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1 Introduction

Fisheries management involves the regulation of fishing to

balance the interests of groups of people who want to catch

fish now, and the goal of sustaining viable fish populations

for the future. Policy makers make these regulatory decisions

in consultation with fisheries scientists, who run extensive

computer simulations informed by real-world data. The so-

phistication of these simulations has steadily increased, and

they now generate complex multi-dimensional datasets. The

latest simulation models are stochastic and time-dynamic

and reflect the variation in environmental influences and un-

certainties of many processes [WM04]. The greatest need in

this domain is to analyze the relationship between the simu-

lation inputs and outputs. That is, there is a need to quantify

tradeoffs among the simulation outputs in the form of out-

come indicators, which are produced by the set of manage-

ment options that are part of the simulation inputs. A second

goal is to support sensitivity and uncertainty analysis; that is,

to understand when small changes in inputs lead to relatively

large changes in outputs.

However, the sophistication of visualization support for

the analysis of, and communication about, these model out-

puts lags far behind, leaving an unmet need for more ef-

fective interactive visualization tools. Most analysis is done

with simple individual plots: viewing time series plots with

multiple curves, individual scatterplots to see correlations,

and contour plots for overview summary information. The

need to link between these plots has long been recog-

nized; decades ago one of us (Peterman) proposed doing

so manually with carefully aligned paper printouts of mul-

tiple plots and physical transparency printouts with multiple

crosshairs [Pet75]. Obviously, these manual methods are in-

adequate for the complex datasets of the present.

The contribution of this paper is two-fold. We present a

data and task analysis of the fisheries domain, developed in

close collaboration with fisheries scientists. We also present

the design and implementation of the Vismon system, an in-

teractive visualization tool that supports sensitivity and un-

certainty analysis through multiple linked views.

This design study paper continues with background in-

formation about fisheries policies and science in Section 2,

followed by the fisheries task and data analysis in Section 3.

We continue with a description of the Vismon design and

interface in Section 4, and a walkthrough of Vismon with a

case study in Section 5. We conclude with a discussion of

future work in Section 6. Vismon is a work in progress; this

interim technical report does not include a discussion of the

related work in visualization or a full evaluation of whether

its design goals are met.

2 Fisheries Background

We begin with background information about the policy

making context of decision-making support for fisheries, and

continue with a summary of the scientific problems they

face.

2.1 Fisheries Policy Making

Fisheries management is in the midst of major changes,

both in terms of the policy making situation and in terms of

physical and biological conditions. For setting policy, there

is greater stakeholder involvement and a stronger expecta-

tion of accountable decision making than in the past. Insti-

tutional roles are also shifting. Fisheries science was once

the uncontested domain of the government and academia,

but is now being undertaken by other groups including non-

governmental conservation groups and the fishing industry

itself. Physically, the impact of climate change means that

the processes being studied have moving baselines. Efforts

to interpret cause and effect are often confounded by the re-

ality of multiple simultaneous changes in both natural and

human processes.

The goals of policy makers in fisheries management have

evolved over time, in three major waves. The first was a com-

mand and control model: "we have the data, and we decide".

The second model, decide, announce, defend, grew out of a

push for public consultation, but that did not go far enough

for meaningful input from the public. The current model is

multi-stakeholder consultation with the new idea of includ-
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ing many stakeholders in the analysis process itself. Thus,

the current goal of policy makers in fisheries management is

to make well-informed decisions based on large amounts of

quantitative information. The new need is to support not only

communication to, but also analysis with, multiple stake-

holders.

The three roles of interest in this process are fisheries

managers, stakeholders, and fisheries scientists. The fish-

eries scientists need to provide fisheries managers with ex-

tensive quantitative information to support decision making,

via simulation informed by monitoring efforts. The man-

agers choose actions to best meet management objectives,

such as maintaining sufficient spawning fish and allocating

the allowed catches among the competing interest groups.

The stakeholders include environmentalists and three dif-

ferent fishing interest groups: the commercial fishing indus-

try, subsistence fishing communities (both First Nations and

other groups), and recreational anglers.

2.2 Fisheries Science

The process of fish stock assessment has the goal of quan-

titatively estimating potential outcomes of contemplated

management options [Pet09]. Difficulties arise from both

our limited understanding of the structure and function of

aquatic systems, and the uncertainties inherent in the data

given current monitoring capabilities. The specific chal-

lenges of assessment include at least four factors [Pet04].

First, there are pervasive uncertainties and risks. Second,

there is the challenge of estimating probabilities for uncer-

tain quantities. Third is the problem of evaluating the perfor-

mance of management options. The final challenge is com-

municating complex technical information to decision mak-

ers and the public; that is, conveying assumptions, results,

and implications to people not actively involved in the anal-

yses.

There are several different sources of uncertainty and risk.

Aquatic ecosystems are variable because they are natural en-

vironments. A stochastic dynamic model of a natural pop-

ulation accounts for this variability by implicitly encoding

a range of alternative hypothesis about possibilities. More-

over, only imperfect information is available to scientists.

Real-world data collection inevitably involves observation

and sampling error, which must also be incorporated into

the stochastic model. Governmental control of human be-

havior is also imperfect. There may be imperfect compliance

with regulation by harvesters, and there is natural variation

in catchability. The term outcome or implementation uncer-

tainty is used for these factors. Another source of uncertainty

is a lack of clarity about management objectives; there may

be no consensus on the desired outcomes.

Simulation in service of stock assessment has nevertheless

been heavily used for decades, with increasing complexity

and sophistication [Pet75, Pet04, Pet09]. Peterman describes

a high-level risk assessment framework to use when address-

ing these complex problems through simulation [Pet04]. The

first step is to define management objectives along with in-

dicators that can measure how well they are met. Examples

of indicators are the expected catch, the catch variation over

time, or the spawning biomass. Indicators might have an as-

sociated undesirable probability of falling under some criti-

cal limit. The second step is to consider several management

options explicitly by stating them as inputs to the simulation

model. The third step is to run the stochastic model with a

wide range of hypotheses expressed as parameter values and

alternative submodels used inside the simulation. Finally, a

sensitivity analysis can be done to see the effects of the dif-

ferent assumptions on the outcomes.

3 Data and Task Analysis

We now discuss the data, workflow, and tasks for this de-

sign study, moving from the domain-specific details to the

abstractions that we have chosen.

3.1 Data Abstraction

The data abstraction that we use is that there are two in-

dependent input dimensions to the simulation. These are

known as the management options, or options for short.

Our focus is on these user inputs. There are many other

inputs to the simulation model that are not exposed to the

user of Vismon. They are used to estimate the parameters

for functional relationships assumed to link the processes

within the model; for example, the relationship between sea

surface temperature and mortality rate. There are many de-

pendent output dimensions, known as indicators. The simu-

lation generates the outputs given the inputs by running hun-

dreds of Monte Carlo simulation trials. Each indicator can

be summarized by a few statistical measures, but the full un-

derlying dataset is also available.

This abstraction covers a significant and interesting part

of the possible design space, but not all of it. In current fish-

eries practice, most simulations do not exceed two indepen-

dent input dimensions, as was the case for our collaborators

as well. Many simulations use only a single one, a case that

Vismon handles easily. While the future will clearly bring

simulations with three or more independent dimensions into

the mainstream, we chose two as a good place to start be-

cause it is richer than the very simple case of one but steers

clear of the complexities of many. The design target for num-

ber of output dimensions was 10 to 20, again motivated by

the current needs of our collaborators, which reflect the mul-

tiple indicators of several groups of stakeholders.

In this paper we will use a specific model as a concrete

driving example: the chum salmon populations in the Arctic-

Yukon-Kuskokwim (AYK) region of Alaska, USA [CPZ09].

The motivation for this particular model was concern with

the large and rapid decreases in abundance in the late 1990s.

The three major stakeholder interests at play in this re-

gion are sustainability, commercial fishing revenue, and sub-
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sistence fishing. The AYK chum salmon simulation has

datasets for five different rivers.

One input option reflecting managers’ objectives is the es-

capement target, which is the desired number of spawn-

ing salmon; that is, the number that “escape” being fished.

The other is the harvest rate, the number of fish that the

combination of the commercial and subsistence harvesters

should catch after the escapement target is met. Each option

is set to one of 11 levels, so the simulation covers a total of

11∗11 = 121 combinations of these input parameters. Each

of these combinations is called a scenario.

The simulation output is 12 indicators for each scenario,

grouped into 3 categories: escapement, subsistence catch,

and commercial catch. Each run of the simulation covers a

100-year time period, and the indicators are statistical mea-

sures to characterize the results in each category with four

output numbers: the average, median, temporal coefficient of

variation (standard deviation divided by the average), and a

risk measure expressed as the percentage of years that some-

thing undesirable happened during the hundred simulated

years. The risks for each category in turn are when the run

size is below the escapement target, when the subsistence

fishery is below the lower quartile of historical catches, or

when no commercial fishing is allowed.

In fisheries science, indicators of outcome need to be ei-

ther maximized or minimized, depending on their role in the

analysis. As an example, the commercial catch should be in-

creased, but the probability of over-harvesting needs to be re-

duced. There are no cases in which an indicator should have

both minimum and maximum limitations. Each of the twelve

indicators thus has a direction of desired change as associ-

ated metadata, in addition to its set of quantitative values.

The simulation output includes both average and median so

that the analysts can easily check whether these quantities

are similar, indicating normal distributions. When they are

different, their relative values give a quick sense of the di-

rection of the distribution’s asymmetry.

The stochastic simulation carries out 500 Monte Carlo

trial runs for each scenario. The full dataset has 726,000 data

elements in total, from the product of 121 scenarios, 12 in-

dicators, and 500 runs. This dataset is unwieldy enough that

a simplified high-level dataset is also computed by aggregat-

ing the values over the 500 runs into a single number, for

a dataset of only 121 ∗ 12 = 1452 elements. (This number

can be either the average or the mean.) We use the term un-

derlying uncertainty to mean the information contained in

the full Monte Carlo output dataset that is available only in

aggregate form in the high-level dataset; that is, the 726,000

elements as opposed to the 1452 elements.

3.2 Task Abstraction

As we discussed in Section 1, Vismon was designed to help

quantify tradeoffs that result from choosing different man-

agement options, and to support sensitivity and uncertainty

analysis, namely to understand when small changes of input

lead to large changes of output rather than small ones.

We now break this problem down into a more detailed list

of subtasks:

1. summarize a large number of simulations,

2. add constraints on the ranges of values for the simula-

tion input (management options) and output (indicators)

based on stakeholder interests,

3. select a few candidate combinations of options,

4. quantify tradeoffs between selected options,

5. avoid sensitive regions of the parameter space where in-

dicator values change rapidly per unit change in a man-

agement option,

6. avoid options with high underlying uncertainty across the

500 Monte Carlo trials,

7. enable communication among scientists, policy makers,

and stakeholders.

We abstracted this set of domain-specific subproblems

into a smaller set of generic tasks:

• narrow down from a large set of possible scenarios to a

small set of candidates,

• compare a small set of scenarios,

• avoid uncertain scenarios,

and a fourth task that crosscuts these first three:

• facilitate communication between technical and non-

technical people.

3.3 Previous Workflow

At the start of our collaboration, Peterman’s group was

actively engaged in the analysis of simulation results, as

they had been for years. Their previous analysis procedure

was to use a wide range of individual plots generated with

scripts for R and other similar packages. Although scripts

for general-purpose frameworks are a powerful and flexible

way to create nearly any individual view showing details at

a low level, they require the user to know exactly what to

specify in advance.

The major problem was that only a tiny fraction of the in-

formation theoretically available in the dataset was actively

considered in the analysis process. The scientists and man-

agers were buried by the quantity of information put out by

the models. Essentially, they picked a few points in the pa-

rameter space through trial and error and ignored the rest,

because they did not have a systematic way to explore the in-

formation. Their view of the dataset was narrowly focused;

they lacked high-level overviews and other ways to easily

synthesize information across a combination of low-level de-

tail views. Exploring the dataset at the level of the aggregate

statistical measures was very difficult, and understanding the

underlying uncertainty expressed in the full details of the

Monte Carlo runs was even more so.
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Their analysis procedure was most successful in support-

ing the first two subtasks at a basic level: summarization and

adding constraints. A very small set of candidate manage-

ment scenarios was picked (Subtask 3) based on past expe-

rience, rather than through a data-driven exploration of the

simulation output. While the high-level tradeoffs were well

known to the scientists and managers, quantifying them for

any specific combination of choices was difficult because the

relationships are nonlinear (Subtask 4). Quantifying trade-

offs involved a great deal of cognition and memory, with

only minimal help from their perceptual system, in order

to synthesize information across multiple individual views.

Avoiding sensitive regions (Subtask 5) required a great deal

of trial and error. Inspecting an individual contour plot show-

ing the values for one indicator could show them regions of

rapid change for that indicator where the contour lines were

closely spaced, but synthesizing a mental model across all of

the indicators was not well supported by the available meth-

ods of analysis. Understanding the complexity of the Monte

Carlo trials (Subtask 6) was not easily addressed; the sci-

entists typically just worked with the averages because the

full dataset was too overwhelming. Communicating results

(Subtask 7) was only partially addressed. Although their pro-

cess did support some level of communication between sci-

entists, simulation results were very difficult for policy mak-

ers to understand and extremely challenging for stakeholders

and the public to grasp.

Considering their tasks at a generic level, we conjectured

that many useful scenarios might not even be considered in

the candidate set, and conversely that too much analysis time

was being spent exploring candidates later found to be un-

suitable. Our goal was to allow the scientists to greatly in-

crease the breadth and scope of their analysis, even while

reducing the total time required.

3.4 Design Requirements

We identified three major design requirements.

1. Speed up and extend their previous analysis workflow:

• Provide interactive linking and brushing across multi-

ple views.

2. Add new capabilities for risk assessment analysis:

• better support for detailed tradeoff analysis,

• make the underlying uncertainty in the data visible but

do not force uncertainty analysis on users who want to

start simply,

• allow the three generic tasks to be done either in order

or interleaved.

3. Support easier interpretation for policy makers and the

public in addition to supporting scientists in the analysis

process.

A clear starting point based on Requirement 1 was to

build an interactive visualization system with multiple linked

views using their familiar and effective visual encoding tech-

nique of contour plots. It was obvious to us from known

visualization design principles that this baseline capability

would speed up the previous analysis process immensely,

since they were essentially doing linking and brushing by

hand.

Requirement 2 encapsulates many of the interesting vi-

sualization research questions beyond the obvious baseline,

and the design decisions arising from them are discussed in

the next section.

Although there is a certain level of dependency between

the three generic tasks, one design goal was to allow these

tasks to be fully interleaved, so that uncertainty information

could be incorporated into the selection of the candidate ac-

tions rather than being used only after narrowing down to a

handful of options, as was the case with their previous work-

flow. On the other hand, the requirement of encouraging but

not forcing uncertainty analysis led us to the design goal of

creating views that could all be used in a straightforward

way with only the information from the high-level simpli-

fied dataset. The combination of these two goals led us to

a strategy where views could be augmented with informa-

tion from the full underlying uncertainty dataset at different

levels of complexity. For example, a user should be able to

start exploring scenarios using only the high-level average

values, and then later incorporate uncertainty information to

see which of them are uncertain or risky. The user should

also be able to include that information in the initial explo-

ration, so that when faced with scenarios that have the same

average values, they can prefer the more certain ones.

Requirement 3 led us to a multi-stage iterative refinement

and evaluation strategy. The first stage is to work closely

with the scientists to ensure that the tool does support and

extend their analysis process. We have done so; this techni-

cal report documents that first stage of the work. The second

stage is to deploy the tool to policy makers to see that they

can also effectively use the tool for analysis, and refine it as

needed. We are currently in the midst of this stage. The fi-

nal stage will be to test that policy makers can indeed use

the tool to effectively communicate with the general public,

which we plan to do as future work.

4 Vismon Interface

Vismon is built using multiple linked views, as shown in Fig-

ure 1. The three main data abstractions used in Vismon are

options, indicators, and scenarios. Each of the three main

views has a different visual encoding to emphasize different

aspects of these elements and the relationship between them,

but the color coding for scenarios is the same across all of

them. Each main view is itself composed of small-multiple

charts, with linked highlighting between analogous items on

mouseover.

The Overview pane on the left has sliders that show the
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Figure 1: Vismon interface: Overview pane, top-left, shows the list of management options and indicators in separate tabs;

Contour Plot Matrix pane, top-right, shows the contour plots of indicators over the two management options and supports

scenario selection; Trade-offs pane, bottom, shows detail with the indicators for the selected scenarios.

range for, and allow constraints to be imposed on, the in-

dividual options and indicators, with optional histograms

showing the underlying data distributions for a richer view.

The location of each scenario with respect to the value

ranges is shown with a colored triangle. The Contours pane

on the right has a contour plot matrix with one plot for each

active indicator showing the values along the options axes,

with scenarios shown as colored dots. The Trade-offs pane

on the bottom shows details about the indicator values for

the active scenarios through bar charts, star glyphs, or mul-

tipodes plots. The view can either show a chart for each sce-

nario with marks for the indicators, or vice versa.

Constraints set in the Overview pane immediately change

the greyed-out regions in the Contours pane that indicate un-

acceptable management options. Scenarios chosen by click-

ing on one of the 121 grid points in the Contours window

appear in both other views.

4.1 Overview Pane

The Overview pane shows the individual options and indica-

tors as one-dimensional ranges, with one tab for each type.

In both cases, the base small-multiple view shows a slider,

with both a moveable handle for quick interactive position-

ing and a text box for precise numerical entry when the user

knows a value of interest in advance. The sliders allow the

user to restrict the active range of any input option or output

indicator, which changes the shape of the permissible sce-

nario region in the Contours pane plots.

The results of moving the input option sliders are not sur-

prising; a straight line sweeps out horizontally or vertically

to change the rectangular size of the active region, because

these values correspond with the underlying grid used for

both simulation computation and the contour plot display

axes. However, changing the undesirable range of the out-

put indicators leads to complex and non-obvious shapes for

the active region. With just a few minutes of exploring with

these sliders, the analyst can get the gist of how constraining

the different input and output dimensions affects the set of

possible scenarios.

Options have bidirectional sliders with both a minimum

and maximum handle, and two text boxes. Indicator sliders

have only a single handle, since their directionality is known

from the metadata. The label Best appears instead of a text

box on the side that is the most desirable direction, and the

handle also has a small flag pointing in that direction as a

subtle visual cue.

The plain sliders for the indicators convert to scented

widgets [WHA07] on demand from the user, showing his-

tograms of distributions in the underlying dataset in order

to provide more guidance on what choices to make when
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setting the ranges. There are two choices, either or both of

which can be shown.

The simpler choice, MC Trials, shows a histogram

with the distribution of all values for this indicator across

all the Monte Carlo trials. Figure 2a shows an example for

the Median escapement indicator, where the slider bar

has been moved from the default position of 0 to the value

of 319. We can see this is an indicator where the maximum

value is the most desireable because the Best label is on the

right side of the slider. The geometric intuition is straightfor-

ward: the user can see in advance whether a small or a large

part of the distribution will be filtered out when the slider bar

is moved to a particular position, rather than using a trial and

error process where the slider is moved and then the results

are scrutinized.

Figure 2b shows the result of drilling down even further

by clicking on the red triangle representing a scenario. The

histogram has a colored overlay allowing the user to com-

pare the distribution of the trials just for the chosen scenario

with that of the full dataset of all 121 scenarios. The Log

label appears on the left to show that in this mode the verti-

cal axis is now log-scale rather than linear, to ensure that the

overlay details are fully visible.

The more complex choice, Probabilistic Objec-

tives, allows a sophisticated user to reason about all the

Monte Carlo trials, not just their average. It uses a two-part

filter with a second slider and histogram. The base slider still

sets a limit on the value of the target indicator. The second

slider allows the user to set a probabilistic limit correspond-

ing to the percentage of Monte Carlo simulation trials that

are above that indicator limit for indicators that need to be

maximized, or below for those that need to be minimized.

The second slider allows the user to change this probabil-

ity value interactively from the default of 0%, meaning that

no possibilities have been ruled out, up to a higher number.

In Figure 2c, the user has set the probability that the Me-

dian escapement indicator is greater than 319 to 54%.

The plots in the Contours pane will show which of the 121

indicators have been ruled out by this limit by crossing them

out with X’s, as illustrated in the Figure 16 example.

By default all histograms show probability directly, but

the user can switch them to show cumulative density func-

tions, as in Figure 2d.

We considered a design change to compress the his-

tograms in the Overview pane to use less vertical space, so

that users could see more augmented sliders at once with-

out the need to scroll. However, our collaborators had strong

opinions that current information density is at a good set

point, and that making the histograms any smaller would im-

pede their utility.

The sliders are not only controls but also displays, even

when not augmented by the histograms. They act as legends

that document the range of each option or indicator; the slid-

(a)

(b)

(c)

(d)

Figure 2: The Overview pane sliders become scented wid-

gets [WHA07] on demand. (a) MC Trials shows the dis-

tribution of all values across all Monte Carlo trials for this

indicator. (b) Selecting a scenario by clicking on its triangle

shows its distribution compared to the full one across all 121

scenarios. (c) Probabilistic Objectives allows a

second, probabilistic aspect of the indicator to be set as part

of a management objective. (d) The histogram can show the

cumulative density function rather than the direct probability

density function.

ers have the same visual range on the screen but cover very

different regions of data space. They also show the full name

for options and indicators, rather than the short names used

in the other panes to save space. Most importantly, the sce-

nario triangles show the distribution of the scenarios with

respect to these ranges in a high-precision way using spatial

position. That distribution would require more mental effort

to glean from the Contours plots, where it is encoded more

indirectly and with lower precision as the color of the con-

tour band in which the scenario dot is embedded.

4.2 Contours Pane

The Contours pane contains a contour plot matrix that has

one two-dimensional plot for each active output indicator.

Each (x,y) location in the contour plot represents a scenario.

Again, a scenario is characterized by two independent vari-

ables, the parameter settings used for the input management

option choices, and has many dependent variables, the out-

put indicators. The small-multiple views are linked with a
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crosshair that appears at the same (x,y) location in each of

them when the cursor moves across any of them, and the ex-

act numeric value for the indicator at that point is shown in

each title bar.

The plots are all linked to the Overview pane sliders that

provide data-driven constraints on the active region within

each of them. All plots have the same two axes of the op-

tions, and the demarcation between the colored active region

and the greyed-out restricted region is the same in all. The

plots show the high-level dataset: either the average or the

median of the underlying 500 simulation runs for their indi-

cator. The plots resize dynamically to fit within the pane as it

resizes or the number of plots to show changes as indicators

are de- or re-activated, so that they are always visible side

by side without the need to scroll. By default, all indicator

plots are shown; Figure 1 shows the full set of 12 in the ex-

ample dataset. They can be can be turned on and off with a

right-mouse popup menu when the cursor is over a plot, or

through the control panel for the pane, which is accessible

through the Options button on the right of the pane.

The contour plots are colored by default with a sequential

blue-white colormap that incorporates hue and saturation in

addition to luminance in order to make the contour patterns

highly visually salient. Several other colormaps are built in,

all generated by ColorBrewer [HB03]. The direction of each

indicator is taken into account, so that the dark and highly

saturated end is the most preferred value for each.

The static array of contour patterns provides an overview

of the high-level dataset that is focused on the individual in-

dicators. Moving the cursor across the plot allows fast com-

parison between the indicator values for a single scenario

because of the dynamically linked crosshairs. We chose to

keep a contour plot matrix at the heart of the system because

they were both familiar and effective.

One of the main uses of this view is to guide the user in

selecting a small set of candidate scenarios, which can be

compared in detail in the Trade-offs pane. Clicking within

a contour plot selects the scenario at that point. Its location

is marked with a colored dot in all plots in this pane and a

colored triangle along each indicator range on the Overview

pane sliders. The marks representing selected scenarios are

small and show the categorical data type of an identifier that

is unique for each scenario, so they are coded with high-

saturation colors in different hues. This shared color coding

acts as a link across the different views. The design target

is that users are unlikely to select more than 10 scenarios

to inspect in detail at once. A palette of pre-selected highly

distinguishable colors is used for the first 11 scenarios, with

random colors used for any additional ones. The user can

use the color picker in the Trade-off pane control panel to

override these color defaults.

The user can also explore some of the underlying uncer-

tainty data in the Contour pane, as shown in Figure 3. The

11× 11 grid through which the contours are interpolated is

the set of 121 pre-computed scenarios, which can be shown

on demand as small points. These points can be size coded

with two additional numbers that summarize the underlying

500 Monte Carlo trials in terms of the same 95% confidence

interval information that is used for the error bars described

in the next section. Uncertain regions are clearly indicated

by large dots, and strongly asymmetric intervals can be seen

where the dots have visibly different aspect ratios. The user

can also turn on a histogram showing the full distribution

over the 500 trials at the point under the crosshair. The his-

togram updates as the cursor moves, and can be displayed

either in the plot containing the cursor or in all of the linked

plots.

(a) (b)

Figure 3: Contour plots can reveal the underlying 11× 11

grid. (a) Small points show where the grids are; (b) The

points are size coded to show the underlying uncertainty in

data.

4.3 Trade-offs Pane

The Trade-offs pane, as the name suggests, supports a de-

tailed assessment of the trade-offs between a small set of sce-

narios. Again, it does so with a set of small-multiple plots.

The default plot type is standard bar charts.

These plots support two kinds of analysis. The default

mode is to group outputs by indicator, showing one plot for

each indicator with a different colored bar for each scenario.

Figure 9 demonstrates how this mode allows easy compari-

son of how indicators change across scenarios. The opposite

mode is to group by scenario, where each plot shows a sin-

gle scenario with the bar heights showing all of its indicators.

Conversely, this mode allows easy comparison of indicator

values within a particular scenario, and the profiles of entire

scenarios with each other, as in Figure 12.

The plots support four different levels of showing the un-

derlying uncertainty information, as shown in Figure 4a-d.

The simplest possibility is none, to show plain bars with

no uncertainty information at all. This option fulfills the

requirement that analysts who want to do only high-level

analysis should not be forced to deal with uncertainty, and

only the high-level dataset information is encoded with bar
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 4: The Trade-offs pane can show uncertainty information on bars in four ways. a): None. b) Error bars. c) Box plots.

d) Shaded distributions. e) The multipodes display shows analagous information for a second plot type that uses radial bars: e)

Radial none. f) Radial error bars. g) Radial box plots. h) Radial shaded distributions. i) The third plot type is star glyphs, with

thin radial lines rather than thick bars, so uncertainty information is not shown.

heights. The default error bar mode superimposes a simple

error bar showing the 95% confidence interval on top of the

mark, summarizing the uncertainty with two additional val-

ues. We use this as a default since the idea of error bars is

very familiar to most scientists, and the high-level informa-

tion remains very salient. In box plot mode the uncertainty is

shown using a stylized box plot that shows the five statistical

values of minimum, lower quartile, median, upper quartile,

and maximum. For visual consistency, the box between the

upper and lower quartiles is filled with the same color as

the bar marks, and the box whiskers and median mark are

drawn in the same style as the error bars with thin grey lines.

The box plot is used in science as much as error bars, and

it is a part of the conventional statistical graphics toolbox.

The high-level aggregate number is still shown explicitly, but

with less salience. The shaded distribution mode shows the

uncertainty information in full detail by using a greyscale

map that encodes the full distribution as normalized density.

The high-level aggregate number is not necessarily the most

visually salient aspect of the display. This visual encoding

conveys the most information, but is quite different than the

other more familiar displays; the box plot acts as a bridge

between the familiar and the powerful.

The Trade-offs pane provides two other possible plot

types. The default choice shown in Figure 4a-d is the fa-

miliar bar chart, where one-dimensional marks aligned on

a horizontal axis encode values with spatial position along

a vertical axis. The multipodes plot in Figure 4e-h is a

radial alternative where the bars are laid out along a cir-

cle. The flat layout allows more accurate comparison of bar

lengths, whereas the radial layout allows easier comparison

between the first and last bars. Both the standard bar chart

and the radial bar chart can show the underlying uncertainty

in analagous ways. The third plot type is the star glyph, a

simpler version of the multipodes plot that uses a one-pixel

width mark instead of a wider bar, shown in Figure 4i. Star

glyphs do not support showing uncertainty information as

above, but they are a visual encoding that is already familiar

to many fisheries scientists. We thus include them as a bridge

to the less familiar but more powerful multipodes plots.

When the plots are grouped by indicator, the bars in all of

them can be sorted by the value of any indicator as shown in

Figure 14, rather than the default based on the order in which

the scenarios were created.

4.4 General Functionality

There are several other general features. The user can request

a separate window showing a single large contour plot for

any indicator. These high-resolution plots are fully linked in

all of the ways that the small multiples in the Contours pane

are. The user can also select any two indicators and create a

separate window with a scatterplot comparing the 121 sce-



M. Booshehrian, T. Möller, R. M. Peterman, & T. Munzner / Vismon 9

nario values. This plot is linked to the main windows only

by the color coding the dots representing selected scenar-

ios. Although scatterplots were not heavily used in the pre-

vious workflow, they were sometimes useful for analysis of

the Pareto frontier [EMKH10]. Users can add persistent ref-

erence lines that appear in all contour plots at specific values

of the options. Finally, the selected set of scenarios can be

exported as a comma separated value (CSV) file, so that re-

sults from a Vismon analysis session can be used elsewhere.

Export of any window as a PNG image file is also supported,

so that Vismon results can be easily shared with others.

Vismon is implemented in Java 1.6, with diagrams drawn

using custom Java2D graphics code. The tick marks on plot

axes dynamically adapt to use the space available using the

algorithm of Talbot, Lin and Hanrahan [TLH10].

5 Vismon: A Walkthrough

We now present a case study of how Vismon can be used in

the form of an illustrated walkthrough to show how the tool

supports analysis and decision making. The target user is a

fisheries manager in Alaska who hopes to make an informed

policy decision by finding a scenario with low uncertainty

that best suits her objectives. The dataset is the driving exam-

ple described in Section 3, a simulation model of the chum

salmon population in the AYK region.

Figure 5 shows the Vismon display on startup. No con-

straints have yet been set, so the entire rectangular region

of each plot in the Contours pane on the right is fully col-

ored to show that it is active. The active region is all of the

(x,y) combinations of management options that are accept-

able given the constraint limits.

The manager now decides to add constraints using the

sliders in the Overview panel on the left, to reduce the

size of the active region by eliminating scenarios that pro-

duce unacceptable values of particular indicators. She first

chooses 50% as the maximum allowable percentage of years

in which escapement is below the target, and a curvilinear

region in the upper right becomes greyed out, as shown in

Figure 6. She then chooses 30% as the maximum accept-

able percentage of time in which subsistence catch is in the

lower quartile historically, and Figure 7 shows the continu-

ing decrease in the size of the active range. Finally, she sets a

minimum of 100,000 fish for the average annual commercial

catch, as shown in Figure 8. The resulting active region in the

contour plots showing the feasible scenarios is much smaller

than the full original set, thereby simplifying the complex-

ity faced by the manager. Some indicators within the active

region are dark blue, showing that they are in the highly pre-

ferred range, while others are the lighter green color indicat-

ing unfavorable values.

The manager then explores a few management options by

clicking the mouse in a few locations within the active re-

gion, and the Vismon window updates to include the Trade-

offs pane showing detailed information about those scenar-

ios, as shown in Figure 9. The manager decides that she no

longer needs to consider any of the indicators that pertain

to median values. After she deactivates those with the right-

mouse popup menu, contour plots use the newly available

room.

Figure 10 shows the display after she switches to show-

ing more detailed uncertainty information as box plots rather

than error bars. She then digs even deeper by looking at

the shaded distributions, as shown in Figure 11. She then

switches to grouping by scenario rather than indicator and

returns to bar charts so that she can compare the profiles

easily between her four scenarios, shown in Figure 12. Fig-

ure 13 shows the display after she switches back to grouping

the charts by indicator. She scrolls the Overview down to

look at the commercial catch indicators, and then sorts the

charts in the Trade-offs pane by the Average commer-

cial catch indicator. She also changes the Overview

pane settings to show the distributions for each indicator.

Figure 14 shows her view after selecting the red scenario

to compare its distribution to the full dataset; the histograms

in the Overview pane are now log-scaled on the vertical axis

so that the details are visible.

Figure 15 shows the result of turning on the histograms

in the Contours pane to see details about the full Monte

Carlo trials for the scenario under the crosshairs. This ad-

ditional uncertainty information leads the manager to real-

ize that the current constraint settings might need to be re-

considered. Figure 16 shows the display after she turns on

the second set of histograms underneath the sliders in the

Overview, and sets the probabilistic limit that the Average

commercial catch must be more than 100,000 fish in

75% of the Monte Carlo trials. The Contours plots now have

many crossed out locations, indicating the option combina-

tions that have been ruled out by this setting for the probab-

listic acceptable values.

6 Future Work

Vismon is a work in progress. It was developed through

a close collaboration between visualization designers and

one fisheries scientist (Peterman, a coauthor of this pa-

per). A fully interactive first prototype was developed as a

testbed, allowing us to get periodic feedback via demon-

strations to Peterman and several other fisheries scientists.

We also received useful responses from a group of forty

scientists and policy makers from the Alaska Department

of Fish and Game. This paper describes the second gener-

ation prototype, which was been fully redesigned for us-

ability based on the successful elements of the first one.

This version of Vismon is available for free download at

http://www.vismon.org.

The next step will be to deploy this prototype to a larger

audience to use as part of their daily work routine. This field

trial will help us determine whether the tool meets its design
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goals. We will include both fisheries scientists and policy

makers at the management level in this assessment.

We have thus far focused most of our prototyping efforts

on capability and usability. The system achieves interactive

response on fast hardware with the datasets in use by our

collaborators, but can lag on older machines. We predict that

significant performance improvements could be gained with

a minor amount of engineering effort. We plan to do so as

part of a robustness pass before the second-stage deployment

of the tool.

This technical report is an interim document. We have not

included a full discussion of the related work in the visual-

ization domain to frame our contributions, nor have we fully

evaluated whether our design successfully meets the needs

of its target audience.
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Figure 5: On startup, the active region of the contour plots is the full rectangle.

Figure 6: After setting a constraint, the active region has an irregular shape.
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Figure 7: A second constraint shrinks the region more.

Figure 8: The third constraint shrinks the active region again.
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Figure 9: Clicking to select scenarios triggers the display of the Trade-offs pane.

Figure 10: Switching to the box plot uncertainty display.

Figure 11: Switching to shaded distribution uncertainty and grouping by scenario.
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Figure 12: Grouping by scenario, with bar charts. Labels for the bars appear on mouseover.

Figure 13: Returning to the indicator grouping, sorting by the Avg com indicator, and turning on MC Trials histograms.
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Figure 14: Choosing the red scenario shows that distribution against the rest at log scale.

Figure 15: Turning on histograms in the Contours window.
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Figure 16: Using the Probabilistic Objectives slider crosses out more of the plot regions.


