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Computation about Computation

We have seen that some problems concerning operation of TMs

and other computational models are undecidable

In this lecture we shall see that this is an inherent property of all 

problems about computation

We show that the question  “Does my program do what I want it 

to do?”  is  normally  undecidable
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Known Undecidable Problems

Instance:  A Turing Machine  T  and an input string  x.

Question:  Does  T(x)  halt?

HALTING

Instance:  A Turing Machine  (acceptor)  T  and an input string  x.

Question:  Does  T  accept  x?

ACCEPTANCE
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More Undecidable Problems

Instance:  A Turing Machine  T.

Question:  Is the language  L(T)  empty?

EMPTINESS

Instance:  A Turing Machine  T.

Question:  Is the language  L(T)  equal to  Σ*?

FULLNESS

The corresponding languages are:

})(|"{"Empty ∅== TT LL *})(|"{"Full Σ== TT LL
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Theorem                    and               are undecidable.EmptyL
FullL

Proof  

We show that FullHalting LL m≤

For every input  “T;x”  of             ,  let  S  be a machine operating on

an input  y  as follows:
HaltingL

•   Erase input  y

•   Write  x  on the tape

•   Simulate  T  on  x

•   If  T(x)  halts then “Accept”
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Observe that 

•   If  T  halts on  x,  then  L(S)=Σ* (i.e.,  S  accepts every input  y)

•   If  T  does not halt on  x,  then  L(S)=∅

This function is computable and total

QED

?
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A proof of                                   is similarEmptyHalting LL m≤
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Instance:  Turing Machines         and       .

Question:                           ?

EQUIVALENCE

1T 2T

)()( 21 TT LL =

The EQUIVALENCE Problem

Theorem                    is undecidable.EquivL

The corresponding language is:
})(|";{" 2121Equiv )(TTTT LLL ==

Proof

     - see next slide
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We show that EquivEmpty LL m≤

Fix a TM          with0T ∅=)( 0TL

For every input  “T”  of             ,  define an input of                as     EmptyL EquivL ";" 0TT

Then  L(T)=∅  if and only if   )(TT 0)( LL =

QED
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Properties of TMs

Usually, a problem can be solved in many different ways.

There are many (different) programs with indistinguishable behaviour 

Definition   A collection,  R,   of  TM  descriptions is called

           -  a  property  if, for any TMs         and       ,  if

              then
                 either         and         are in  R,

                 or          and          are not in  R

         -   a  non-trivial property  if there exists a TM which is in  R
               and there exists a TM which is not in  R

1T 2T )()( 21 TT LL =

1T 2T

1T 2T
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Examples

•    Does a TM halt on every input?

•    Does a TM accepts any input?   (FULLNESS)

•    Does a TM rejects any input?     (EMPTYNESS)

•    Does a TM output the sum of two given naturals?

•    Does a TM accept only strings longer than 3 symbols?

•    Does a TM ever leave its initial state?

•    Does a TM print its own description? 
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Rice’s Theorem

Theorem          Any non-trivial property of TMs is undecidable.
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Proof Idea

Suppose that there exists a decidable non-trivial property  R. 
We show that Rm≤HaltingL

Fix               and              .  For every input  “T;x”  of the HALTING problem,

we built TM              that work as follows

RT ∈1 RT ∉2

xTM ;

Does
T(x) 
halts?

yes

no

)(1 yT

)(2 yT

y )(; yM xT

Observe that

•   If  T(x)  halts then

•   If  T(x)  does not halt then 

RMTM xTxT ∈⇒= ;1; )()( LL

RMTM xTxT ∉⇒= ;2; )()( LL

Therefore if we are able to decide whether                      or not,
we are able to decide whether  T(x)  halts or not

RM xT ∈;
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Case 1.    There is a TM                 such that    RT ∉2 ∅=)( 2TL

For every input  “T;x”  of             ,  let            be a machine operating on

an input  y  as follows:
HaltingL xTM ;

•   Simulate  T  on  x

•   If  T(x)  terminates, simulate        on  y1T

Then

•   If  T(x)  halts then

•   If  T(x)  does not halt then 

RMTM xTxT ∈⇒= ;1; )()( LL

RMTM xTxT ∉⇒=∅= ;2; )()( LL
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Case 2.    There is a TM                 such that    RT ∈1 ∅=)( 1TL

For every input  “T;x”  of             ,  let            be a machine operating on

an input  y  as follows:
HaltingL xTM ;

•   Simulate  T  on  x

•   If  T(x)  terminates, simulate        on  y2T

Then

•   If  T(x)  halts then

•   If  T(x)  does not halt then RMTM xTxT ∈⇒=∅= ;1; )()( LL
RMTM xTxT ∉⇒= ;2; )()( LL
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Example

Let  e  be a graph encoding scheme and

L={ x | x  is the code of a Hamilton graph}

Property
R={T | L(T)=L}

Then the question

“Does a TM possess property  R?”

=

“Does my program recognises Hamiltonian graphs?” 

is undecidable!

It is impossible to automatize software verification


