′, or

|A′v| < |Av| for all v ∈ V ′.
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Since the cardinalities of algebras in A are bounded, the depth of recursion when

establishing block-minimality is also bounded. Therefore, together with Theorem 23670

this proposition gives a polynomial time algorithm for CSP(A).

Proof: Using the standard propagation algorithm and Maroti’s reduction (Sec-

tion 4.3) we may assume that P is 3-minimal and every Av is either Mal’tsev or has

a minimal element. Take (v, α, β) ∈ I as in the definition of block-minimality. We

need to show how to make problems PWvαβ
minimal. If every Aw for w ∈ Wvαβ675

is Mal’tsev, PWvαβ
can be made minimal using the algorithm from [10]. If Aw has

a minimal element for some w ∈ Wvαβ then set αv = α, βv = β, and for each

w ∈ Wvαβ choose αw, βw in such a way that (w,αw, βw) ∈ I(v, α, β). Then by

Lemmas 20 and 19 PWvαβ
is link partitioned, that is, it is a disjoint union of instances

P1 ∪ · · · ∪ Pm, where Pi = (Wvαβ ,Ai, Ci) are such that Aw = A1
w ∪ · · · ∪ Amw is a680

disjoint union. We then transform them to minimal instances separately.

If at any stage there is a tuple from a constraint relation that does not extend to a so-

lution of a certain subinstance, we tighten the original problem P by excluding all such

tuples and start all over again. Observing that the set of tuples from a constraint rela-

tion that can be extended to a solution of the subinstance is a subalgebra, the resulting685

instance belongs to CSP(A) as well. 2

7.2. Block-minimality and solutions of the CSP

We now prove that block-minimality is a sufficient condition to have a solution.

Theorem 23. Every block-minimal instance P ∈ CSP(A) with nonempty constraint

relations has a solution.690

Proof: LetP = (V,A, C) be a 3-minimal and block-minimal instance from CSP(A),

and such that every domain Av is either a Mal’tsev algebra or has a minimal element.

We make use of the following construction. Let γv ∈ Con(Av), γv ≤ θv for v ∈ V . A

collection of mappingsM = {ϕvαβ | (v, α, β) ∈ I} is called an γ-ensemble for P if

(1) for every (v, α, β) ∈ I the mapping ϕvαβ is a solution of PWvαβ
; and695

(2) for every (v, α, β), (w, γ, δ) ∈ I, and any u ∈Wvαβ∩Wwγδ , it holdsϕvαβ(u)
γu≡

ϕwγδ(u);

27



(3) for any C = 〈s, R〉 ∈ C the tuple a where a[u] = ϕvαβ(u)γv for u ∈ s and any

(v, α, β) ∈ I with u ∈Wvαβ , belongs to R/γs
.

We prove that for any γv ∈ Con(Av), γv ≤ θv for v ∈ V the instance P has a γ-700

ensemble.

If γv = θv for each v ∈ V then any collection of solutions ϕvαβ of PWvαβ
such

that ϕvαβ(u) ∈ max(Au) for all (v, α, β) ∈ I, and u ∈Wvαβ , satisfies the conditions

of a γ-ensemble. Moreover the block-minimality of P guarantees that each PWvαβ
is

minimal, therefore has some solution of this kind.705

If γv = 0v for v ∈ V then for any (v, α, β), (w, γ, δ) ∈ I condition (2) implies

ϕvαβ(u) = ϕwγδ(u) for u ∈ Wvαβ ∩Wwγδ . Let us denote this value by ψ(u). Then

condition (3) implies that ψ is a solution of P .

Finally, the inductive step follows from Lemma 24. 2

Lemma 24. Let P = (V,A, C) ∈ CSP(A) be a 3-minimal and block-minimal in-710

stance such that every Av , v ∈ V , either is Mal’tsev or has a minimal element. Let

v ∈ V and βw, γw ∈ Con(Aw), w ∈ V , be such that βw � γw ≤ θw, βv ≺ γv and

βw = γw for w 6= v. If there is a γ-ensemble for P then there is a β-ensemble for P .

Proof: LetM = {ϕwγδ | (w, γ, δ) ∈ I} be a γ-ensemble and ξ(u) = ϕwγδ(u)γu

for u ∈ Wwγδ . By condition (2) for γ-ensembles this definition is consistent. If ξ(v)715

is a γv-block that is equal to a βv-block, then M is also a β-ensemble, and there is

nothing to prove.

Otherwise to simplify notation we use β for βv and γ for γv . Let B be the β-

block containing ϕvβγ(v). We show that for every (w, δ, η) ∈ I with v ∈ Wwδη a

solution ϕ′wδη can be found such that ϕ′wδη(v) ∈ B and ϕ′wδη(u)
γu≡ ϕwδη(u) for720

u ∈ Wwδη . Then, setting ϕ′wδη = ϕwδη for (w, δ, η) ∈ I such that v 6∈ Wwδη and

M′ = {ϕ′wδη | (w, δ, η) ∈ I} we conclude thatM′ is a β-ensemble.

Let (w, δ, η) ∈ I be such that v ∈ Wwδη , and let W = Wvβγ , U = Wwδη ,

ϕ = ϕvβγW∩U , ψ = ϕwδη . Note that in this notation SW , SU , and SW∩U are

the sets of solutions of PWvβγ
, PWwδη

, and PWvβγ∩Wwδη
. It will often be conve-725

nient for us to treat these sets as relations rather than sets of solutions of a CSP. Then

prW∩USW ,prW∩USU ⊆ SW∩U , and so ϕ,prW∩Uψ ∈ SW∩U .
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Let f be a (β, γ)-collapsing polynomial of SU . By Lemma 18 it can be selected

such that ψ = f(ψ) and B ∩ fv(Av) 6= ∅. Let π = fW∩U (ϕ). We show that the

mapping ϕ′ on U given by ϕ′(u) = π(u) for u ∈ W ∩ U , and ϕ′(u) = ψ(u) for

u ∈ U −W is a solution from SU . Since ϕ(v) ∈ B and B ∩ fv(Av) 6= ∅, that is,

fv(B) ⊆ B as f is idempotent, we have π(v) = fv(ϕ(v)) ∈ B. Also, as for every

u ∈ (W ∩ U)− {v}, we have

ϕ′(u) = π(u) = fu(ϕ(u))
βu≡ fu(ψ(u)) = ψ(u).

Therefore, ϕ′ satisfies condition (2) of β-ensembles for w, δ, η.

Now we prove that ϕ′ is a solution from SU . Let C = 〈s, R〉 be a constraint from

PU , W ′ = s ∩W and a = prW ′ϕ. Then, since ϕ is a solution from SW∩U , there is730

b ∈ R with a = prW ′b. Let c = fs(b), clearly, c ∈ R. For the tuple c we have:

– c[u] = fu(a[u]) = fu(ϕ(u)) = ϕ′(u) for u ∈W ′;

– c[u] = fu(b[u]) = ψ(u) for u ∈ s − W ′, because in this case fu(1u) ⊆ 0u by

Lemma 21, and therefore, as fu(ψ(u)) = ψ(u), we have fu(Au) = {ψ(u)}.

Thus, c = prsϕ
′, and thus ϕ′ is a solution from SW∩U .735

So far we have defined mappings ϕ′wδη , proved that they are solutions of the re-

spective subinstances, that is, condition (1), and that they are consistent modulo β,

that is, condition (2). It remains to verify condition (3). Let C = 〈s, R〉 ∈ C and

ξ(u) = ϕwδη(u)βu (u 6= v), ξ′(u) = ϕ′wδη(u)βu for u ∈ V and any (w, δ, η) ∈ I,

such that u ∈Wwδη . We need to show that prsξ
′ ∈ R′ = R/βs

.740

We use a simplified version of the argument above. Let W ′ = W ∩ s. If v 6∈ s,

the result follows from condition (3) for γ. Suppose v ∈ W ′ and let f be a (β, γ)-

collapsing polynomial of R′. Also, let a = prsξ, b′ = prW ′ϕ/βW ′ , where ϕ = ϕvβγ

as before, and b ∈ R′ such that b′ = prW ′b. By Lemma 18 f can be selected such

that a ∈ f(R′) and b[v] ∈ fv(Av/βv). Let c = fs(b). We have745

– c[v] = b′[v];

– c[u] = fu(b′[u]) = fu(a[u]) = a[u] for u ∈W ′−{v}, as ϕ(u) ∈ ξ(u) = ξ′(u);

– c[u] = fu(b[u]) = fu(a[u]) = a[u] for u ∈ s−W ′, as in this case fu(1u) ⊆ βu
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by Lemma 21, and therefore, since fu(a[u]) = a[u], we have fu(Au/βu) =

{a[u]}.750

Therefore c ∈ R′, and as c = praξ
′, the result follows. 2
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[23] David Hobby and Ralph N. McKenzie. The structure of finite algebras, vol-800

ume 76 of Contemporary Mathematics. American Mathematical Society, Provi-

dence, R.I., 1988.
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